
BART: Bayesian Additive Regression Trees

Robert McCulloch

McCombs School of Business
University of Texas

May 11, 2011

Joint with
Hugh Chipman (Acadia University)

Ed George (University of Pennsylvania)

We want to “fit” the fundamental model:

Yi = f (Xi) + εi

BART is a Markov Monte Carlo Method that draws from

f | (x , y)

We can then use the draws as our inference for f .

To get the draws, we will have to:

I Put a prior on f .

I Specify a Markov chain whose stationary distribution is the
posterior of f .

Simulate data from the model:

Yi = x3
i + εi εi ∼ N(0, σ2) iid

--
n = 100
sigma = .1
f = function(x) {x^3}
set.seed(14)
x = sort(2*runif(n)-1)
y = f(x) + sigma*rnorm(n)
xtest = seq(-1,1,by=.2)
--

Here, xtest will be the out of sample x values at which we wish to
infer f or make predictions.

--
plot(x,y)
points(xtest,rep(0,length(xtest)),col=’red’,pch=16)
--

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●●●

●
●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

● ● ● ● ● ● ● ● ● ● ●

Red is xtest.

--
library(BayesTree)
rb = bart(x,y,xtest)
length(xtest)
[1] 11
dim(rb$yhat.test)
[1] 1000 11
--

The (i , j) element of yhat.test is

the i th draw of f evaluated at the j th value of xtest.

1,000 draws of f , each of which is evaluated at 11 xtest values.

--

plot(x,y)

lines(xtest,xtest^3,col=’blue’)

lines(xtest,apply(rb$yhat.test,2,mean),col=’red’)

qm = apply(rb$yhat.test,2,quantile,probs=c(.05,.95))

lines(xtest,qm[1,],col=’red’,lty=2)

lines(xtest,qm[2,],col=’red’,lty=2)

--

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●●●

●
●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

Example: Out of Sample Prediction

Did out of sample predictive comparisons on 42 data sets.
(thanks to Wei-Yin Loh!!)

I p=3− 65, n = 100− 7, 000.
I for each data set 20 random splits into 5/6 train and 1/6 test
I use 5-fold cross-validation on train to pick hyperparameters (except

BART-default!)
I gives 20*42 = 840 out-of-sample predictions, for each prediction, divide rmse

of different methods by the smallest

+ each boxplots represents
840 predictions for a
method

+ 1.2 means you are 20%
worse than the best

+ BART-cv best

+ BART-default (use default
prior) does amazingly
well!!

R
on

do
m

 F
or

es
ts

N
eu

ra
l N

et
B

oo
st

in
g

B
A

R
T

−
cv

B
A

R
T

−
de

fa
ul

t

1.0 1.1 1.2 1.3 1.4 1.5

A Regression Tree Model

Let T denote the
tree structure including
the decision rules.

Let M = {µ1, µ2, . . . , µb}
denote the set of
bottom node µ’s.

Let g(x ; θ), θ = (T ,M)
be a regression tree function
that assigns a µ value to x .

A Single Regression Tree Model

x2 < d x2 % d

x5 < c x5 % c

µ3 = 7

µ1 = -2 µ2 = 5

Let g(x;"), " = (T, M) be a
regression tree function that
assigns a µ value to x

Let T denote the tree structure
including the decision rules

Let M = {µ1, µ2, … µb} denote
the set of bottom node µ's.

A Single Tree Model: Y = g(x;!) + ! 7

A single tree model:
y = g(x ; θ) + ε.

A coordinate view of g(x ; θ)

The Coordinate View of g(x;")

x2 < d x2 % d

x5 < c x5 % c

µ3 = 7

µ1 = -2 µ2 = 5

Easy to see that g(x;") is just a step function

µ1 = -2 µ2 = 5

⇔
µ3 = 7

c

d x2

x5

8

Easy to see that g(x ; θ) is just a step function.

The BART Model
Let " = ((T1,M1), (T2,M2), …, (Tm,Mm)) identify a set of m trees and their µ’s.

Y = g(x;T1,M1) + g(x;T2,M2) + ... + g(x;Tm,Mm) + ! z, z ~ N(0,1)

The BART Ensemble Model

E(Y | x, ") is the sum of all the corresponding µ’s at each tree bottom node.

Such a model combines additive and interaction effects.

