A Flexible Likelihood Framework for Mapping Multiple Phenotypes in Sequencing Based Association Studies of Selected Samples

Dajiang J. Liu & Suzanne M. Leal

Why Study Pleiotropy and Multiple Phenotypes

Why Study Multiple Phenotypes I

- Pleiotropy: a single gene influences multiple traits
- Gene pleiotropy broadly exists
- Classical example
 - Phenylketonuria (PKU)
 - Mutations in PAH gene cause multiple phenotypes if untreated
 - Mental retardation
 - Reduced hair and skin pigmentation

Why Study Multiple Phenotypes I

• Examples of complex traits from genome-wide association studies (GWAS)

Chen et al PNAS 2010 Gudmundsson et al Nat Genetics 2007

Why Study Multiple Phenotypes II

- A complex disorder is usually associated with multiple correlated phenotypes:
 - Example: type 2 diabetes
 - Fasting glucose levels
 - Insulin resistance
 - C-reactive protein

Why Study Multiple Phenotypes III

- Studying correlated phenotypes can reveal correlations in the underlying biological pathways
- Mapping multiple phenotypes will
 - Refine phenotypic definitions
 - Reduce sample heterogeneities
 - Example:
 - Etiologies of T2D are hypothesized to be different in obese and non-obese people
 - Stratify samples by body mass index (BMI)

Biological Mechanism for Pleiotropy

- One gene product is used for different biochemical purposes
- One gene product is used in different pathways
- One gene has multiple functional roles
- The gene effect depends on its interactions with other genes

Mapping Secondary Phenotypes in Sequencing Based Genetic Studies

Second Generation Sequencing Platforms

Roche 454

Illumina Solexa

ABI SOLID

Second Generation Sequencing Technologies

- Much more cost-effective compared to Sanger sequencing
- Already make possible sequencing based genetic association studies
 - When coupled with target enrichment methods, e.g. exon capture
- Still expensive to generate and process sequence data from
 - Large number of individuals
 - At high coverage depth

Sequencing Based Genetic Studies

- Usually not possible to sequence the entire cohort
- Instead, most studies use small selected samples
- Sample ascertainment mechanism can be complicated, which may involve
 - Multiple phenotype
 - Extreme phenotypes
 - Family histories

Sequencing Based Genetic Studies

- Most studies are not well powered to detect associations for complex primary phenotypes

 Kryukov et al 2009 PNAS
- In addition to the primary phenotype, many clinically important secondary phenotypes are often measured
 - Example:
 - BMI,
 - Diastolic and systolic blood pressure,
 - Blood cholesterol levels

Combine Samples from Different Studies for Mapping Secondary Phenotypes

Phenome Mapping

- Combining multiple cohorts
- Different Cohorts may be collected for different primary phenotypes
- Joint analysis of shared primary or secondary phenotypes between different cohorts

Mapping Secondary Phenotypes in Selected Samples

- The analysis of secondary phenotype can be biased in selected samples
 - if the sampling mechanism is not properly modeled
- Example: case-control study

Mapping Secondary Phenotypes in Selected Samples

- The analysis of secondary phenotype can be biased in selected samples
 - if the sampling mechanism is not properly modeled
- Example: case-control study

Mapping Secondary Phenotypes in Selected Samples

- The analysis of secondary phenotype can be biased in selected samples
 - if the sampling mechanism is not properly modeled
- Example: case-control study

Mapping Secondary Phenotypes in Selected Samples I

- Methods developed for correcting the bias for case-control studies
 - Bias was evaluated
 - Kraft et al *Genetic Epidemiology*
 - Inverse sampling probability weighted regression
 - Richardson et al *Epidemiology 2007*
 - Maximum likelihood based approach
 - Lin and Zeng Genetic Epidemiology 2009

Maximum Likelihood Method

• Joint modeling of two phenotypes

$$\begin{cases} \log\left(\frac{P(Y_{i1}^*=1)}{1-P(Y_{i1}^*=1)}\right) = \beta_{01} + \beta_1 X_i + \sum_k \alpha_{1k} W_{ik} + \gamma_2 Y_{i2} \\ Y_{i2} = \beta_{02} + \beta_2 X_i + \sum_j \alpha_{2k} W_{ik} + \varepsilon_{i2} \end{cases}$$

• Retrospective likelihood

$$L(\vec{\beta}; \{X_i, Y_{i1}, Y_{i2}\}_i) = \prod_i P(Y_{i2}^*, X_i | Y_{i1})$$

