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HDLSS context

Data with High-Dimension and Low Sample Size (HDLSS)
arise in many fields.

There is an increasing current interest in the statistical
analysis of this kind of data.

Recently several authors have been interested in the
comparison of classical methods for Binary Discrimination
Analysis with new ones designed for the HDLSS context.



Geometric representation

Let z(d) = (z(1), . . . , z(d))> be a d-dimensional random
vector drawn from the multivariate standard normal
distribution.

By Hall, Marron and Neeman (2005) the random vector z lie
near the surface of an expanding sphere:

‖ z ‖ =

(
d∑

k=1

z(k)2

)1/2

= d1/2 + Op(1), as d →∞.



If z1 and z2 are independent then

‖ z1 − z2 ‖ = (2d)1/2 + Op(1), as d →∞,

and

Angle(z1, z2) =
π

2
+ Op(d−1/2), as d →∞.



Case d = 3 and n = 3

Figure: 3-simplex



Binary discrimination analysis

Suppose that we have the following training data set

(x1,w1), (x2,w2), . . . , (xN ,wN), (1)

where xi ∈ Rd and wi ∈ {−1, 1}, for i = 1, 2, . . . ,N.

We have two classes of data, the classes C+ and C−
corresponding to the vectors with wi = 1 and wi = −1,
respectively.

Let m and n be the cardinality of C+ and C−, respectively.

We want to assign a new data point x0 to one of these classes.
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Separable case

We say that the training data set is linearly separable if there
exists a hyperplane for which all the data of the class C+ are
on one side of the hyperplane and all the data of the class C−
are on the other side.

A hyperplane with such property is called a separating
hyperplane of the training data set.



Binary discrimination methods

We consider the following methods based on separating
hyperplanes:

Mean Difference (MD)

Support Vector Machine (SVM)

Distance Weighted Discrimination (DWD)

Maximal Data Piling (MDP)

Naive Bayes (NB)

The DWD and MDP methods are designed for the HDLSS context.



The MD, SVM and DWD methods have been previously
studied in Hall, Marron and Neeman (2005), where the
probability of misclassification of a new data point is
considered when the dimension d tends to infinity.

Marron, Todd and Ahn (2007) observed by simulation that
the MD, SVM and DWD methods have asymptotically the
same behavior, in terms of proportion of misclassification
of new data.

In the present work (Bolivar-Cime, Marron (2011)) we take a
different asymptotic viewpoint, based on the angle between
the normal vectors of the separating hyperplanes.



Support Vector Machine (SVM)

Vapnik (1982, 1995)

Cortes and Vapnik (1995)

Burges (1998)

Cristianini and Shawe-Taylor (2000)

Izenman (2008)



Let d+ and d− be the shortest distances from the separating
hyperplane to the nearest vector in C+ and C−, respectively. The
margin of the separating hyperplane is defined as d0 = d+ + d−.

The vectors closer to the separating hyperplane are called support
vectors.



In the separable case the SVM hyperplane

vT
0 x + b0 = 0,

is the unique separating hyperplane with a maximal margin.

v0 is a linear function only of the support vectors.
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Distance Weighted Discrimination (DWD)

In the HDLSS situation Marron, Todd and Ahn (2007) observe
that the projection of the data onto the normal vector of the
SVM separating hyperplane produces substantial data piling.

They show that data piling may affect the generalization
performance.

They propose the DWD method, which avoids the data piling
problem and improves generalizability.

All the training data have a role in finding the DWD
hyperplane, but data closer to the hyperplane have a bigger
impact than data that are farther away.



Define the residual of the i-th data vector as the distance of
this vector to the separating hyperplane.



The DWD hyperplane

v>1 x + b1 = 0,

solves the optimization problem

minimize
N∑
i=1

1

ri

subject to ‖ v ‖= 1, ri ≥ 0, i = 1, 2, . . .N. (2)



Mean Difference (MD)

Also called the nearest centroid method (Scholkopf and Smola
(2002)).

The separating hyperplane of this method is the one that
orthogonally bisects the segment joining the centroids or
means of the two classes.

That is, if the means of the classes C+ and C− are given by

x+ =
1

m

∑
xi∈C+

xi and x− =
1

n

∑
xi∈C−

xi , (3)

respectively, then the MD hyperplane has normal vector

u = x+ − x− (4)

and bisects the segment joining the means x+ and x−.



Maximal Data Piling (MDP)

This method was proposed by Ahn and Marron (2010).

It was specially designed for the HDLSS context and we need
to assume d ≥ N − 1 and that the subspace generated by the
data set has dimension N − 1.

There exist direction vectors onto which the projection of the
training data are piled completely at two distinct points, one
for each class.



For the MDP hyperplane

v>2 x + b2 = 0,

the unit normal vector v2 is the direction vector for which the
projections of the two class means have maximal distance, and
the projection of each data point onto the vector is the same
as its class mean.

The bias b2 can be calculated as

b2 = −v>2 (mx+ + nx−)/N. (5)
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Example
d = 39, n = m = 20. The data of C− and C+ were drawn from
multivariate normal distributions with identity covariance matrix
and means µ− = (−2.2, 0, . . . , 0)> and µ+ = (+2.2, 0, . . . , 0)>,
respectively.



The MDP method is equivalent to the Fisher Linear
Discrimination (FLD) in the non-HDLSS situation.

Bickel and Levina (2004) have demonstrated that FLD has
very poor HDLSS properties.

Ahn and Marron (2010) showed that, although data piling
may not be desirable, the MDP method can work very well
and better than FLD in some settings in the HDLSS context.



Naive Bayes (NB)

It uses the Bayes Rule to obtain the normal vector of the
separating hyperplane (Bickel and Levina (2004)).

