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A Branching Particle System is a branching process such that

I The time parameter is continous

I Each individual posesses a random lifetime, at the end of
which it branches

I Each individual posesses a random location in certain
measurable space, say Rd .

The spatial position of individuals becomes relevant if, in addition,
the individuals perform independent migrations during their
lifetimes.



A heuristic pictorial description of a BPS looks like this:

Writing δx (A) =

{
1, x ∈ A
0, x 6∈ A

, A ∈ B(Rd ), we see that

Nt(A) =
∑

i

δxi (t)(A) = number of particles in A at time t.

For each t ≥ 0,

I Nt represents the state of the population at time t,

I Nt can be suitably modeled by a random point measure on
(Rd ,B(Rd )).



What is a random point measure on (Rd ,B(Rd ))?

N (Rd ) := space of counting meaures µ on Rd such that µ(A) <∞
for each compact set A ⊂ Rd .

Theorem
Let µ ∈ N (Rd ). For any compact K ⊂ Rd , either

µ(K ) = 0,

or there exist x1, . . . , xnK
∈ Rd and j1, . . . , jnk

∈ N such that

µ(A) = j1δx1(A) + · · ·+ jnK
δxnK

(A), A ∈ B(K ).

For any measurable ϕ : Rd → IR and µ ∈ N (Rd ), we write

〈µ, ϕ〉 :=

∫
ϕ dµ.



Vague Topology

We endow N (Rd ) with the vage topology, in which a sequence
{µn} converges to µ ∈ N (Rd ) provided that

〈µn, ϕ〉 → 〈µ, ϕ〉 as n→∞ for any ϕ ∈ Cc (Rd ).

Let us denote by N the Borel σ-algebra corresponding to the vague
topology.

Definition
Let (Ω,F , IP) be a probability space. A random point measure is a
measurable mapping

ξ : (Ω,F)→ (N (Rd ),N).



Notice that

I The probability measure P(·) = IPξ−1(·) on (N ,N) is the
distribution of ξ, and satisfies

P(M) =
(
IPξ−1

)
(M) = IP(ξ ∈ M) for all M ∈ N.

I The intensity or expectation measure of ξ is the measure
IE ξ(·) given by

(IE ξ)(M) = IE[ξ(M)] =

∫
Ω
ξ(ω,M)dIP, ∀M ∈ B(Rd ).

I The Laplace functional Lξ of ξ is defined by

Lξ(f ) := IE e−〈ξ,f 〉, ∀f ∈ bM+(Rd ).

(Same rôle as the Laplace transform for positive r.v.)



PROTOTYPES OF EQUATIONS

∂u(t, x)

∂t
= ∆u(t, x)− Vu2(t, x), t > 0, (1)

and

∂u(t, x)

∂t
= ∆u(t, x) + Vu2(t, x), t > 0, (2)

u(0, x) = ϕ(x) ≥ 0, x ∈ Rd , (3)

∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d

, V > 0.

In the first case,

lim
t→∞

‖u(t)‖L1


> 0 (persistence)

= 0, (extinction)

For the second equation,

sup
x∈Rd

u(t, x) <∞ ∀t or lim
t→T0

u(t, x0) =∞, some T0 <∞, x0 ∈ Rd .



Critical dimension in both cases is d = 2:

For Equation (1), if ϕ 6≡ 0, then lim
t→∞

‖u(t)‖L1 > 0 iff d > 2,

For Equation (2), u blows up in finite time for any ϕ 6≡ 0 if d ≤ 2.

Systems of equations =⇒ Multitype populations

Other generators =⇒ Other particle motions

Other nonlinearities =⇒ Other branching laws



Persistence of a Multitype Branching System

(A) Particles in Rd

of types
i ∈ {1, . . . , k}

(B) Type i–particles
live exp(Vi )
lifetimes,
Vi > 0, and move
symmetric
αi –stable:

B
(α)
t

L
= t1/αB

(α)
1

(C) Branching
numbers:

IPr {Zi1 = n1, . . . ,Zik = nk} = p(i)(n1, . . . , nk )



Population space: counting measures on

S ≡ Rd × {1, . . . , k};

as before, we write 〈µ, φ〉 =
∫
φ(x)µ(dx).

Xt : Random measure on S describing the population at
time t.

