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Why Study Pleiotropy and Multiple
Phenotypes



Why Study Multiple Phenotypes |

* Pleiotropy: a single gene influences multiple
traits

* Gene pleiotropy broadly exists

e Classical example

— Phenylketonuria (PKU)

 Mutations in PAH gene cause multiple phenotypes if
untreated
— Mental retardation
— Reduced hair and skin pigmentation



Why Study Multiple Phenotypes |

 Examples of complex traits from genome-wide
association studies (GWAS)

Low Density Prostate Cancer
Lipoprotein

Age Related
Macular
Degeneration

Chen et al PNAS 2010 Gudmundsson et al Nat Genetics 2007



Why Study Multiple Phenotypes I

A complex disorder is usually associated with
multiple correlated phenotypes:

— Example: type 2 diabetes

Type 2 Diabetes: Insulin Resistance

e Fasting glucose levels
* |Insulin resistance
* C-reactive protein




Why Study Multiple Phenotypes llI

e Studying correlated phenotypes can reveal
correlations in the underlying biological
pathways

 Mapping multiple phenotypes will
— Refine phenotypic definitions

— Reduce sample heterogeneities
 Example:

— Etiologies of T2D are hypothesized to be different in obese
and non-obese people

— Stratify samples by body mass index (BMI)



Biological Mechanism for Pleiotropy

One gene product is used for different
biochemical purposes

One gene product is used in different pathways
One gene has multiple functional roles

The gene effect depends on its interactions with
other genes



Mapping Secondary Phenotypes in
Sequencing Based Genetic Studies



Second Generation Sequencing
Platforms

Roche 454 Illumina Solexa ABI SOLiD



Second Generation Sequencing
Technologies

 Much more cost-effective compared to Sanger
seguencing

e Already make possible sequencing based genetic
association studies

— When coupled with target enrichment methods, e.g. exon
capture

 Still expensive to generate and process sequence data
from
— Large number of individuals
— At high coverage depth



Sequencing Based Genetic Studies

* Usually not possible to sequence the entire
cohort

* |nstead, most studies use small selected samples

 Sample ascertainment mechanism can be
complicated, which may involve
— Multiple phenotype
— Extreme phenotypes
— Family histories



Sequencing Based Genetic Studies

* Most studies are not well powered to detect
associations for complex primary phenotypes

— Kryukov et al 2009 PNAS

* |n addition to the primary phenotype, many
clinically important secondary phenotypes are
often measured

— Example:
 BMI,
 Diastolic and systolic blood pressure,
e Blood cholesterol levels



Combine Samples from Different
Studies for Mapping Secondary
Phenotypes
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Phenome Mapping

e Combining multiple cohorts

* Different Cohorts may be collected for
different primary phenotypes

* Joint analysis of shared primary or secondary
phenotypes between different cohorts



Mapping Secondary Phenotypes in
Selected Samples

 The analysis of secondary phenotype can be
biased in selected samples

— if the sampling mechanism is not properly
modeled

 Example: case-control study
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Phenotype



Mapping Secondary Phenotypes in
Selected Samples

 The analysis of secondary phenotype can be
biased in selected samples

— if the sampling mechanism is not properly
modeled

 Example: case-control study

Primary
Phenotype

Secondary
Phenotype




Mapping Secondary Phenotypes in
Selected Samples

 The analysis of secondary phenotype can be
biased in selected samples

— if the sampling mechanism is not properly
modeled

 Example: case-control study

Primary
Phenotype

Secondary
Phenotype




Mapping Secondary Phenotypes in
Selected Samples |

 Methods developed for correcting the bias for
case-control studies

— Bias was evaluated
» Kraft et al Genetic Epidemiology

— Inverse sampling probability weighted regression
e Richardson et al Epidemiology 2007

— Maximum likelihood based approach
* Lin and Zeng Genetic Epidemiology 2009



Maximum Likelihood Method

* Joint modeling of two phenotypes

- Ply =1
log(l I(D(AY: )1)j = o+ B X, + Zk o Wy + 1,1,

—/Boz‘l',ng +Z &, W, +&;,

.

* Retrospective likelihood

L(B:{x,. v, .} =TT P(vs. x, 17, )



Mapping Secondary Phenotypes in
Selected Sample Il

* Limitations of existing methods:
— Developed for case control studies

— Not directly applicable to more complicated
ascertainment mechanisms

» Especially when secondary phenotypes are also
involved in sample ascertainment



Pleio-MAP method
* Multivariate liability threshold model

Y,,Y, ~ liability traits for

the primary and secondary phenotypes

Yi|=Bo+ X, + Zk o, Wy + &,
Yo F :802 +182Xi +Z]- &, W, +&,




Pleio-MAP method
* Multivariate liability threshold model

X, ~ locus genotype coding

[

Y, = b+ LXK |+ Zk o, W, +&,
Y, = :802 T IBZ'Xi T Zj &, W, +&,

.




