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Overview

e The Biology.
¢ Nanoscale Models
e Common Models.
e Our Model(s).
e Biological Results.
e Mesoscale Models and Multiple Motors
e Common Models.
e A Simple Model.
e Averaging and Asymptotics.
e Biological Results.
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Nanoscale

8- 10 nm: individual kinesin-1 or dynein step size.

5 nm: diameter of kinesin head

Mesoscale
100 nm
Typical runlength of cargo/motors complex

Macroscale
> 1 micron
On the order of cells.

S Gross, Phys. Biol., 04
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Who Cares?
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Overview

e When an axon is severed from a dendrite, it must be
regenerated.

e The microtubules near the regeneration site realign in a
mixed polarity.

e Why do they do this?
e What effect does this have on kinesin transport?

e How is this regulated? At the nanoscale?
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microtubule

Block Lab:http://www.stanford.edu/group/blocklab/kinesin/kinesin.html



The Important Biological Points.
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Nanoscale
Kinesin.

“Hand over hand” stepping mechanism.
e 8 nanometer steps with 1 ATP per step.

Length of step determined by the physical structure of
microtubule.

Back steps are rare.
Kinetics + Constrained Diffusion.

Free head detachment.
ATP binding.

ATP hydrolysis.

Free head attachment.
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Engineered Motors.

Extensions can range from less than 1 nm up to 12 nm.
Hackney and Hancock—extensions reduced processivity.
Hancock-velocity was reduced.

Yildiz et al-processivity was unaffected and velocity was

reduced.
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Necklinker Extension.
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Intramolecular Strain Coordinates Kinesin Stepping Behavior along Microtubules.



Important Quantities of Interest.
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® Asymptotic Velocity

. E[X(t . X(t
Vo= lim M or Vo= lim L
Important t—oo t t—oo t
Quantities of
Interest.

® Effective Diffusion

Common
Models Var[X(t)]
Desr = lim ———=
s eff Pl o
or the quantity which ensures
X(t) — Vit
Modele. V2Dt
A Simple Model
Biological
Results converges to a standard normal.
® Randomness Parameter
g — 2Der
LV,

® Processivity
v the number of random steps taken before detachment.
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The Models.

Pure kinetics model—-a discrete space Markov chain.

e Fails to account for the physical movement of heads.
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The Models.
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Stochastic Differential Equation Model

Vi e Brownian particle in a periodic potential.
o dX(t) = a(X(t))dt + odB(t)
e Fails to account for two individual heads.

e Fails to coordinate physical movement and chemical
kinetics.



The Models.
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Vioggre” Flashing Ratchet
o dX(t) = ak()(X(t))dt + odB(t)
e Accounts for both chemical and physical states.

e How can these be coordinated?
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Our Model(s).

Our Model.

What about incorporating diffusion of the free head into
the model?

State 1 corresponds to having both heads bound.

State 2 corresponds to the head having become free
Tethered diffusion with a negative or neutral bias.
State 3 and state 4 mean ATP has been bound

A conformational change causes there to be a forward bias
and less compliant spring.
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Our Model(s).

Our Model.

The position of the free motor head is governed by the following
equation.

Y(t)=y+ /Ot ak(s)(Y(s))ds + o B(s)

where K(t) is the process corresponding to state events.

Associate with each binding site a binding process

w ([ erens)

where the N; are independent standard Poisson processes
(independent of B also).

The time until we return to (chemical) state one (7) would then be
the time for one of these clocks to fire.

We define Y(7) to be the location of the binding site associated with
the binding process which fires first.



Renewal-Reward Processes.
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e Z;, i =1,2,... with mean j, and variance o2.

N(t)

Zz

where N(t) is a renewal process.
o N(t)=max{n:> " 7 <t}
e Time between events are independent and identically
distributed, 77, i =1,2,.... (10 =0).
e The 7; have finite mean (j,) and variance (o2).




Limits for Renewal-Reward Process.
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Functional Central Limit Theorem.

Define
[t] [t]
S(t) = Zz T(t)=)
i=0

S

where the covariance matrix is
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FCLT for Renewal-Reward.

John Fricks

e Note that X(t) = S(T~1(t)) Now, if we define
Xa(t) = n~1/2 <5(T_1(nt)) — “Znt>
for

and we apply Theorem 13.7.3 from Whitt; we obtain

t t
Xn(t) = B <> — %82 <> .
pe)  pr o \Mr
e This is equivalent in law to

2
X (t) = n~1/2 <X(nt) - ﬁ—jnt) = /%2 + S B(t)
[ ]
2 252
X(nt) ~ Y2 ne /2,72 ¢ “Z—?B(t)
Hr Hr 22

Our Model(s).
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Relabel the states. Negative means front head became detached first.
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Aggregated States of Markov Chains.

Wang and Qian on kinetic models for motors.
Milescu et al on MLE for motor dwell time.
Fredkin and Rice a comprehensive look.
Colquhoun and Hawkes with ion channels.

Queueing Literataure—Asmussen, Neuts+others



John Fricks

Including Diffusivity of the Free Head.

e Use the matrix for the kinetic model as a block structure.

e Within the blocks, use a tridiagonal matrix to use a
discrete space random walk approximation for the free
head.

e Find the moments of Z; and 7;.



Necklinker Models (Drifts).
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Y(t) = x+ [y ak(s)(Y(s))ds + o B(s)
Linear Spring

ak(y) = —rly — )

Our Model(s)
Biological i WLC

Results.

o FENE
ak(y) = —r(y —¢c)

but with reflecting barriers at L. and —L..
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Binding Radius and Attachment Rate.
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Summary for Different Spring Models.

e WLC.

e When allowed to extend to approximately 4nm, binding
constant must be very high.

o As neck linker is extended, velocity AND processivity
increase.

e FENE.

e Binding constant is reasonable.

e As neck linker is extended, velocity and processivity
decrease as expected.

e Possible Resolutions.

e Projection is the problem.
e Weak binding.
e Mis-specficiation of neck linker.