(Xt)0≤t<∞ is homogeneous Markov, with Laplace functional
given by

IE e−〈Xt ,φ〉 = e
−
〈

ΛI ,v
φ
t

〉
, φ ∈ Cc (S, IR+), t ≥ 0,

where vφt is the mild solution of the nonlinear equation

∂vt(x , i)

∂t
= ∆αi vt(x , i)− Vi

[
Fi (1− vt(x , 1), . . . , 1− vt(x , k))

− (1− vt(x , i))

]
, (4)

v0(x , i) = 1− e−φ(x ,i), φ ∈ Cc (S, IR+).



Here Fi is the offspring generating function of a type-i parent, i.e.

Fi (s1, . . . , sk ) ≡ IE
[
sZi1

1 · · · s
Zik
k

]
=

∑
n1,...,nk≥0

sn1
1 · · · s

nk
k p(i)(n1, . . . , nk ),

(s1, . . . , sk ) ∈ [0, 1]k .



Assumptions
(A1) The mean matrix M ≡ (mij ) := (IE Zij ) is stochastic,

with strictly positive entries. Hence M admits a
unique equilibrum l = (lj )1≤j≤k ; we put γj := lj/Vj .

(A2) For all i ∈ {1, . . . , k} the total offspring

Zi := Zi1 + · · ·+ Zik

is in the normal domain of attraction of a
1 + βi –stable law, 0 < βi ≤ 1.
(The case βi = 1 just means that Zi has finite
variance). Equivalently

Fi (s, . . . , s) ∼ Const.(1−s)1+βi as s ↑ 1, i = 1, . . . , k .

(A3) The initial state X0 is a Poisson population on S with
intensity measure

ΛI :=
k∑

j=1

γj (λ⊗ δj ),

where λ denotes Lebesgue measure on Rd .



Recall that, for any t ≥ 0 and φ ∈ Cc (S, IR+),

〈IE Xt , φ〉 = 〈ΛI ,Utφ〉 ,

where U ≡ (Ut) denotes the semigroup with generator

Aφ(x , i) = ∆αiφ(x , i) + Vi

k∑
j=1

(mij − δij )φ(x , j).

i.e., putting w(t, x) := Utφ(x), w solves the Cauchy problem

∂w(t, x)

∂t
= Aw(t, x), t > 0,

w(0, x) = φ(x).



Due to assumption (A1), the measure ΛI is invariant for the
semigroup U and, therefore,

〈IE Xt , φ〉 = 〈ΛI ,Utφ〉 = 〈ΛI , φ〉 = 〈IE X0, φ〉 .

Thus,
IE Xt = IE X0, t ≥ 0.

It follows from a direct analysis of Equation (4) that

Xt
L
−→ X∞ as t →∞,

Λ∞ := IE X∞ ≤ ΛI ;

moreover, either Λ∞ = 0 or Λ∞ = ΛI . A criterion in this
dichotomy is given by the following



THEOREM 1 The branching particle system started from X0 is
persistent in the sense that it converges as t → ∞ towards a
non-trivial equilibrium with the same intensity as that of X0 if
and only if d > (minαi )/(minβi ).



Persistence of a class of nonlinear systems
We now use Theorem 1 to analyze the L1–norm asymptotics of the
mild solution of the nonlinear system

∂vi

∂t
= ∆αi vi − Vi

[
Fi (1− v1, . . . , 1− vk ) − (1− vi )

]
,

vi (x , 0) = fi (x), fi ∈ Cc(Rd , [0, 1)), i = 1, . . . , k . (5)

This system possesses a unique global solution, which is positive
for all t. The link between System (5) and the multitype model
described before arises in the following way.
It is easy to see (e.g. using a renewal argument) that the solution
of System (5) is given by

vi (x , t) = 1− IE exp
{
−
〈

X
(x ,i)
t ,Φf

〉}
, i = 1, . . . , k, t ≥ 0,

where
Φf (x , i) := − log(1− fi (x)), (x , i) ∈ S,

and (X
(x ,i)
t ) stands for the system started from δ(x ,i).



Since Xt
L
−→X∞, it follows that, as t →∞,

IE exp {− 〈Xt ,Φf 〉} → IE exp {− 〈X∞,Φf 〉} ,

where, due to the fact that X0 is Poisson distributed with intensity
ΛI ,

IE exp {− 〈Xt ,Φf 〉} = e−
∑k

i=1 γi 〈λ,vi (t)〉.