Pleio-MAP method
* Multivariate liability threshold model

W, ~ covariates for individual i

[

Y, =5+ 56X, +Zk o, W
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Pleio-MAP method
* Multivariate liability threshold model

O 2
(81‘1’81'2) ~ N([ ],[ O, ,00'120-sz
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Pleio-MAP method

* For a multivariate liability threshold model
(MLT)

— Liability trait may not be directly observed

* If observed, MLT is equivalent to a multivariate normal
model

— A binary (or ordinal) phenotype may be observed,

e.g. Y*_ 1 Yll>ylc
0 Y, <y’

il
i



Pleio-MAP method

* Applications to selected samples:

— Jointly model sampling mechanism and
correlations between multiple phenotypes

— Prospective likelihood approach

 Joint probability of multiple phenotypes conditional on

the sampling scheme

Ny +N,

L(B.6:X.Y)=]]

[

Ascertainment

Status ]
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Pleio-MAP method

 Modeling of sampling schemes

Sampling mechanism

/

P(Zi :1Yil’Yi2’Xi’{VVik}k (Yil’YiZ’Xi‘{VVik}k)
[Pz, =1y, 5 )P (30 v Jdysdy,s

p(Yil’Yi2’Xi‘Zi :1’{‘)Vik}k)_

* Pleio-MAP is applicable to study designs for
which the sampling scheme can be modeled



PLeio-MAP method

e For a case control study
Y Yo X W, )= Pz, =1, )

 The sampling probability should satisfiy

P(z =1

P(Z, =1, =1) _ N*P(¥, =0)
1

P(Zizl‘Yﬂ:O) NUP( i1 )




Pleio-MAP method

e Testing of Associations:

— Likelihood based tests:

e Likelihood ratio test
e Score test
e Wald test

e Combine multiple cohort
— Test of heterogeneity
— Combine individual participants data

— Combine estimates of genetic effects using meta-
analysis based approach



Simulation Experiment 1



Comparisons of Different Selective
Sampling Designs for Mapping
Secondary Phenotypes



Study Designs in Sequencing Based
Genetic Studies

[ Case Control Design J
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Study Designs in Sequencing Based
Genetic Studies

[ Extreme Trait DesignJ
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Study Designs in Sequencing Based
Genetic Studies

[ Multiple Trait DesignJ
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Simulations of Genetic Data

 Demographic change of Africans:
— Boyko et al PLoS Genetics 2008

7,778

25,636
t = 6, 809 generations




Simulations of Genetic Data

* Purifying selections:

— Selective disadvantage of new mutations
* Heterozygous U
* Homozygous 2u

— Scaled disadvantage: Y =2N_,,.u
ba
[(a)
— where

a=0.184,b6=28,200

x“"exp(—bx),

Y=—X,X ~



Simulations of Phenotype Data

* Multi-site non-synonymous variants genotype for
individual “j”

 Among the S non-synonymous variant sites,

— A subset of variant sites C, are randomly selected as
causative variant sites for liability trait 1

— Another subset of variant sites C, are independently
selected as causative variant sites for trait 2



Simulations of Phenotype Data

* Two liability traits are generated according to

(Yil’YiZ) - N(ﬁwz)

~ ~ 1 o
where j :(,BIZMI LBt B X,-SlE:[ g 5

po, o,



Simulation of Phenotype Data

* Choice of parameters
— For the liability trait 1:
« f,=00r 5 =0.5
— For liability trait 2:
- p,=—0.50, or 5, =0.50,
— Phenotypic residual correlations:
- p=0.60r p=-0.6
1,000 individuals sequenced

e Significance level «a=0.05



Power for Case Control Study

Genetic Parameters p J
B 5 [ p |
0.5 -0.5 -0.6 0.533
0.5 -0.5 0.6 0.556
0.5 0.5 -0.6 0.565
0.5 0.5 0.6 0.545
0 -0.5 -0.6 0.527
0 -0.5 0.6 0.513
0 0.5 -0.6 0.521
0 0.5 0.6 0.531

Power for Population Based Study

Sample 1000 2000 3000
Size
Power 0.516 0.666 0.736




Power for Extreme Trait Study

Genetic Parameters Powerd
B B, P
0.5 -0.5 -0.6 0.582
0.5 -0.5 0.6 0.654
0.5 0.5 -0.6 0.667
0.5 0.5 0.6 0.589
0 -0.5 -0.6 0.598
0 -0.5 0.6 0.609
0 0.5 -0.6 0.606
0 0.5 0.6 0.602

