Inference for Transposable Data: Modeling the Effects of Row and Column Correlations

Genevera I. Allen* & Robert Tibshirani**

August 5, 2010

*Department of Pediatrics-Neurology, Baylor College of Medicine & Department of Statistics, Rice University

**Departments of Health Research and Policy & Statistics, Stanford University

Large-Scale Inference and Genetic Data

Testing the significance of ...

- Genes in microarrays.
- Isoforms in next-generation sequencing data.
- Biomarkers in protein arrays.

All of these can be arranged in the form of a matrix.

- Question: Is genetic data transposable?
 - Rows and/or Columns are features of interest.

In this Talk . . .

- Introduction: Are our statistical assumptions for large-scale inference correct?
- What happens when our assumptions are incorrect?
 - Array correlations:

How does this affect the behavior of our test statistics?

Gene and Array correlations:

How does this affect multiple testing procedures?

- Mow do we fix these problems?
 - Directly model gene and array correlations with *Transposable Regularized Covariance Models*.
 - De-Correlate or sphere the data.

Preview: De-Correlating Microarray Data

Two-Class Microarray

Goal: Find differentially expressed genes.

Example: "Cardio" data

- Study of cardiovascular disease.
- 20,426 genes and 63 arrays.
- 44 controls and 19 diseased subjects.

(Efron, B., 2009)

Cardio

Method

Assumptions

For each gene:

Calculate the two-sample *t*-test.

Method

Assumptions

• For each gene:

Calculate the two-sample *t*-test.

Independent Arrays.

Method

- For each gene:
 - Calculate the two-sample *t*-test.
- ② Correct for multiple testing:
 - ► FDR (False Discovery Rate).
 - Examples: Step-up method (Benjamini & Hochberg, 1995), Permutation methods (SAM, Storey, 2002).

Assumptions

Independent Arrays.

Method

- For each gene:
 - Calculate the two-sample *t*-test.
- ② Correct for multiple testing:
 - ► FDR (False Discovery Rate).
 - Examples: Step-up method (Benjamini & Hochberg, 1995), Permutation methods (SAM, Storey, 2002).

Assumptions

Independent Arrays.

Limited Gene Dependence (positive regression dependence, weak dependence, local dependence).

Are these Realistic?

Could this be due to correlations among genes?

Over-dispersion:

• Red: Theoretical Null Distribution: $t_{(61)}$.

Are these Realistic?

Over-dispersion:

• Red: Theoretical Null Distribution: $t_{(61)}$.

Could this be due to correlations among the arrays?

- Measurement process:
 - Instrument drift, batch-effects, time of samples in storage, ...
- Correlated samples:
 - Latent variables such as age, gender or family history . . .

In this Talk . . .

- Introduction: Are our statistical assumptions for large-scale inference correct?
- What happens when our assumptions are incorrect?
 - Array correlations:

How does this affect the behavior of our test statistics?

Gene and Array correlations:

How does this affect multiple testing procedures?

- 3 How do we fix these problems?
 - Directly model gene and array correlations with *Transposable Regularized Covariance Models*.
 - 2 De-Correlate or sphere the data.

Microarray Matrix Model

$$X_{m \times n} = M + S + N.$$
Data = Mean + Signal + Noise.

where
$$\mathbf{M}_{m \times n} = \nu \mathbf{1}_{(n)}^{T} + \mathbf{1}_{(m)} \mu^{T}$$
 (mean matrix),
 $\mathbf{S}_{m \times n}$ is problem specific (signal matrix),
 $\mathbf{N}_{m \times n} \sim N_{m,n}(\mathbf{0}, \mathbf{0}, \mathbf{\Sigma}, \boldsymbol{\Delta})$ (noise matrix).