Hence,

lim
t→∞

k∑
i=1

γi 〈λ, vi (t)〉 = − lim
t→∞

log IE e−〈Xt ,Φf 〉 = − log IE e−〈X∞,Φf 〉,

(6)
which shows that the large time behavior of the numbers
‖vi (t)‖L1 = 〈λ, vi (t)〉, i = 1, . . . , k , is determined by X∞.
Indeed, (6) and the positivity of vi yield

lim
t→∞

‖vi (t)‖L1 ≤ −((Const.) log IE e−〈X∞,Φf 〉,

which, in case of d ≤ (minαi )/(minβi ) and by Theorem 1, renders

lim
t→∞

‖vi (t)‖L1 = 0, i = 1, . . . , k .



The case d > (minαi )/(min βi )

From the ergodicity of the type chain (which is implied by our
assumptions on the Fi ) it follows that

X i
t

L
−→X∞ as t →∞, i = 1, . . . , k,

where (X i
t )0≤t<∞ denotes the branching system starting from a

Poisson population of type i-individuals X i
0, with Lebesgue

intensity.

Therefore, in the same way as in (6) it follows that

lim
t→∞

‖vi (t)‖L1 = − log IE e−〈X∞,Φf 〉,

which, again by Theorem 1, is strictly positive provided that at
least on of f1, . . . , fk is not identically 0.



We summarize the above discussion into the following result.

THEOREM 2 Let vi (t) ≡ vi (x , t), i = 1, . . . , k , denote the so-
lution components of the nonlinear system (5). Then, for each
i = 1, . . . , k ,

lim
t→∞

‖vi (t)‖L1 = 0 if d ≤ minα1

minβi
,

and

lim
t→∞

‖vi (t)‖L1 > 0 if d >
minα1

minβi
,

provided that fi 6≡ 0 for at least one i ∈ {1, . . . , k}.



Example Consider the nonlinear system

∂v1

∂t
= ∆α1v1 + V1[(v2 − v1)− v1v2]/2

∂v2

∂t
= ∆α2v2 + V2[(v1 − v2)− v1v2]/2

vi (0) = fi ∈ Cc(Rd , [0, 1)), i = 1, 2.

Here k = 2,

F1(s1, s2) = F2(s1, s2) =
1

2
+

s1s2

2
,

and β1 = β2 = 1.
This system corresponds to a two-type critically branching
population in which a type i-individual at rate Vi either dies
without children with probability 1/2, or with with complementary
probability it has two children, one of each type.
Theorem 2 yields that, for any (f1, f2) 6≡ 0 and i = 1, 2,

lim
t→∞

‖vi (t)‖L1 > 0 if and only if d > α1 ∧ α2.



STABILITY OF SEMILINEAR

SYSTEMS OF EQUATIONS



BRANCHING SYSTEM: Same as before, except that

(A) Two types of particles

(B) Type-i particles
follow motions with
generators Ai

(C) Branching numbers:
δ(x ,i) 7→ βi1δ(x ,1) + βi2δ(x ,2),
where βij are fixed numbers,

(D) Starts with an individual
δ(x ,i) at time t = 0.

T ≡ (Tt)t≥0: OFFSPRING TREE of the initial particle

N i ,T
t ≡ N i

t :=# of type-i particles at time t



Define

St := V1

∫ t

0
N1

s ds + V2

∫ t

0
N2

s ds, t ≥ 0,

which is the weighted LENGTH OF T up to time t.
Consider the system

∂ut(x , 1)

∂t
= A1ut(x , 1) + V1uβ11

t (x , 1)uβ12
t (x , 2),

∂ut(x , 2)

∂t
= A2ut(x , 2) + V2uβ21

t (x , 1)uβ22
t (x , 2),

u0(x , i) = ϕ(x , i), i = 1, 2, x ∈ Rd , (7)

with ϕ(·, i) ∈ bB(Rd ,R+), i = 1, 2.

PROPOSITION For x ∈ Rd and i = 1, 2,

ut(x , i) = IE

eSt
∏

(z,j)∈X
(x,i)
t

ϕ(z , j)

 , t ≥ 0. (8)



Existence of global solutions

(1) Expand our representation (8) in a series

ut(x , i) = u
(0)
t (x , i) + u

(1)
t (x , i) + · · ·+ u

(k)
t (x , i) + · · ·

in which, for k = 0, 1, . . . ,

u
(k)
t (x , i) = IE

eSt
∏

(z,j)∈X
(x,i)
t

ϕ(z , j);σ = k

 ,
where σ := # of branchings occured in [0, t).