Power for Population Based Study

Sample 1000 2000 3000
Size
Power 0.516 0.666 0.736




Power for Multi-trait Study

Genetic Parameters p J
2 A I
0.5 -0.5 -0.6 0.292
0.5 -0.5 0.6 0.471
0.5 0.5 -0.6 0.391
0.5 0.5 0.6 0.562
0 -0.5 -0.6 0.315
0 -0.5 0.6 0.447
0 0.5 -0.6 0.373
0 0.5 0.6 0.549

Power for Population Based Study

Sample 1000 2000 3000
Size
Power 0.516 0.666 0.736




Results for Experiment 1

* Analyzing secondary phenotypes in selected
samples can be more powerful than
population based unselected samples

— Although it was believed that population sample is
suitable for mapping multiple phenotypes



Results for Experiment 1

 This is because:

— Variants with pleiotropic effects will be enriched in
the selected sample

— Due to phenotypic correlations, selections
through primary phenotype induce selections on
the secondary phenotype



Simulation Experiment 2



Combining Case Control Study and
Multiple Trait Study



Results for Combining Multiple Studies

Parameters Powers?s

Case | Mutlple - Met
eta-
_ _ N Control phenotype

CcC cC CcC MT MT | AMT ) Analysis
Pc T P C,T Design Design

!

-0.5 -0.3 0.5 -0.5 0.3 0.510 0.418 0.690
-0.5 0.3 0.5 -0.5 0.3 0.499 0.418 0.680
0.5 -0.3 0.5 0.5 0.3 0.508 0.526 0.726
0.5 0.3 0.5 0.5 0.3 0.517 0.526 0.732
-0.5 -0.6 0.5 -0.5 0.3 0.527 0.418 0.703
-0.5 0.6 0.5 -0.5 0.3 0.513 0.418 0.685
0.5 -0.6 0.5 0.5 0.3 0.521 0.526 0.731
0.5 0.6 0.5 0.5 0.3 0.531 0.526 0.741

Power for Poputation Based Study

) el el el fer) en ) Han) Nan)

Sample Size 1000 2000 3000

Power 0.516 0.666 0.736




Results for Combining Multiple Studies

Parameters Powers?s

Case | Mutlple - Met
eta-
N _ N Control phenotype

CcC CcC CcC MT MT | AMT ) Analysis
Pc T P C,T Design Design

!

-0.125 | -0.3 0.5 -0.5 0.3 0.091 0.418 0.444
-0.125 0.3 0.5 -0.5 0.3 0.106 0.418 0.459
0.125 -0.3 0.5 0.5 0.3 0.128 0.526 0.550
0.125 0.3 0.5 0.5 0.3 0.105 0.526 0.529
-0.125 | -0.6 0.5 -0.5 0.3 0.097 0.418 0.426
-0.125 0.6 0.5 -0.5 0.3 0.117 0.418 0.462
0.125 -0.6 0.5 0.5 0.3 0.119 0.526 0.569
0.125 0.6 0.5 0.5 0.3 0.102 0.526 0.534

Power for Poputation Based Study

) el el el fer) en ) Han) Nan)

Sample Size 1000 2000 3000

Power 0.516 0.666 0.736




Analysis of ANGPTL 3,4,5 and 6 Genes

* Data generated by Dallas Heart Study (DHS)

 ANGPTL3,4,5 and 6 genes sequenced for a
multi-ethnic population-based sample of
1830 African Americans, 1045 European
Americans, 601 Hispanic Americans, 75 from
other ethinicities



Analysis of ANGPTL 3,4,5 and 6 Genes

* Eight metabolism phenotypes are measured:
— Body mass index (BMI)
— Diastolic blood pressure (DiasBP)
— Systolic blood pressure (SysBP)
— Total cholesterol level (TCL)
— Low density lipoprotein (LDL)
— High density lipoprotein (HDL)
— Triglyceride (TG)
— Glucose (Gluc)



Results for Primary Trait Analysis

 Each phenotype was analyzed as the primary
phenotype using individuals from the top and
bottom quartile



Estimates
Phenotypes Locus Genetic Carrier
p-values? .Effect Frequency"
Estimates(c,)
ANGPTL3

BMI 0.924 - 0.07
DiasBP 0.898 - 0.073
SysBP 0.997 - 0.069
TCL 0.253 -- 0.063
LDL 0.974 -- 0.067
HDL 0.733 - 0.068
TG 0.077 - 0.062
Gluc 0.640 -- 0.071




Estimates
Phenotypes Locus Genetic Carrier
p-values? Effect Frequency
Estimates(c,)
ANGPTLA4