Mapping Secondary Phenotypes in Selected Sample II

- Limitations of existing methods:
 - Developed for case control studies
 - Not directly applicable to more complicated ascertainment mechanisms
 - Especially when secondary phenotypes are also involved in sample ascertainment

Multivariate liability threshold model

 $Y_{i1}, Y_{i2} \sim \text{liability traits for}$ the primary and secondary phenotypes $\begin{cases} Y_{i1} = \beta_{01} + \beta_1 X_i + \sum_k \alpha_{1k} W_{ik} + \varepsilon_{i1} \\ Y_{i2} = \beta_{02} + \beta_2 X_i + \sum_j \alpha_{2k} W_{ik} + \varepsilon_{i2} \end{cases}$

Multivariate liability threshold model

Multivariate liability threshold model

 W_{ik} ~ covariates for individual *i*

$$\begin{cases} Y_{i1} = \beta_{01} + \beta_1 X_i + \sum_k \alpha_{1k} W_{ik} + \varepsilon_{i1} \\ Y_{i2} = \beta_{02} + \beta_2 X_i + \sum_j \alpha_{2k} W_{ik} + \varepsilon_{i2} \end{cases}$$

Multivariate liability threshold model

$$(\varepsilon_{i1}, \varepsilon_{i2}) \sim N \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix} \end{pmatrix}$$

$$\begin{cases} Y_{i1} = \beta_{01} + \beta_1 X_i + \sum_k \alpha_{1k} W_{ik} + \mathcal{E}_{i1} \\ Y_{i2} = \beta_{02} + \beta_2 X_i + \sum_j \alpha_{2k} W_{ik} + \mathcal{E}_{i2} \end{cases}$$

- For a multivariate liability threshold model (MLT)
 - Liability trait may not be directly observed
 - If observed, MLT is equivalent to a multivariate normal model
 - A binary (or ordinal) phenotype may be observed,

e.g.

$$Y_{i1}^* = \begin{cases} 1 & Y_{i1} > y_1^C \\ 0 & Y_{i1} \le y_1^C \end{cases}$$

- Applications to selected samples:
 - Jointly model sampling mechanism and correlations between multiple phenotypes
 - Prospective likelihood approach
 - Joint probability of multiple phenotypes conditional on the sampling scheme

$$L(\beta, \theta; X, Y) = \prod_{i=1}^{N_U + N_A} p(Y_{i1}, Y_{i2}, X_i | Z_i = 1, \{W_{ik}\}_k)$$

Modeling of sampling schemes

Sampling mechanism

$$p(Y_{i1}, Y_{i2}, X_i | Z_i = 1, \{W_{ik}\}_k) = \frac{P(Z_i = 1 | Y_{i1}, Y_{i2}, X_i, \{W_{ik}\}_k) P(Y_{i1}, Y_{i2}, X_i | \{W_{ik}\}_k)}{\int P(Z_i = 1 | y_{i1}, y_{i2}) P(y_{i1}, y_{i2}) dy_{i1} dy_{i2}}$$

 Pleio-MAP is applicable to study designs for which the sampling scheme can be modeled

• For a case control study

$$P(Z_i = 1 | Y_{i1}, Y_{i2}, X_i, \{W_{ik}\}_k) = P(Z_i = 1 | Y_{i1})$$

• The sampling probability should satisfiy

$$\frac{P(Z_i = 1 | Y_{i1} = 1)}{P(Z_i = 1 | Y_{i1} = 0)} = \frac{N^A P(Y_{i1} = 0)}{N^U P(Y_{i1} = 1)}$$

- Testing of Associations:
 - Likelihood based tests:
 - Likelihood ratio test
 - Score test
 - Wald test
- Combine multiple cohort
 - Test of heterogeneity
 - Combine individual participants data
 - Combine estimates of genetic effects using metaanalysis based approach

Simulation Experiment 1

Comparisons of Different Selective Sampling Designs for Mapping Secondary Phenotypes

Study Designs in Sequencing Based Genetic Studies

Study Designs in Sequencing Based Genetic Studies

Study Designs in Sequencing Based Genetic Studies

Simulations of Genetic Data

- Demographic change of Africans:
 - Boyko et al PLoS Genetics 2008

Simulations of Genetic Data

- Purifying selections:
 - Selective disadvantage of new mutations
 - Heterozygous *U*
 - Homozygous 2u

