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Introduction of survival analysis

and cancer clinical trial design

Part I: Introduction of cancer clinical trial design

Cancer clinical trial is a planned experiment for cancer patients

based on limited sample of patients to make inferences about how

treatment should be conducted in the general population of

patients who will require treatment in the future.

Traditional classification of cancer clinical trials:

• Phase I trial is often a drug safety study through drug

dose-escalation to determine (estimate) the maximum tolerated

dose (MTD) based on observed dose limiting toxicities (DLT).

Common designs of phase I trial: traditional 3+3 design or a

model based dose escalation design (CRM, EWOC).
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• Phase II trial is often a small-scale and single-arm

(non-randomized) study to determine the safety and efficacy of

the drug (or drug combination treatment) and to see weather

the new treatment has sufficient antitumor activity to warrant

a further large-scale randomized study.

• Phase III trial is often a large-scale randomized study to

determine the efficacy of a new treatment (experimental arm)

compared with the best current standard therapy (control arm)

where patients’ allocation is based on a randomization

procedure.

There are many aspects of the design of a clinical trial that must

be considered. These include a good idea for improving treatment,

study objectives, specific hypotheses, treatment plan, patient’s

eligibility criteria, method of randomization and blinding, sample

size calculation and statistical analysis plan (ASP), protocol

development, protocol review (PRC) and approval (IRB, FDA),
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database issue, protocol coordinate and trial monitoring (DSMB)

for safety and ethic consideration.

The major elements in designing a clinical trial

• Define the study objectives: primary and secondary objectives

• Specify the eligibility, treatments, and endpoints

• Determining the magnitude of difference (effect size) to be

detected

• Specify how treatment assignment will be accomplished

(randomization)

• Examine the historical data to identify distribution

assumptions used for sample size calculation
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A good clinical trial minimizes variability of the evaluation and

provides an unbiased evaluation of the treatment by avoiding

confounding from other factors. Randomization insures that each

patient have an equal chance of receiving any of the treatments

under study, generate comparable treatment groups which are alike

in all important aspects except for the treatment each group

receives.

• Randomization and stratification

In general, a randomized trial is an essential tool for testing the

efficacy of the treatment. A simple (complete) randomization

(tossing a coin, tables of random numbers) is completely

unpredictable however it is not quite sufficient by itself to guarantee

comparable treatment arms unless the sample size is large. In small

or moderate size studies, major imbalances in important patient

characteristics can occur by chance. Patient characteristics

incorporated into the randomization scheme to achieve balance are
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called stratification factors. Stratification factors should be those

know to be strongly associated with outcome (eg, tumor response,

survival). In general, we suggest no more than three stratification

factors used in cancer clinical trials. Stratified randomization is

achieved by performing a separate randomization procedure within

each strata. For example, in a study, age and gender are the two

most important risk factors. To make sure the balance of age and

gender between two treatment groups, the study is to be stratified

on age (< 10 vs ≥ 10) and gender (Male vs Female) (two

stratification factors), a simple (or blocked) randomization would

be done within each of the four defined patients strata:

• age< 10 and M

• age< 10 and F

• age ≥ 10 and M

• age ≥ 10 and F
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Stratified randomization not only ensures that the treatment

numbers in each treatment groups are closely balanced within each

stratum but also ensures that treatment groups are similar with

respect to the important prognostic factors.

The basic benefits of randomization include

• Eliminates selection bias.

• Balances arms with respect to prognostic variables (known and

unknown).

• Forms basis for statistical tests.

Some issues of randomization

• Is randomization feasible? ethical issue

• Agree to randomization? (both clinician and patient)
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• Blinding

Human behavior is influenced by what we know or believe. In

research there is a particular risk of expectation influencing findings

and leading to biased results. Blinding is used to try to eliminate

such bias. For example, medical staff caring for patients in a

randomized trial should be blinded to treatment allocation to

minimize possible bias in patient management and in assessing

disease status. Only patient blinded trial is called single blinding.

Neither the patient nor the clinician are aware of the treatment

assignment is called double blinded trial. Sometime to avoid bias

from data analysis, statisticians are blinded from the outcome too.