BMI 0.504 -- 0.096
DiasBP 0.608 -- 0.082
SysBP 0.679 -- 0.094
TCL 0.311 -- 0.09
LDL 0.179 -- 0.086
HDL 0.068 -- 0.093
TG 0.005* -0.195 0.086
Gluc 0.541 -- 0.101




Estimates

Phenotypes Locus Genetic Carrier

p-values? Effect Frequency
Estimates(c,)
ANGPTLS

BMI 0.003* 0.215 0.095

DiasBP 0.564 -- 0.1
SysBP 0.842 -- 0.108
TCL 0.355 -- 0.096
LDL 0.600 -- 0.102
HDL 0.024* 0.151 0.097
TG 0.894 -- 0.095
Gluc 0.665 -- 0.105




Estimates

Phenotypes Locus Genetic Carrier

p-values? Effect Frequency
Estimates(c,)
ANGPTLG6

BMI 0.022* 0.219 0.051
DiasBP 0.110 -- 0.057
SysBP 0.487 -- 0.051
TCL 0.479 -- 0.051
LDL 0.628 -- 0.055
HDL 0.431 -- 0.053
TG 0.978 -- 0.049
Gluc 0.205 -- 0.05




Results

* Each additional phenotype was analyzed as
secondary phenotype



P-values for Analysis of Secondary Phenotypes?®

Primary BMI | DiasBP | SysBP [ TCL | LDL HDL | TG | Gluc
Phenotype ANGPTL 3
BMI 0.649 0.766 0.429 0.681 0.717 0.121 0.114
DiasBP 0.941 - 0.889 0.580 0.745 0.309 0.441 0.398
SysBP 0.550 0.509 - 0.371 0.223 0.689 0.073 0.222
TCL 0.988 0.955 0.327 - 0.971 0.289 0.163 0.151
LDL 0.871 0.372 0.349 0.114 - 0.116 0.183 | 0.024*
HDL 0.945 0.616 0.312 0.825 0.668 - 0.561 0.639
TG 0.910 0.883 0.437 0.945 0.418 0.863 - 0.148
Gluc 0.652 0.208 0.351 0.982 0.475 0.692 0.335 -
ANGPTL 4
BMI - 0.292 0.268 0.733 0.440 0.497 0.025%| | 0.972
DiasBP 0.965 - 0.380 0.361 0.363 0.121 0.137 0.389
SysBP 0.993 0.551 - 0.728 0.754 0.099 0.012% | | 0.405
TCL 0.861 0.532 0.571 - 0.052 0.759 0.065 0.933
LDL 0.281 0.894 0.269 0.135 - 0.053 0.010* | [ 0.999
HDL 0.708 0.904 0.286 0.318 0.262 - 0.107 0.874
TG 0.310 0.364 0.584 0.629 0.326 0.784 - 0.845
Gluc 0.824 0.524 0.084 0.848 0.561 0.479 0.118 -
ANGPTL 5
BMI - 0.920 0.114 0.521 0.233 0.056 0.377 0.797
DiasBP 0.118 - 0.096 0.451 0.803 0.092 0.616 0.367
SysBP 0.203 0.887 - 0.117 0.160 0.304 0.791 0.294
TCL 0.107 0.536 0.923 - 0.399 0.014* 0.221 0.488
LDL 0.084 0.735 0.587 0.202 - 0.002% 0.147 0.458
HDL 0.387 0.866 0.917 0.463 0.991 - 0.569 0.900
TG 0.044%* 0.871 0.074 0.296 0.597 0.185 - 0.448
Gluc 0.030%* 0.779 0.957 0.546 0.717 0.002% 0.451 -
ANGPTL 6
BMI - 0.300 1.000 0.606 0.457 0.324 0.401 0.419
DiasBP 0.008* - 0.385 0.459 0.690 0.478 0.721 0.197
SysBP 0.773 0.816 - 0.622 0.853 0.668 0.338 0.490
TCL 0.024* 0.530 0.992 - 0.823 0.324 0.702 0.940
LDL 0.089 0.383 0.850 0.485 - 0.429 0.801 0.314
HDL 0.034* 0.101 0.873 0.800 0.870 - 0.393 0.215
TG 0.210 0.735 0.974 0.357 0.695 0.561 - 0.811
Gluc 0.153 0.402 0.897 0.340 0.531 0.267 0.905 -




Conclusions

 Mapping secondary phenotypes in selected
samples is possible

 There is considerable power to detect
secondary phenotype associations in selected

samples



Conclusions

* Report estimates of genetic effects for
multiple traits

e Collect and use well phenotyped cohort

— Measure relevant phenotypes in addition to the
primary phenotype

e Missing phenotypes are hard to “impute”

— Record sample ascertainment mechanisms
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