This method assumes that the common covariance matrix Σ
of the two classes is diagonal, i.e. the entries of the random
vectors are uncorrelated.



Suppose that the classes have normal distributions Nd(µ0,Σ)
and Nd(µ1,Σ).

Let u be the MD normal vector and let D = diag(Σ̂) be the
diagonal matrix whose entries are the diagonal elements of the
pooled covariance matrix

Σ̂ =
1

m + n − 2

 ∑
xi∈C+

(xi − x+)2 +
∑

xi∈C−

(xi − x+)2

 . (6)

By Bickel and Levina (2004) the normal vector of the NB
hyperplane is given by

v3 = D−1u. (7)



The bias of the NB hyperplane can be calculated as

b3 = −v>3 µ̂, (8)

where µ̂ = (x+ + x−)/2.



Assumptions

The random vectors in C+ and C− are independent with
d-multivariate normal distributions Nd(vd , Id) and Nd(0, Id),
respectively.

The difference between these classes is determined by the
mean vector vd .

The length of vd , i.e. ‖ vd ‖, is crucial for classification
performance.



Figure: Case ‖ vd ‖� d1/2
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Here, ‖ vd ‖≈ d1/2 is a critical boundary for classification
performance.

Because the separating hyperplane of the methods are
determined by their normal vector, the behavior of
classification is studied considering the direction of this vector.

Under our assumptions, vd is the optimal direction for the
normal vector of the separating hyperplane.

Thus, a discrimination method has good properties if the
angle between its normal vector and vd is close to zero.



Asymptotic behavior

Theorem 4.1

If v represents the normal vector of MD, SVM, DWD or MDP
hyperplane we have that

Angle(v , vd)
w−→


0, if ‖ vd ‖ d−1/2 →∞;
π

2
, if ‖ vd ‖ d−1/2 → 0;

arccos

(
c

(γ + c2)1/2

)
, if ‖ vd ‖ d−1/2 → c > 0;

as d →∞, where γ = 1
m + 1

n .

‖ vd ‖� d1/2: consistent

‖ vd ‖� d1/2: strongly inconsistent
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Different asymptotic behavior of the NB method

Proposition 4.1

Let v be the NB normal vector and assume m + n > 6. Suppose
vd = β1d where β = βd → c as d →∞, with 0 ≤ c ≤ ∞, then

Angle(v , vd)
w−→


arccos

(
µ̃

(σ̃2 + µ̃2)1/2

)
, if c =∞;

arccos

(
cµ̃

(γ + c2)1/2(σ̃2 + µ̃2)1/2

)
, if c ≥ 0;

(9)

as d →∞, where γ = 1
m + 1

n ,

µ̃ =
m + n − 2

m + n − 4
, σ̃2 =

2(m + n − 2)2

(m + n − 4)2(m + n − 6)
. (10)

The NB normal vector is always inconsistent.

It is strongly inconsistent when c = 0.
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Similar asymptotic behavior of the NB method

Proposition 4.2

Let v be the NB normal vector and assume m + n > 6. Suppose
vd = (dδ, 0, . . . , 0)>, with δ > 0. Then

Angle(v , vd)
w−→

{
0, if δ > 1/2;
π

2
, if δ < 1/2;

(11)

as d →∞.

The NB has a similar behavior to the other four methods
when c = 0 (δ < 1/2) and c =∞ (δ > 1/2).
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First case: The mean vector must interact with all of the
estimated marginal variances. This introduces a large amount
of noise into the classification process.

Second case: Only one estimated marginal variance has
substantial influence on the classification, so its effect is
asymptotically negligible.



Comparison of the methods

Hall, Marron and Neeman (2005) only studied
misclassification probabilities, where little contrast between
methods was available.

We provide better comparison between methods through
deeper study of the asymptotic behavior of them in terms of
the normal vectors of their separating hyperplanes.



When ‖ vd ‖� d1/2

Theorem 5.1 (Case m = 1, n = 2)

Suppose ‖ vd ‖= dδ with 1/2 < δ < 1. Let vSVM and vMD be the
normal vectors of the SVM and MD methods, respectively. Let
ASVM = Angle(vSVM , vd) and AMD = Angle(vMD , vd), then

A2
SVM − A2

MD = 2
X 2
1

d
+ Op(d−(1+ε)) as d →∞,

for some ε > 0 and where X 2
1 is a r.v. with the chi-square

distribution with one degree of freedom.



When ‖ vd ‖� d1/2

Theorem 5.2 (Case m = 1, n = 2)

Suppose ‖ vd ‖= dδ with δ > 1. Let ASVM and AMD be as in
Theorem 5.1, then

P(ASVM > AMD) −→ 1 as d →∞. (12)



When ‖ vd ‖� d1/2

Theorem 5.3 (Case m = 1, n = 2)

Suppose vd = (dδ, 0, . . . , 0)> with 0 < δ < 1/2. Let ASVM and
AMD be as in Theorem 5.1, then

ASVM − AMD =
N0

d
+

X 2
1

γ1/2d3/2−δ + O(d−(3/2−δ+ε
′))

=
N0

d
+ Op(d−(1+ε))

as d →∞ for some ε′, ε > 0, where N0 converges in distribution to
the product of two independent standard normal random variables
as d →∞ and X 2

1 is a r.v. with the chi-square distribution with
one degree of freedom.



Conclusions

The MD, SVM, DWD and MDP methods have the same
asymptotic behavior when d →∞.

However, depending on the asymptotic behavior of ‖ vd ‖
these methods may be asymptotically consistent or
inconsistent.

The NB sometimes behaves worse than the other four
methods.

Generally, MD is better than the SVM method when d is large
but fixed.
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