• Endpoints

In cancer clinical trial, tumor response (CR + PR) and survival are

often the two major primary endpoints, where survival including

overall survival, progression-free survival or event-free survival.
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• Sample Size/Power calculation

The determination of the sample size of a survival trial depends on

the following factors

• An estimate for the endpoint of interest in the control group

(based on historical data, for example, 5 survival probability).

• A clinically meaningful minimal effect size

• Type I error α (false positive rate; reject null hypothesis when

null is true) and

• type II error β (false negative rate; accept null hypothesis when

null is not true). 1 − β is the power (reject null hypothesis

when null is not true).

• Accrual rate and duration of follow up.
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Part II: Introduction of survival data analysis

In most cancer clinical trials, the primary outcome is patient

survival. There is an accrual period to accrue patients into study.

Then patients are randomized to two (or more) groups for

treatment. There is some additional follow-up time prior to

analysis of the data. At the final analysis, some patients will have

died, while some patients will remain alive. For those patients who

remain alive, the total time of observation will vary, depending

upon when in the accrual period they were registered to the trial.

The actual survival time for these patients is unknown.

For more precise, survival time is defined as a time interval between

the time origin (date of patient registered on study or date of

randomization) and an interested event (disease progression, death)

or date end of study (or date of final analysis).
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Survival data from clinical trials are often subjected to the right

censoring, in which the trial ends before the event of interest is

observed in the study. For example, patient without disease

progression or still alive at end of study or withdraw from study.

Therefore, what can be observed is not the true survival time (T )

but the minimum of true survival time and potential censoring time

C, as well as an indication of whether the observed time was a true

survival time (T ) or a censored observation (C). That is the

observed survival time T 0 = min(T,C) and the censoring indicate

∆ = I(T < C). Here we assume that T and C are independent

which is often called independent censoring model.
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Survival data are generally described in terms of two related

probabilities: survival and hazard. The survival probability

(function) S(t) = P (T > t) is the probability that a patient

survives from the time origin to a specified future time t. The

hazard function h(t) is defined as

h(t) = lim
∆t→0+

P (t ≤ T < t + ∆t|T ≥ t)/∆t

which specifies the instantaneous rate (risk or hazard) at which

death occurs for patient who is surviving at time t. h(t)∆t is the

approximate probability that an individual dies in the interval

(t, t + ∆t), conditional on that patient having survived to time t

(Cox and Oakes, 1984).

The relationship between survival function and hazard is given as

follow

S(t) = e−
R

t
0

h(t)dt
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The simplest survival distribution is exponential survival function

with a constant hazard h(t) = λ and survival function

S(t) = e−λt, t > 0

The survival probability can be estimated nonparametrically from

observed survival times using Kaplan and Merier (KM) method.

Suppose that k patients have events in the period of follow-up at

distinct times t1 < t2 < · · · < tk in a sample of size n with unknown

survival function S. Suppose that dj events at tj and mj are

censored in the interval [tj , tj+1) at times tj1, ...., tjmj
, j = 0, ...., k,

where t0 = 0 and tk+1 = ∞. Let nj = (mj + dj) + · · · + (mk + dk)

be the number of individuals at risk at a time just prior to tj . The

probability of event at tj is

P (T = tj) = S(t−j ) − S(tj)

The contribution to the likelihood of a censored survival time at tjl
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is

P (T > tjl) = S(tjl)

Therefore the likelihood of data is given

L =

k
∏

j=0

{

[S(t−j ) − S(tj)]
dj

mj
∏

l=1

S(tjl)

}

The maximum likelihood estimate (MLE) is defined as (K and

Prentice, 2003)

Ŝ = argmaxSL.

This MLE is given as the Kaplan-Meier estimator of the survival

function of T with a form of

Ŝ(t) =
∏

tj≤t

(
nj − dj

nj
)

Following recursive formula is useful to calculate the probability of
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being alive at time tj

Ŝ(tj) = Ŝ(tj−1)(1 − dj

nj
)

where t0 = 0 and Ŝ(0) = 1). The value of Ŝ(t) is constant between

times of events, and therefore it is a step function that changes

value only at the time of each event.

Note: If the largest observation is a censored survival time, say t∗,

then Ŝ(t) is undefined for t > t∗. If the largest observed survival

time tK is an uncensored observation, then Ŝ(t) is zero for t > tK .