- Scaled disadvantage: $\gamma = 2N_{curr}u$

$$\gamma = -x, x \sim \frac{b^a}{\Gamma(a)} x^{a-1} \exp(-bx),$$

– where

$$a = 0.184, b = 8,200$$

Simulations of Phenotype Data

• Multi-site non-synonymous variants genotype for individual "i"

$$\vec{X}_i = \left(x_i^1, \cdots, x_i^S\right)$$

- Among the S non-synonymous variant sites,
 - A subset of variant sites C_1 are randomly selected as causative variant sites for liability trait 1
 - Another subset of variant sites C_2 are independently selected as causative variant sites for trait 2

Simulations of Phenotype Data

• Two liability traits are generated according to $(Y_{i1}, Y_{i2}) \sim N(\vec{\mu}_i, \Sigma)$

where
$$\vec{\mu}_i = \left(\vec{\beta}_1 \sum_{s \in C_1} x_i^s, \beta_0 + \vec{\beta}_2 \sum_{s \in C_2} x_i^s \right), \Sigma = \begin{pmatrix} 1 & \rho \sigma_2 \\ \rho \sigma_2 & \sigma_2^2 \end{pmatrix}$$

Simulation of Phenotype Data

- Choice of parameters
 - For the liability trait 1:

•
$$\beta_1 = 0 \text{ or } \beta_1 = 0.5$$

- For liability trait 2:

•
$$\beta_2 = -0.5\sigma_2 \text{ or } \beta_2 = 0.5\sigma_2$$

- Phenotypic residual correlations:

•
$$\rho = 0.6 \text{ or } \rho = -0.6$$

- 1,000 individuals sequenced
- Significance level $\alpha = 0.05$

Power for Case Control Study

Gei	Doword		
$\widetilde{oldsymbol{eta}}_1$	$\widetilde{oldsymbol{eta}}_2$	ρ	Power
0.5	-0.5	-0.6	0.533
0.5	-0.5	0.6	0.556
0.5	0.5	-0.6	0.565
0.5	0.5	0.6	0.545
0	-0.5	-0.6	0.527
0	-0.5	0.6	0.513
0	0.5	-0.6	0.521
0	0.5	0.6	0.531

Power for Population Based Study

Sample	1000	2000	3000
Size			
Power	0.516	0.666	0.736

Power for Extreme Trait Study

Gei	Dermand		
\widetilde{eta}_1	$\widetilde{oldsymbol{eta}}_2$	ρ	Power ^u
0.5	-0.5	-0.6	0.582
0.5	-0.5	0.6	0.654
0.5	0.5	-0.6	0.667
0.5	0.5	0.6	0.589
0	-0.5	-0.6	0.598
0	-0.5	0.6	0.609
0	0.5	-0.6	0.606
0	0.5	0.6	0.602

Power for Population Based Study

Sample	1000	2000	3000
Size			
Power	0.516	0.666	0.736

Power for Multi-trait Study

Gei	Dowowd		
$\widetilde{oldsymbol{eta}}_1$	$\widetilde{oldsymbol{eta}}_2$	ρ	Power ^a
0.5	-0.5	-0.6	0.292
0.5	-0.5	0.6	0.471
0.5	0.5	-0.6	0.391
0.5	0.5	0.6	0.562
0	-0.5	-0.6	0.315
0	-0.5	0.6	0.447
0	0.5	-0.6	0.373
0	0.5	0.6	0.549

Power for Population Based Study

Sample	1000	2000	3000
Size			
Power	0.516	0.666	0.736

Results for Experiment 1

- Analyzing secondary phenotypes in selected samples can be more powerful than population based unselected samples
 - Although it was believed that population sample is suitable for mapping multiple phenotypes

Results for Experiment 1

- This is because:
 - Variants with pleiotropic effects will be enriched in the selected sample
 - Due to phenotypic correlations, selections through primary phenotype induce selections on the secondary phenotype

Simulation Experiment 2

Combining Case Control Study and Multiple Trait Study

Results for Combining Multiple Studies

Parameters					Power ^g			
$\widetilde{oldsymbol{eta}}^{CC}_{A}$	$\widetilde{\pmb{eta}}_{\scriptscriptstyle T}^{\scriptscriptstyle CC}$	$ ho^{\scriptscriptstyle CC}_{\scriptscriptstyle C,T}$	$\widetilde{oldsymbol{eta}}_{C}^{\scriptscriptstyle MT}$	$\widetilde{oldsymbol{eta}}_{\scriptscriptstyle T}^{\scriptscriptstyle MT}$	$ ho^{\scriptscriptstyle MT}_{\scriptscriptstyle C,T}$	Case Control Design	Mutlple - phenotype Design	Meta- Analysis
0	-0.5	-0.3	0.5	-0.5	0.3	0.510	0.418	0.690
0	-0.5	0.3	0.5	-0.5	0.3	0.499	0.418	0.680
0	0.5	-0.3	0.5	0.5	0.3	0.508	0.526	0.726
0	0.5	0.3	0.5	0.5	0.3	0.517	0.526	0.732
0	-0.5	-0.6	0.5	-0.5	0.3	0.527	0.418	0.703
0	-0.5	0.6	0.5	-0.5	0.3	0.513	0.418	0.685
0	0.5	-0.6	0.5	0.5	0.3	0.521	0.526	0.731
0	0.5	0.6	0.5	0.5	0.3	0.531	0.526	0.741
		Powe	r tor Pop	ulation E	sased Sti	Jay		