(2) For any ϕ ≤ 1 and k ≥ 0,

u
(k)
t (x , i) ≤ v

(k)
t T i

tϕ(x , i), t ≥ 0, (x , i) ∈ S,

where
(
T i

t

)
t≥0

is the semigroup with generator Ai , v
(0)
t ≡ 1, and

v
(k)
t =

k−1∏
l=0

(1 + l(µ∗ − 1))

k!

V ∗
t∫

0

(
sup
(z,i)

T i
sϕ(z , i)

)µ∗−1

ds

k

,

for k = 1, 2, . . . , with V ∗ = V1 ∨ V2, and

µ∗ = (β11 + β12) ∨ (β21 + β22), µ∗ = (β11 + β12) ∧ (β21 + β22).



(3) Thus,

ut(x , i) ≤ T i
tϕ(x , i)

(
1 +

∞∑
k=1

v
(k)
t

)
,

and it is easily shown that the series
∑∞

k=1 v
(k)
t is finite uniformly

in t, provided that

V ∗ (µ∗ − 1)

∫ ∞
0

(
sup
(z,i)

T i
sϕ(z , i)

)µ∗−1

ds < 1. (9)

Therefore:

COROLLARY For any ϕ ∈ bB(S)+ bounded by 1 and satisfying
condition (9) above, the corresponding mild solution of the non-
linear system is global, and satisfies

ut(x , i) ≤ MT i
tϕ(x , i)

for some constant M > 0.



EXAMPLE 1 Consider the nonlinear equation

∂ut(x)

∂t
= ∆αut(x) + Vuβt (x), t > 0, (10)

u0 = ϕ ∈ bB(Rd ,R+), β ∈ {2, 3, . . .}.

Let γ > 0 and let pαt (x), t > 0 be the transition densities of the
symmetric α-stable process in Rd . If

(i) d >
α

β − 1
, and

(ii) ∃ δ > 0 such that 0 ≤ ϕ(x) ≤ δpαγ (x), x ∈ Rd , then the
solution ut(x) of (10) is global, and

ut(x) ≤ Mpαt+γ(x), x ∈ Rd , t ≥ 0

for some M > 0.



Indeed, by unimodality and scaling properties of stable densities,

sup
z

Tα
s ϕ(z) = sup

z

∫
Rd

pαs (z − y)ϕ(y) dz

≤ δ

∫
Rd

pαs (z − y)pαγ (y) dy

≤ δ(γ + s)−d/αpα1 (0).

Hence,

∞∫
0

(
sup

z
Tα

s ϕ(z)

)β−1

ds ≤ Cδ

∞∫
0

(γ + s)−d(β−1)/α ds

<
1

(β − 1)V

for d > α/(β − 1) and sufficiently small δ > 0, which yields
Condition (9).



EXAMPLE 2 Consider the nonlinear system

∂ut(x , 1)

∂t
= ∆α1ut(x , 1) + V1uβ11

t (x , 1)uβ12
t (x , 2),

∂ut(x , 2)

∂t
= ∆α2ut(x , 2) + V2uβ21

t (x , 1)uβ22
t (x , 2),

u0(x , i) = ϕ(x , i), i = 1, 2, x ∈ Rd , βij ∈ {1, 2, . . .}.

with ϕ(·, i) ∈ bB(Rd ,R+), i = 1, 2.
Proceeding as in the previous example, one can show the following:
Assume

d >
maxαi

min{βi1 + βi2} − 1
.

Let γi , i = 1, 2, be given positive numbers.
There exist δi > 0, i = 1, 2, such that if

0 ≤ ϕ(x , i) ≤ δi p
αi
γi

(x), x ∈ Rd , i = 1, 2,

then the solution (ut(x , 1), ut(x , 2)) of the above nonlinear system
is global. Moreover, there exists M > 0 satisfying

ut(x , i) ≤ Mpαi
t+γi

(x) x ∈ Rd , t ≥ 0, i = 1, 2.