Multiple Step Model.

John Fricks e Heads are not necessarily one binding site away at the
beginning of each cycle.
e Return to double binding changes initial conditions of next
cycle.
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Biological
Results.

Multiple Step Model.

The following forms a Markov chain

Z;
Tj

Si

e S; is a Markov chain describing the distance between
heads after previous cycle.

e The position of the front head after a full cycle

N(t)

Zz



Multiple Step Model.
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e Take advantage of the simplified structure; Z; and T;
depend on the last value of S.

e Calculate the stationary distribution of S; using the matrix
approximation.

Biological
Results.

e Can calculate the other moments based only on the
conditional means and variances given S;_1.

e Central Limit Theorem for stationary Markov chains will
lead to FCLT for sums—the result is a bivariate Brownian
motion

e We can still use Whitt to give us the correct FCLT.
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Recall the Yildiz Data.

WT OP 2P 4P 6P 13P 19P26P 14GS

WT OP 2P 4P 6P 13P19P26P14GS
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Expected Runlength Tension vs No Tension.
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Nanoscale Kinesin: Conclusions
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By using a renewal-reward framework, link a nanoscale
diffusive model to stepping.

Biological
Results.

If only single steps are permitted, this seems to eliminate
WLC as a neck linker model.

By modifying the framework, we allow for multiple steps.

By also including intra-head tension when both are bound,
WLC model scales with data.



Identical Motors and Cargo with External Load
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Identical Motors and Cargo with External Load
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Identical Motors and Cargo with External Load
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Overview External force vs. average velocity curves
Nanoscale
Kinesin
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An Alternative Model
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F/ANS “ _;“\_l;;.

Qe o
I(u dXi(t) = vg(F(Xi(t) — Z(t))/F) dt + oh(F(Xi(t) — Z(t))/F.) dWi(t)
Our Model(s) N
ydZ(t) = [Z F(Xi(t), Z(t)) — 0| dt + \/2ke Ty dW,(t).

i=1
Modele" ® v average velocity of unconstrained motor ~ 50nm/s
ASimPle Model. ° F* Sta” f‘orce N 7pN

® () optical track force ~ 0 to 10pN

F(-) spring force function linear with spring constant ~ 0.34pN/m

® g(-) non-dimensional instantaneous force-velocity function.

h(-) non-dimensional instantaneous force-diffusivity function.

o? effective diffusivity ~ 500nm/s



Motors with Cargo and Applied Force
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Important
Quantities of

Quanti dXi(t) = Vg(F(X‘(t) — Z(t))/F.)dt + oh(F(Xi(t) — Z(t))/F.) dWi(t)
our M ~dZ(t) = ZF(X Z(t)) — 0| dt + /2ks Ty dW.(t).

= friction force/thermal force ~ 10™*
V/2kg Tk

stallability ~ 0.1




Special Case of Two Motors

John Fricks

[ ]
<
=
|
N
=
+
I\’><|
X
=
Il
N|—=
=
|
&

Commor
Viodels

;\Simpl; Model. G(g) = \/E/Rg(_sy) €Xp (_2(}/ - 5/2)2) dy

Biological
Results

m5(r) = Crexp [—; /Or <G(r’ —0)— G(—r — §)> dr’]



Law of Large Numbers
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e Stationarity of R allows us to find limit of @ i.e.
asymptotic velocity.
M 1 ~ ~
M) / [G(r — )+ G(—r— 9))] dr(r)
t 2 Jr
N el e G(-) is derived from the force-velocity relationship.

e Similar methods allow for a CLT.



Multiple

Scales in

Molecular
Motor Models

John Fricks

Overview

Nanoscale
Kinesin
Important

Quantities of
Interest.

Common
Models.

Our Model(s)
Biological
Results

Mesoscale
Multiple
Motors

Common
Models.
A Simple Model

Biological
Results.

Prediction vs Simulation
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Conclusions on Multiple Motors
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Common e Cargo is the fast variable.
R e Two motors can be slower than one.
Results
e Under what conditions on the original force-velocity curve

will yield two motors being slower than one.
e
\ Simple Model
Biological
Results.

e Can we use this framework to explain data?




Where are we going?
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microtubules.

e Linking all three scale explicitly.

Common
Models

A Simple Model

Biological
Results.



John Fricks

Biological
Results.

Bibliography

Scott McKinley, Avanti Athreya, John Fricks, and Peter Kramer
(2011). Cooperative Dynamics of Kinesin and Dynein Molecular
Motors. Preprint.

John Hughes, William O. Hancock, and John Fricks (2011).
Kinesins with Extended Neck Linkers: A Chemomechanical
Model for Variable-Length Stepping. Submitted to Bulletin of
Mathematical Biology on January 6, 2011.

John Hughes, William Hancock, and John Fricks (2011). A
Matrix Computational Approach to Kinesin Neck Linker
Extension. Journal of Theoretical Biology. 269, No. 1, 181-194.

Matthew L. Kutys, John Fricks, and William O. Hancock
(2010). Monte Carlo Analysis of Neck Linker Extension in

Kinesin Molecular Motors. PLoS Computational Biology. 6, No.
11.



	Overview
	Nanoscale Kinesin.
	Important Quantities of Interest.
	Common Models.
	Our Model(s).
	Biological Results.

	Mesoscale Multiple Motors
	Common Models.
	A Simple Model.
	Biological Results.