The variance of Ŝ(t) is estimated using Greenwoods formula

ˆvar(Ŝ(t)) = Ŝ(t)2
∑

tj≤t

dj

nj(nj − dj)

For large sample sizes Ŝ(t) has an approximately normal

distribution. Therefore, a simple way to obtain the 100(1 − α)%
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confidence interval for the survival probability Ŝ(t) is

Ŝ(t) ± z1−α/2

√

ˆvar(Ŝ(t))

where zα is the α quantile of the standard normal distribution.

A better interval can be obtained by using a log-log transformation

Ŝ(t)exp{±z1−α/2

√
ˆvar(log[−log(Ŝ(t))])}

where ˆvar(log[−log(Ŝ(t))]) can be derived by delta method.

The hazard function in the interval tj ≤ t < tj+1 can be estimated

by

ĥ(t) =
dj

njτj
, tj ≤ t < tj+1

where τj = tj+1 − tj .

A smoothed estimate of hazard function can be obtained using

kernel smooth function.
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An example

Table 1: Survival time (months) on an cancer trial

1 2 4∗ 6 6 7∗ 9 11 15∗ 16

17 18∗ 24 24∗ 25∗ 26 28 31∗ 32∗ 35∗
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Table 2: KM estimate of the cancer survival data

time interval nj dj cj (nj − dj)/nj Ŝ(t)

[0, 1) 20 0 0 (20-0)/20 1.00

[1, 2) 20 1 0 (20-1)/20 0.95

[2, 6) 19 1 1 (19-1)/19 0.90

[6, 9) 17 2 1 (17-2)/17 0.79

[9, 11) 14 1 0 (14-1)/14 0.74

[11, 16) 13 1 1 (13-1)/13 0.68

[16, 17) 11 1 0 (11-1)/11 0.62

[17, 24) 10 1 1 (10-1)/10 0.56

[24, 26) 8 1 2 (8-1)/8 0.49

[26, 28) 5 1 0 (5-1)/5 0.39

[28, 35) 4 1 3 (4-1)/4 0.29
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The median survival time can be estimated from K-M survival

function

m̂ = min{tj , Ŝ(tj) < 0.5}
If the survival function Ŝ(t) = 0.5 at an interval [tj , tj+1), then the

K-M median estimate is m̂ = (tj + tj+1)/2.

It has been shown that the asymptotic variance of m̂ can be

estimated by (Reid, 1981)

ˆvar(m̂) =
1

f̂2(m̂)
ˆvar{Ŝ(m̂)},

where the f̂ is an estimate of density function f and ˆvar{Ŝ(m̂)} is

given by Greenwood’s formula at t = m̂. To use this asymptotic

variance formula, we have to estimate the density function f . A

common type of density estimation is a window estimate using a

kernel function. For example, Kosorok (1999) proposed an optimal
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window estimate based on the kernel function

f̂(m̂) =

∫

n1/5Q̂−1K

(

m̂ − x

n−1/5Q̂

)

dF̂ (x),

where F̂ = 1 − Ŝ, Q̂ is twice the estimated interquartile range of F ,

and the kernel K(·) is triangular function on [−1, 1].

K(x) =















x + 1 −1 ≤ x ≤ 0

1 − x 0 < x ≤ 1

0 |x| > 1.

In a cancer survival trial, it is often interested in comparison of

survival functions between two treatment groups. Assume survival

function Si, density fi and median mi for two treatment groups

i = 1, 2 and let Ŝi(t) be the Kaplan-Meier survival function estimate

and m̂i be the median estimate. We are interested in difference in

medians (treatment effect is quantified by difference in medians)
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τ = m2 − m1. An estimate of τ is τ̂ = m̂2 − m̂1, and a 100(1 − α)%

large sample asymptotic confidence interval of τ can be obtained by

τ̂ ± z1−α/2ŝe(τ̂ ),

where

ŝe(τ̂ ) = { ˆvar(m̂1) + ˆvar(m̂2)}1/2.

Here the variances ˆvar(m̂1) and ˆvar(m̂2) can be estimated by a

kernel density estimation or bootstrap method (discussion on this

topic can be found from Wu, 2012).