- Two-class microarray: $\mathbf{S} = \begin{bmatrix} \psi_1 \mathbf{1}_{(n_1)}^T & \psi_2 \mathbf{1}_{(n_2)}^T \end{bmatrix}$, where $\psi_1, \psi_2 \in \mathbb{R}^m$ are the class signals.
- $\mathbf{X} \mathbf{S} \sim N_{m,n}(\nu, \mu, \mathbf{\Sigma}, \mathbf{\Delta})$. (mean-restricted matrix-variate normal)

4□ >
4□ >
4 = >
5
9
0

Matrix extension of the multivariate normal:

$$\mathbf{X}_{m \times n} \sim N_{m,n}(\mathbf{v}, \mathbf{\mu}, \mathbf{\Sigma}, \mathbf{\Delta})$$

- Row means: $\nu \in \Re^m$.
- Column means: $\mu \in \Re^n$.
- Row covariance: $\Sigma \in \Re^{m \times m}$
- Column covariance:

Matrix extension of the multivariate normal:

$$\mathbf{X}_{m \times n} \sim N_{m,n}(\mathbf{v}, \mathbf{\mu}, \mathbf{\Sigma}, \mathbf{\Delta})$$

- Row means: $\nu \in \Re^m$.
- Column means: $\mu \in \Re^n$.
- Row covariance: $\Sigma \in \Re^{m \times m}$
- Column covariance: $\Delta \in \Re^{n \times n}$.

$$\mathrm{vec}(\boldsymbol{\mathsf{X}}) \sim \textit{N}\left(\mathrm{vec}(\boldsymbol{\mathsf{M}}), \boldsymbol{\Omega}\right)$$

Matrix extension of the multivariate normal:

$$X_{m \times n} \sim N_{m,n}(\nu,\mu,\Sigma,\Delta)$$

- Row means: $\nu \in \Re^m$.
- Column means: $\mu \in \Re^n$.
- Row covariance: $\Sigma \in \Re^{m \times m}$
- Column covariance: $\Delta \in \Re^{n \times n}$.

$$\operatorname{vec}(\mathbf{X}) \sim N\left(\operatorname{vec}(\mathbf{M}), \mathbf{\Omega}\right)$$

$$\bullet \ \mathsf{M} = \frac{\mathsf{v}}{\mathsf{1}_{(n)}^{\mathsf{T}}} + \mathsf{1}_{(m)}\mu^{\mathsf{T}}.$$

$$\mathbf{M}_{m \times n} =$$

$$\begin{pmatrix} \nu_{1} + \mu_{1} & \nu_{1} + \mu_{2} & \dots & \nu_{1} + \mu_{n} \\ \nu_{2} + \mu_{1} & \nu_{2} + \mu_{2} & & & \\ \vdots & & \ddots & \vdots \\ \nu_{m} + \mu_{1} & & \dots & \nu_{m} + \mu_{n} \end{pmatrix}$$

Matrix extension of the multivariate normal:

$$X_{m \times n} \sim N_{m,n}(\nu, \mu, \Sigma, \Delta)$$

- Row means: $\nu \in \Re^m$.
- Column means: $\mu \in \Re^n$.
- Row covariance: $\Sigma \in \Re^{m \times m}$
- Column covariance: $\Delta \in \Re^{n \times n}$.

$$\mathrm{vec}(\boldsymbol{X}) \sim \textit{N}\left(\mathrm{vec}(\boldsymbol{M}), \boldsymbol{\Omega}\right)$$

•
$$\mathbf{M} = {}^{\nu}\mathbf{1}_{(n)}^{T} + \mathbf{1}_{(m)}{}^{\mu}{}^{T}.$$

•
$$\Omega = \Delta \otimes \Sigma$$
.

$$\Omega_{mn imes mn} =$$

$$\begin{pmatrix} \Delta_{11} \mathbf{\Sigma} & \Delta_{12} \mathbf{\Sigma} & \dots & \Delta_{1n} \mathbf{\Sigma} \\ \Delta_{21} \mathbf{\Sigma} & \Delta_{22} \mathbf{\Sigma} & & & & \\ \vdots & & \ddots & \vdots \\ \Delta_{n1} \mathbf{\Sigma} & & \dots & \Delta_{nn} \mathbf{\Sigma} \end{pmatrix}$$

(Gupta & Nagar, 1999; G. I. Allen & R. Tibshirani, 2010)

Test Statistic Null Distributions

Question: How do test statistics behave when arrays are correlated?

Two-sample *Z*-test:

• Independent arrays:

$$Z \sim N(0,1)$$
.

 Theorem: Under matrix-variate normal,

$$Z \sim N(0, \frac{\eta}{c_n}),$$

where
$$c_n = \frac{1}{n_1} + \frac{1}{n_2}$$
,

 η is a function of Δ .