Sample Size	1000	2000	3000
Power	0.516	0.666	0.736

Results for Combining Multiple Studies

Parameters					Power ^g			
$\widetilde{oldsymbol{eta}}^{CC}_{A}$	$\widetilde{oldsymbol{eta}}^{\scriptscriptstyle CC}_{\scriptscriptstyle T}$	$ ho^{\scriptscriptstyle CC}_{\scriptscriptstyle C,T}$	$\widetilde{oldsymbol{eta}}_{C}^{\scriptscriptstyle MT}$	$\widetilde{oldsymbol{eta}}_{\scriptscriptstyle T}^{\scriptscriptstyle MT}$	$ ho^{\scriptscriptstyle MT}_{\scriptscriptstyle C,T}$	Case Control Design	Mutlple - phenotype Design	Meta- Analysis
0	-0.125	-0.3	0.5	-0.5	0.3	0.091	0.418	0.444
0	-0.125	0.3	0.5	-0.5	0.3	0.106	0.418	0.459
0	0.125	-0.3	0.5	0.5	0.3	0.128	0.526	0.550
0	0.125	0.3	0.5	0.5	0.3	0.105	0.526	0.529
0	-0.125	-0.6	0.5	-0.5	0.3	0.097	0.418	0.426
0	-0.125	0.6	0.5	-0.5	0.3	0.117	0.418	0.462
0	0.125	-0.6	0.5	0.5	0.3	0.119	0.526	0.569
0	0.125	0.6	0.5	0.5	0.3	0.102	0.526	0.534
		Powe	r tor Pop	ulation E	sased Sti	uay		

Sample Size	1000	2000	3000
Power	0.516	0.666	0.736

Analysis of ANGPTL 3,4,5 and 6 Genes

- Data generated by Dallas Heart Study (DHS)
- ANGPTL3,4,5 and 6 genes sequenced for a multi-ethnic population-based sample of 1830 African Americans, 1045 European Americans, 601 Hispanic Americans, 75 from other ethinicities

Analysis of ANGPTL 3,4,5 and 6 Genes

- Eight metabolism phenotypes are measured:
 - Body mass index (BMI)
 - Diastolic blood pressure (DiasBP)
 - Systolic blood pressure (SysBP)
 - Total cholesterol level (TCL)
 - Low density lipoprotein (LDL)
 - High density lipoprotein (HDL)
 - Triglyceride (TG)
 - Glucose (Gluc)

Results for Primary Trait Analysis

 Each phenotype was analyzed as the primary phenotype using individuals from the top and bottom quartile

		Es	timates
Phenotypes	p-values ^a	Locus Genetic Effect Estimates(σ _r)	Carrier Frequency ^b
	ANGPTL	.3	
BMI	0.924		0.07
DiasBP	0.898		0.073
SysBP	0.997		0.069
TCL	0.253		0.063
LDL	0.974		0.067
HDL	0.733		0.068
TG	0.077		0.062
Gluc	0.640		0.071

		Estimates		
Phenotypes	p-values ^a	Locus Genetic Effect Estimates(σ _r)	Carrier Frequency ^b	
	ANGPTI	24		
BMI	0.504		0.096	
DiasBP	0.608		0.082	
SysBP	0.679		0.094	
TCL	0.311		0.09	
LDL	0.179		0.086	
HDL	0.068		0.093	
TG	0.005*	-0.195	0.086	
Gluc	0.541		0.101	

		Estimates						
Phenotypes	p-values ^a	Locus Genetic Effect Estimates(σ _r)	Carrier Frequency ^b					
ANGPTL5								
BMI	0.003*	0.215	0.095					
DiasBP	0.564		0.1					
SysBP	0.842		0.108					
TCL	0.355		0.096					
LDL	0.600		0.102					
HDL	0.024*	0.151	0.097					
TG	0.894		0.095					
Gluc	0.665		0.105					