µ1

µ2 µ3

µ4

9
Remark: We here assume ! ~ N(0, !2) for simplicity, but will later see a successful
extension to a general DP process model.

m = 200, 1000, . . . , big,

f (x | ·) is the sum of all the corresponding µ’s at each bottom
node.

Such a model combines additive and interaction effects.

Complete the Model with a Regularization Prior

π(θ) = π((T1,M1), (T2,M2), . . . , (Tm,Mm), σ).

π wants:

I Each T small.

I Each µ small.

I “nice” σ (smaller than least squares estimate).

We refer to π as a regularization prior because it keeps the overall
fit small.

In addition, it keeps the contribution of each g(x ; Ti ,Mi) model
component small.

Consider the prior on µ.
Let θ denote all the parameters.

f (x | θ) = µ1 + µ2 + · · ·µm.

Let µi ∼ N(0, σ2
µ), iid.

f (x | θ) ∼ N(0,m σ2
µ).

In practice we often, unabashadly, use the data by first centering
and then choosing σµ so that

f (x | θ) ∈ (ymin, ymax)

with high probability:

σ2
µ ∝

1

m
.

BART MCMC

Bayesian Nonparametrics:
 Lots of parameters (to make model flexible)
 A strong prior to shrink towards simple structure (regularization)
 BART shrinks towards additive models with some interaction

Dynamic Random Basis:
 g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive

Gradient Boosting:
 Overall fit becomes the cumulative effort of many “weak learners”

Connections to Other Modeling Ideas

Y = g(x;T1,M1) + ... + g(x;Tm,Mm) + & z
 plus

#((T1,M1),....(Tm,Mm),&)

12

First, it is a “simple” Gibbs sampler:

(Ti ,Mi) | (T1,M1, . . . ,Ti−1,Mi−1,Ti+1,Mi+1, . . . ,Tm,Mm, σ)

σ | (T1,M1, . . . , . . . ,Tm,Mm)

To draw (Ti ,Mi) | · we subract the contributions of the other
trees from both sides to get a simple one-tree model.

We integrate out M to draw T and then draw M | T .

To draw T we use a Metropolis-Hastings with Gibbs step.
We use various moves, but the key is a “birth-death” step.Because p(T | data) is available in closed form (up to a norming constant),

we use a Metropolis-Hastings algorithm.

Our proposal moves around tree space by proposing local modifications
such as

=>
?

=>
?

propose a more complex tree

propose a simpler tree

Such modifications are accepted according to their compatibility
with p(T | data). 20

Simulating p(T | data) with the Bayesian CART Algorithm

Bayesian Nonparametrics:
 Lots of parameters (to make model flexible)
 A strong prior to shrink towards simple structure (regularization)
 BART shrinks towards additive models with some interaction

Dynamic Random Basis:
 g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive

Gradient Boosting:
 Overall fit becomes the cumulative effort of many “weak learners”

Connections to Other Modeling Ideas

Y = g(x;T1,M1) + ... + g(x;Tm,Mm) + & z
 plus

#((T1,M1),....(Tm,Mm),&)

12

Connections to Other Modeling Ideas:

Bayesian Nonparametrics:
- Lots of parameters to make model flexible.
- A strong prior to shrink towards a simple structure.
- BART shrinks towards additive models with some interaction.

Dynamic Random Basis:
- g(x ; T1,M1), g(x ; T2,M2), . . . , g(x ; Tm,Mm) are

dimensionally adaptive.

Gradient Boosting:
- Overall fit becomes the cumulative effort

of many weak learners.

Bayesian Nonparametrics:
 Lots of parameters (to make model flexible)
 A strong prior to shrink towards simple structure (regularization)
 BART shrinks towards additive models with some interaction

Dynamic Random Basis:
 g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive

Gradient Boosting:
 Overall fit becomes the cumulative effort of many “weak learners”

Connections to Other Modeling Ideas

Y = g(x;T1,M1) + ... + g(x;Tm,Mm) + & z
 plus

#((T1,M1),....(Tm,Mm),&)

12

Some Distinguishing Feastures of BART:

BART is NOT Bayesian model averaging of single tree model.

Unlike Boosting and Random Forests, BART updates a set of m
trees over and over, stochastic search.

Choose m large for flexible estimation and prediction.

Choose m smaller for variable selection
- fewer trees forces the x ’s to compete for entry.

The Friedman Simulated Example

y = f (x) + Z , Z ∼ N(0, 1).

f (x) = 10 sin(πx1x2) + 20(x3 − .5)2 + 10x4 + 5x5.

n = 100.
Add 5 irrelevant x ’s (p = 10).
xi ∼ uniform(0, 1).
f̂ (x) is the posterior mean.