Finite-time blow up of a single equation

For the equation

∂ut(x)

∂t
= ∆ut(x) + u2

t (x),

u0(x) = ϕ(x) ≥ 0, x ∈ Rd ,

it is known that, in dimensions d = 1, 2, ut blows up in finite time
for any nontrivial initial value ϕ. Let us consider the equation

∂ut(x)

∂t
= Aut(x) + Vuβt (x), β ∈ {2, 3, . . .},

u0 = k1B , k > 0,

where B ⊂ Rd is a ball. The probabilistic representation yields

ut(x) = IE

eSt
∏

z∈X x
t

1B(z)

 .



Therefore,

ut(x) = IE

IE
eSt

∏
z∈X x

t

1B(z)

∣∣∣∣∣∣ Tt


= IE

eSt IE

 ∏
z∈X x

t

1B(z)

∣∣∣∣∣∣ Tt


= IE[eSt IPr {X x

t (B) = Nt | Tt}︸ ︷︷ ︸
lower estimates?

]



LEMMA A Let (Tt)t≥0 denote the semigroup generated by A. For

any realization τ of T and any measurable, f : Rd → R+,

IE

 ∏
y∈X x

t

f (y)

∣∣∣∣∣∣ Tt = τt

 ≥ (Tt f (x))N
τt
t , t ≥ 0, x ∈ Rd .

(Basically an application of Jensen’s inequallity)

It follows that ut(x) ≥ IE
[
eSt K Nt

]
with K ≡ K (t) := Tt1B(x).

Let
ht := IE

[
eSt K Nt

]
.

Conditioning on the first branching time renders

ht = K + V

∫ t

0
(hs)β ds, t ≥ 0,



and therefore, for 0 ≤ t < V (β − 1)−1K 1−β,

IE[eSt K Nt ] =

(
1

K 1−β − Vt(β − 1)

)1/(β−1)

.

LEMMA B For any t > 0 and K >
1

Vt(β − 1)
,

h(t) = IE
[
eSt K Nt

]
=∞.



Corollary 1 (Nagasawa & Sirao). Let ut(x) solve the IVP

∂ut(x)

∂t
= Aut(x) + Vuβt (x), t > 0,

u0 = f ∈ B(Rd ,R+),

where V > 0 and β ∈ {2, 3, . . .}. If, for some x and t > 0,

Tt f (x) ≥
(

1
Vt(β−1)

)1/(β−1)
, then u blows up at x in finite time.

Example Let wt(x) solve the IVP

∂wt

∂t
= ∆αwt + Vw 2

t , t > 0, 1 < α ≤ 2,

w0 = ϕ ∈ B(R,R+),

where ϕ ≥ k1B , k > 0 and B ⊂ R open. Then for any x ∈B, wt

blows up at x in finite time.



Indeed, let x0 ∈ B and B0 a subinterval of B centered at x0, and
let W α,x0

t be the symmetric α-stable process at time t ≥ 0,
starting from x0 ∈ IR. Then, for f (x) = k1B0(x) and t ≥ 1,

Tt f (x0) = kIPr
{

W α,x0
t ∈ B0

}
≥ Constt−1/α

By Corollary 1, wt(x0) =∞ for all t ≥ 1 for which

Constt(α−1)/α ≥ 1/V .



Blow up of a system of equations

∂τt : set of branches bt of τt(
W x ,Bt

s

)
0≤s≤t

: process starting

in x and following an Ai -motion
along the edges of type i

Nt := N1,T
t + N1,T

t , t ≥ 0.



Assumption on the motions:

T i
t has a transition density pi

t(x − y), with symmetric unimodal
pi

t(·), t > 0, i = 1, 2.
(11)

LEMMA A’ Under assumption (11), for any nonnegative, symmet-
ric, unimodal, measurable f :

IE

 ∏
y∈X

(x,i)
t

f (y)

∣∣∣∣∣∣∣ Tt = τt

 ≥ ∏
bt∈∂τt

IE
[
f
(

W x ,bt
t

)]
.

IE[n,m]: expectation when X0 consists of n type-1 and m type-2
particles.



Recall our system:

∂ut(x , 1)

∂t
= A1ut(x , 1) + V1uβ11

t (x , 1)uβ12
t (x , 2),

∂ut(x , 2)

∂t
= A2ut(x , 2) + V2uβ21

t (x , 1)uβ22
t (x , 2),

u0(x , i) = ϕ(x , i), i = 1, 2, x ∈ Rd , (12)

LEMMA B’ Let 2 ≤ β11 + β12 ≤ β21 + β22.