Significant treatment effect can also be detected by the Log-rank

test which is a non-parametric procedure to test hypothesis of

equality of two or more survivor functions. For example, the

hypothesis of interest in a trial is

H0 : S1(t) = S2(t)
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Ha : S1(t) 6= S2(t)

Assume that the unique, ordered failure times for two groups are

denoted by t1 < t2 < · · · < tk. Let d1j be the number of failures

and n1j the numbers at risk in group 1 at time tj . Let d2j and n2j

be the corresponding numbers of group 2. Then dj = d1j + d2j

represents the number of failures in both groups at time tj and

nj = n1j + n2j is the numbers at risk in both groups at time tj .

The situation is summarized in following table.
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Table 3: Number of failures at the jth failure time in each of two

groups

Group Number of Number of Number at risk

failures at tj survivors beyond tj just before tj

I d1j n1j − d1j n1j

II d2j n2j − d2j n2j

The conditional distribution for d1j , d2j give dj is a hypergeometric

distribution

(
n1j

d1j

)(
n2j

d2j

)(
nj

dj

)−1

with mean and variance of d1j are

e1j = n1jdj/nj
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and

v1j =
n1jn2jdj(nj − dj)

n2
j(nj − 1)

The log-rank test is based on the difference between the observed

d1j and the expected e1j of the form

dL =
k

∑

j=1

(d1j − e1j).

The variance can be estimated as

ˆvar(dL) =

k
∑

j=1

n1jn2jdj(nj − dj)

n2
j (nj − 1)

The log-rank test is then given by the statistics

S =
d2

L

ˆvar(dL)

Which is known to be χ2 distribution with 1 degree of freedom.
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The log-rank test is most powerful when the hazard functions in

two treatment groups are proportional to each other, but it can be

less efficient then other tests (such as Wilcoxon test or weighted

log-rank test) when the proportionality assumption is violated.
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Phase III Cancer Survival Trial Design

Phase III cancer trials compare two (or more) treatments for a

particular kind of cancer. Typically an experimental treatment is

compared to a standard treatment. The primary objective is to see

if the new treatment produces better survival.

It is widely acknowledged that the most appropriate way to

compare treatments is through a randomized clinical trial. This

randomization guarantees that there is no systematic selection bias

in treatment allocation.

Therefore, Phase III trials are often conducted as

• Multiple arms (compare among treatment groups)

• Randomized (eliminate potential bias)

• Confirmatory (with power ≥ 90%)
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• Multi-center study (large study)

Designs for Phase III trial

• Endpoint: Survival

• Hypothesis: Survival rate in treatment arm exceeds standard

arm.

• Assign patients to treatment arms by randomization

• Often have a interim analysis plan

• Trial monitored by external DSMB

In this talk, I will focus on sample size calculation of phase III

cancer survival trial. As in standard design, the power depends on

• The Type I error (significance level α)

• The difference of interest or effect size (hazard ratio).

The power of survival study depends on the number of events
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(deaths), not the total number of patients.

In practice, designing a survival study involves deciding how many

patients or individuals to enter, as well as how long they should be

followed to insure enough number of events.

Suppose that in a study, two groups (standard vs new treatment)

of patients to compare. Assuming a proportional hazards model for

the survival times,

h2(t) = γh1(t)

where h2(t) and h1(t) are the hazard functions for patients on new

treatment and standard groups, respectively, γ is the unknown

hazard ratio, which is equivalent to

S2(t) = [S1(t)]
γ

where S2(t) and S1(t) are the corresponding survival functions.

Define θ = log(γ) to be the log-hazard ratio. If θ = 0, there is no
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treatment difference. A negative value of θ indicate that survival is

longer under new treatment. Testing θ = 0 is equivalent to test two

survival distribution same. Therefore two-sample log-rank test can

be used.

Assume that the unique, ordered failure times for pooling the two

groups are denoted by t1 < t2 < · · · < tk. Let d1j be the number of

failures and n1j the numbers at risk in group 1 at time tj . Let d2j

and n2j be the corresponding numbers of group 2. Then

dj = d1j + d2j and nj = n1j + n2j represent the number of failures

and the number of at risk in both groups at time tj .

The log-rank test is based on the difference between the observed

d1j and the expected e1j of the form

U =

k
∑

j=1

(d1j − e1j) = O − E.

where e1j = n1jdj/nj is expected number of failures for group 1 at
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tj , O and E are the observed and expected number of failures.

The variance can be estimated of the log-rank statistics is

V =
k

∑

j=1

n1jn2jdj(nj − dj)

n2
j(nj − 1)

Sellke and Siegmund (1983) showed that U , has an approximate

normal distribution with mean θV and variance V .