Test Statistic Null Distributions

Question: How do test statistics behave when arrays are correlated?

Two sample *T*-test:

- Independent Arrays: $T \sim t_{(n-2)}$.
- Correlated Arrays (matrix-variate normal):
 No closed form distribution.
- Variances estimated by Monte Carlo.

Study: Multiple Testing and Dependence

Simulation Study:

- Data from matrix-variate normal model.
- Used two-sample *t*-statistics.
- Applied various FDR-controlling procedures.

Conclusions:

- Good News: FDR controlled under many types of gene dependence.
- Bad News: FDR NOT controlled under gene AND array dependence.

In this Talk . . .

- Introduction: Are our statistical assumptions for large-scale inference correct?
- What happens when our assumptions are incorrect?
 - Array correlations:

How does this affect the behavior of our test statistics?

► Gene and Array correlations:

How does this affect multiple testing procedures?

- Mow do we fix these problems?
 - Directly model gene and array correlations with *Transposable Regularized Covariance Models*.
 - De-Correlate or sphere the data.

De-Correlating the Data

Step 1: Decompose data into Mean + Signal + Noise.

De-Correlating the Data

Step 2: Estimate the Gene and Array Covariances of the Noise. *Sphere* the Noise.

$$\bullet \ \tilde{\mathbf{N}} = \hat{\mathbf{\Sigma}}^{-1/2} \hat{\mathbf{N}} \hat{\mathbf{\Delta}}^{-1/2}.$$

• Σ̂ & Δ̂ estimated via Transposable Regularized Covariance Models.

(G. I. Allen & R. Tibshirani, 2010)

De-Correlating the Data

Step 3: De-Correlated Data.

- $\bullet \ \tilde{\mathbf{X}} = \hat{\mathbf{S}} + \tilde{\mathbf{N}}.$
- Approximately independent genes AND arrays.
- T-statistics distributed approximately $t_{(n-2)}$.

Cardio Results: Data Images

"Cardio"-Inspired Simulation:

- 250 genes, 50 differentially expressed.
- Gene & Array correlations: randomly selected Cardio genes & arrays.

Cardio Results: FDR Curves

Benefits of Sphering:

- Increased statistical power. (Gene rank is re-ordered.)
 - Standard Method:38 genes rejected.
 - Sphering:43 genes rejected

Cardio Results: FDR Curves

Benefits of Sphering:

- Increased statistical power. (Gene rank is re-ordered.)
 - Standard Method:38 genes rejected.
 - Sphering:43 genes rejected
- Orrect estimation of FDR.
 - Standard Method: 30 genes rejected.
 - Sphering:43 genes rejected

Results: Other Models

	Standard		Sphered	
	FDP	$\widehat{\mathrm{FDR}}$	FDP	$\widehat{\mathrm{FDR}}$
Latent Variable Model*	0.189	0.383	0.167	0.166
Random Effects Model	0.52	0.0229	0.154	0.207
Gene Correlations	0.169	0.19	0.141	0.185
Gene & Array Correlations	0.111	0.426	0.105	0.124

True FDP and FDR estimated by the step-up method for 55/250 rejected tests averaged over 10 simulations.

^{*(}J. Leek & J. Storey, 2008)

Conclusions & Future Work

Conclusions:

- Gene and especially Array correlations pose a major problem for large-scale inference.
- Sphering the data can correct these problems.

Conclusions & Future Work

Conclusions:

- Gene and especially Array correlations pose a major problem for large-scale inference.
- Sphering the data can correct these problems.

Future Work:

- Extensions to categorical data.
 - ► Application: Next-generation sequencing data.
- Approximations for high-dimensional data.
 - Application: Functional MRIs.

Acknowledgments & References

Acknowledgments:

SF Bay Area Chapter of the American Statistical Association Student Travel Award

References:

- G. I. Allen & R. Tibshirani, Transposable regularized covariance models with an application to missing data imputation, (To Appear) *Annals of Applied Statistics*, 2010.
- B. Efron, Are a set of microarrays independent of each other?, *Annals of Applied Statistics*, **13**: 3 (922-942), 2009.
- A. K. Gupta & D. K. Nagar, *Matrix variate distributions*, Chapman & Hall, CRC Press, 1999.