Compute out of sample RMSE using 1,000 simulated x ∈ R10.

RMSE =

√√√√ 1

1000

1000∑
i=1

(f (xi)− f̂ (xi))2

Performance measured on 1000 out-of-sample x’s by

Comparison of BART with Other Methods

28

Cross Validation Domain for Comparisons

29

Results for one draw.

Applying BART to the Friedman Example

Red
m = 1
model

Blue
m = 100
model

We applied BART with m = 100 trees to n = 100 observations of the
Friedman example.

95% posterior intervals vs true f(x) & draws

in-sample f(x) out-of-sample f(x) MCMC iteration

30
Frequentist coverage rates of 90% posterior intervals:
in sample: 87%
out of sample: 93 %.

With only
100 observations
on y and 1000 x's,
BART yielded
"reasonable"
results !!!!

Added many
useless x's to
Friedman’s
example

In-sample
post int vs f(x)

20 x's

100 x's

1000 x's

Detecting Low Dimensional Structure in High Dimensional Data
Out-of-sample
post int vs f(x) & draws

31

Big p, small n.

n = 100.

Compare BART-default,BART-cv,boosting, random forests.

Out of sample RMSE.

High Dimensional Out-of-Sample
RMSE Performance Comparisons

p = 10 p = 100 p = 1000

n = 100 throughout!

32

Partial Dependence plot:

Vary one x and average out the others.

Partial Dependence Plots for the Friedman Example
The Marginal Effects of x1 – x10

41

Variable selection, frequency with which a variable is used.Variable Selection via BART

Variable usage frequencies as the number of trees m is reduced

38

Example: Drug Discovery

Goal: To predict the “activity” of a compound against a biological
target.

That is: y = 1 means drug worked (compound active), 0 means it
does not.

Easy to extend BART to binary y using Albert & Chib.

n = 29, 3744→ 14, 687 train, 14, 687 test.
p = 266 characterizations of the compound’s molecular structure.

Again, out-of-sample prediction competitive with other methods,
compared to neural-nets, boosting, random forests, support vector
machines.

20 compounds with highest Pr(Y = 1 | x) estimate.
90% posterior intervals for Pr(Y = 1 | x).

BART Posterior Intervals for
20 Compounds with Highest Predicted Activity

 In-sample Out-of-Sample

51

Variable selection.

Variable Importance in Drug Discovery
with m = 5, 10, 20 trees

All 266 x’s Top 25 x’s

52

Current Work

Nonparametric modeling of the error distribution (with Paul
Damien)

Multinomial outcomes (with Nick Polson).

More on priors and variable-selection.

Constrain the multivariate function to be monotonic
(with Tom Shively)

- Tom has a beautiful cross-dimensional,
constrained, slice-sampler.

Recode with MPI to make it faster!!

With Dave Higdon, James Gattiker, and Matt Pratola at Los
Alamos National Labs..

Dave came to me and said, “we tried your stuff (the R package)
on the analysis of computer experiments and it seemed promising
but it is too slow”.

1. Rewrote code so that it is leaner.

2. Used MPI to compute.

num obs new-parallel new-serial old

1 1000 7 9 43

2 2000 8 18 95

3 3000 9 28 149

4 4000 10 36 204

5 5000 12 45 262

6 10000 18 90 547

7 50000 70 439 NA

8 100000 138 902 NA

9 500000 904 6410 NA

With 10,000 observations the new algorithm is 547/90 = 6 times
faster than the old algorithm.

The parallel version is 90/18 = 5 times faster than the serial
version (with 7 cores).

Thus, the parallelized new algorithm is 30 times faster than the old
BART algorithm (available in the R package BayesTree).

With 500,000 observations, the old algorithm cannot be run on the
machine being used. The parallel version is 6410/904 = 7 times
faster than the serial version. Recall that we are using 7 cores to
do the basic computations.

linear in the number of cores!!

100,000 observations, p = 251.
For regression, cor(y , ŷ) = .84 for BART = .99.

Blue is BART, red is least-squares.

1.1 1.2 1.3 1.4 1.5 1.6

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

y, n=2000

fit
s

bart=blue,reg=red

1.1 1.2 1.3 1.4 1.5 1.6

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

y, n=5000

fit
s

3. Parallelize prediction, so we can do all the stuff we want!