Consider a two-sided hypothesis

H0 : θ = 0 Ha : θ 6= 0

To calculate the power, we have to calculate two probabilities

α = P (|U | > c|H0)

1 − β = P (|U | > c|Ha)
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where c > 0 is a constant to be determined. Under null θ = 0, then

α = P (|U | > c|H0) = 2P (U > c|θ = 0) = 2{1 − Φ(
c√
V

)}

Therefore

c = z1−α/2

√
V

Under alternative Ha : θ = θR < 0, since U ∼ N(θRV, V ), then

1 − β = P (|U | > c|Ha) ≈ P (U < −c|θ = θR) = Φ(
−c − θRV√

V
)

so we get −c − θRV = z1−β

√
V . If we substitute for c = z1−α/2

√
V ,

and we have

V =
(z1−α + z1−β)2

θ2
R

recall

V =

k
∑

j=1

n1jn2jdj(nj − dj)

n2
j(nj − 1)
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When the number of events (deaths) is few relative to the number

of at risk, we have

V ≈
k

∑

j=1

n1jn2jdj

n2
j

Moreover, if θ is small, and recruitment to each group proceeds at a

similar rate, then n1j ≈ n2j , for j = 1, · · · , k, then V is given by

V =
k

∑

j=1

n1jn2jdj

(n1j + n2j)2
≈ d

4

where d =
∑k

j=1 dj is the total number of events of two groups in

the study. Finally, the required number of events d for the study is

given by

d =
4(z1−α + z1−β)2

θ2
R

Note: at later time points the approximation n1j ≈ n2j may be
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poor, in general, n1jn2j/n
2
j < 1/4, so that the required number of

deaths will tend to be underestimated by using this formula

(Collett, 2003).

• Required number of patients

Typically patients are recruited over an accrual period a, and

followed a follow-up period f . The total study duration is a + f .

Assume entry times of a patient is uniformly distributed on interval

[0, a]. Then the death of a patient in a group is

P (death) =
1

a

∫ a

0

P (death|entry at t)dt

= 1 − 1

a

∫ a+f

f

S(u)du

According to Simpson’s rule

P (death) = 1 − 1

6
{S(f) + 4S(0.5a + f) + S(a + f)}
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Therefore, the probability of death in the two treatment groups is

P (death) = 1 − 1

6
{S̄(f) + 4S̄(0.5a + f) + S̄(a + f)}

where S̄(t) = {S1(t) + S2(t)}/2.
Once the probability of an event (death) of a patient in the study

has been evaluated, th required number of patients (two groups) for

the study is given by

n =
d

P (death)

• Example

Clinical trial to asses new treatment for cancer patients. Under

standard treatment, 5-year survival probability is 40%. Expect new

treatment to increase 5-year survival to 60%. Assuming

proportional hazards

S2(t) = [S1(t)]
γ
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Therefore, the hazard ratio is

γ =
log(0.60)

log(0.40)
= 0.56

and the log hazard ratio θR = log(0.56) = −0.58. The number of

death required to have a 90% detecting a hazard ratio 0.56 (20% of

5-year survival difference) to be significant at the 5% level is given

by

d =
4(1.96 + 1.28)2

0.582
= 125

Allowing for possible underestimate, round it to 130 deaths in total.

Suppose that patients are to be recruited to the study over an

a = 18 months period and a subsequent follow-up period of f = 24

months. Then the probability death is given by

P (death) = 1 − 1

6
{S̄(24) + 4S̄(33) + S̄(42)}

Assume the estimate the survival probabilities of control group
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(from historical data) are given by S1(24) = 0.70, S1(33) = 0.57 and

S1(42) = 0.45. Then we have

S̄(24) = (0.70+0.700.56)/2 = 0.76, S̄(33) = (0.57+0.570.56)/2 = 0.65

and S̄(42) = (0.45 + 0.450.56)/2 = 0.54. So the probability of death

is 1 − (0.76 + 4 × 0.65 + 0.54)/6 = 0.35. Therefore, the required

number of patients is

n =
130

0.35
= 372

and so 372 patients will need to be recruited to the study over the

accrual period of 18 months. This demands a accrual rate of about

21 patients per month.
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