(1) If β11 + β12 = β21 + β22 or β11 ≥ 2, then,

IE[1,0]

[
eSt K Nt

]
=∞ for K ≥ ct−1/(β11+β12−1), t > 0.

(2) If β11 = β22 = 0, then,

IE[1,0]

[
eSt K Nt

]
=∞ for K ≥ c ′t−2/(β12+β21−2), t > 0.

Here c and c ′ are independet of t.



1. Assume ϕ(·, 1) = ϕ(·, 2) = f (·), with f as in Lemma A’.

Let
(
Z 1

t

)
t≥0

and
(
Z 2

t

)
t≥0

be Markov processes in Rd (starting at

0), with generators A1 and A2, respectively.

Take K := inf
0≤r≤t

IE
[
f
(
x + Z 1

r + Z 2
t−r

)]
.Then,

ut(x , 1) = IE[1,0]

eSt
∏

y∈X
(x,1)
t

f (y)


= IE[1,0]

eSt IE[1,0]

 ∏
y∈X

(x,1)
t

f (y)

∣∣∣∣∣∣∣ T



Lemma A’ ≥ IE[1,0]

[
eSt K Nt

]
= ∞ if K meets Lemma B’ (1) or (2).



2. If ϕ(·, 1) 6= ϕ(·, 2), assume, in addition to assumption (11), that

For all t > 0, pi
t(·) is strictly positive and continuous, i = 1, 2.

Let ϕ(·, i) ≥ ki 1Bi
(·) for some constants ki > 0 and balls Bi , i = 1, 2.

Then, because of the assumed positivity and continuity of pi
t , for

any fixed t0 > 0,

ut0(·, 1) ∧ ut0(·, 2) ≥ k1B ≡ f ,

for some k > 0, where B is th e unit ball in Rd .



Restarting the nonlinear system at time t = t0 if necessary, one
can assume that

ϕ(·, 1) ∧ ϕ(·, 2) ≥ f

and proceed as in step 1.



In this way we obtain the following

THEOREM Suppose that for each ball B ⊂ Rd centered at the
origin,

K := inf
0≤r≤t

IPr{Z 1
r + Z 2

t−r ∈ B}

meets the conditions of Lemma B’ (1) or (2). Under the above
assumptions on pi

t(·), t ≥ 0, i = 1, 2, the solution to system (12)
exhibits blow up in finite time for all initial values ϕ(x , i) satisfying

ϕ(x , i) ≥ ki 1Bi
, x ∈ Rd ,

for some constants ki > 0 and balls Bi ⊂ Rd , i = 1, 2.



Example 1. Consider the system

∂ut

∂t
= ∆α1ut + V1utvt

∂vt

∂t
= ∆α2vt + V2utvt

u0(x) = ϕ1(x), v0(x) = ϕ2(x), x ∈ Rd ,

where ϕi ∈ B(Rd ,R+) and Vi > 0, i = 1, 2.

Let us denote by (Sαt )t≥0 the symmetric α-stable process in Rd

with Sα0 = 0.

Then, for any ball B ⊂ Rd centered at the origin, there exists
c0 > 0 such that

IPr
{

Sα1
r + Sα2

t−r ∈ B
}
≥ c0t−d/min{α1,α2} for all r ∈ [0, t].

Here K := c0t−d/min{α1,α2} meets conditions of Lemma B’ (1) iff
d < min{α1, α2}. Therefore,

For d = 1 and min{α1, α2} > 1 the system blows up in finite time
for any (ϕ1, ϕ2) for which ϕi ≥ ki 1Bi

.



Example 2. Consider the system

∂ut

∂t
= ∆α1ut + v p

t

∂vt

∂t
= ∆α2vt + uq

t

u0(x) = ϕ1(x), v0(x) = ϕ2(x), x ∈ Rd ,

where ϕi ∈ B(Rd ,R+) and (p, q) ∈ {(2, 2), (2, 3)}.
Now K := c0t−d/min{α1,α2} meets conditions of Lemma B’ (2) iff

1

2
(p + q − 2) <

min {α1, α2}
d

.

Hence, any nontrivial solution of the above system blows up in
finite time, provided that

p = q = 2, d = 1 and min {α1, α2} > 1,

or

p = 2, q = 3, d = 1 and min {α1, α2} >
3

2
.
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