		Estimates		
Phenotype	s p-values ^a	Locus Genetic Effect Estimates(σ_r)	Carrier Frequency ^b	
	ANGPTL	.6		
BMI	0.022*	0.219	0.051	
DiasB	P 0.110		0.057	
SysBI	0.487		0.051	
TCL	0.479		0.051	
LDL	0.628		0.055	
HDL	0.431		0.053	
TG	0.978		0.049	
Gluc	0.205		0.05	

Results

 Each additional phenotype was analyzed as secondary phenotype

	P-values for Analysis of Secondary Phenotypes ^a								
Primary	BMI	DiasBP	SysBP	TCL	LDL	HDL	TG	Gluc	
Phenotype	ANGPTL 3								
BMI		0.649	0.766	0.429	0.681	0.717	0.121	0.114	
DiasBP	0.941	-	0.889	0.580	0.745	0.309	0.441	0.398	
SysBP	0.550	0.509	-	0.371	0.223	0.689	0.073	0.222	
TCL	0.988	0.955	0.327	-	0.971	0.289	0.163	0.151	
LDL	0.871	0.372	0.349	0.114	-	0.116	0.183	0.024*	
HDL	0.945	0.616	0.312	0.825	0.668	-	0.561	0.639	
TG	0.910	0.883	0.437	0.945	0.418	0.863	-	0.148	
Gluc	0.652	0.208	0.351	0.982	0.475	0.692	0.335	-	
	ANGPTL 4								
BMI	-	0.292	0.268	0.733	0.440	0.497	0.025*	0.972	
DiasBP	0.965	-	0.380	0.361	0.363	0.121	0.137	0.389	
SysBP	0.993	0.551	-	0.728	0.754	0.099	0.012*	0.405	
TCL	0.861	0.532	0.571	-	0.052	0.759	0.065	0.933	
LDL	0.281	0.894	0.269	0.135	-	0.053	0.010*	0.999	
HDL	0.708	0.904	0.286	0.318	0.262	-	0.107	0.874	
TG	0.310	0.364	0.584	0.629	0.326	0.784	-	0.845	
Gluc	0.824	0.524	0.084	0.848	0.561	0.479	0.118	-	
				ANGP	TL 5				
BMI		0.920	0.114	0.521	0.233	0.056	0.377	0.797	
DiasBP	0.118	-	0.096	0.451	0.803	0.092	0.616	0.367	
SysBP	0.203	0.887	-	0.117	0.160	0.304	0.791	0.294	
TCL	0.107	0.536	0.923	-	0.399	0.014*	0.221	0.488	
	0.084	0.735	0.587	0.202	-	0.002*	0.147	0.458	
HDL	0.387	0.866	0.917	0.463	0.991	-	0.569	0.900	
TG	0.044*	0.871	0.074	0.296	0.597	0.185	-	0.448	
Gluc	0.030*	0.779	0.957	0.546	0.717	0.002*	0.451	-	
DMI		0.200	1.000	ANGP	TL 6	0.004	0.401	0.410	
BMI	-	0.300	1.000	0.606	0.457	0.324	0.401	0.419	
DiasBP	0.008*	-	0.385	0.459	0.690	0.478	0.721	0.197	
SysBP	0.775	0.816	-	0.622	0.833	0.008	0.338	0.490	
	0.024*	0.530	0.992	-	0.823	0.324	0.702	0.940	
	0.089	0.383	0.850	0.485	-	0.429	0.801	0.314	
HDL TC	0.034*	0.101	0.8/3	0.800	0.870	-	0.393	0.215	
	0.210	0.735	0.974	0.357	0.095	0.361	-	0.811	
Gluc	0.153	0.402	0.897	0.340	0.531	0.267	0.905	-	

Conclusions

- Mapping secondary phenotypes in selected samples is possible
- There is considerable power to detect secondary phenotype associations in selected samples

Conclusions

- Report estimates of genetic effects for multiple traits
- Collect and use well phenotyped cohort
 - Measure relevant phenotypes in addition to the primary phenotype
 - Missing phenotypes are hard to "impute"
 - Record sample ascertainment mechanisms

Acknowledgement

- Prof. Suzanne Leal
- Gao Wang
- Drs. Jonathan Cohen and Helen Hobbs for sharing sequence data from ANGPTL3, ANGPTL4, ANGPTL5 and ANGPTL6 genes.
- Computation for this research was supported in part by the Shared University Grid at Rice funded by NSF under Grant EIA-0216467, and a partnership between Rice University, Sun Microsystems and Sigma Solutions, Inc