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What are branching processes?

• Family Z (t, ω) , t ≥ 0} of nonnegative integer-valued random

variables defined on a common probability space Ω

• Process is initiated at time t = 0 by birth of a single ancestor

particle with random lifelength τ (ω)

• Ancestor produces X (ω) progeny at death

• Each progeny is the ancestor of its own independent process, which

is a component of our branching process.

• The number of individuals present in the process at time t is equal

to the sum of numbers of the individuals present in all these

subprocesses:

Marek Kimmel Sept/Oct 2004



Branching Processes in Biology

Marek Kimmel Sept/Oct 2004



Branching Processes in Biology

Z(t, ω) =







X(ω)∑

i=1

Z(i)(t, τ(ω), ω), t ≥ τ(ω),

1, t < τ(ω),

where Z(i)(t, τ(ω), ω) denotes the number of individuals time t in the

i-th independent identically distributed subprocess started by the a

single ancestor born at time τ(ω)
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• The self-recurrence (or branching) property,

Z(i)(t, τ(ω), ω)
d
= Z(i)(t − τ(ω), ω). (1)

• Substitution leads to a recurrent relation

Z(t, ω) =







X(ω)∑

i=1

Z(i)(t − τ(ω), ω), t ≥ τ(ω),

1, t < τ(ω),

which we will use repeatedly.
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Motivating example

Polymerase Chain Reaction and branching processes

• Polymerase Chain Reaction (PCR) is one of the most important

tools of molecular biology.

• An experimental system for producing large amounts of genetic

material from a small initial sample.

• Repeated cycles of DNA replication in a test tube that contains

free nucleotides, DNA replication enzymes and template DNA

molecules.

• Operates by harnessing the natural replication scheme of DNA

molecules

• The result is a vast amplification of a particular DNA locus from a

small initial number of molecules.
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Stochasticity of PCR amplification

• Not every existing molecule is successfully replicated in every

reaction cycle.

• Even the most highly efficient reactions operate at an efficiency

around 0.8, i.e., each double stranded molecule produces an

average of 0.8 new molecules in a given reaction cycle.

• Under ideal conditions in each clone the molecules are identical or

complementary to the ancestral molecule of the clone (molecules in

the initial samples may not be identical).
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• However, random alterations of nucleotides in DNA sequences,

known as mutations, also occur during PCR amplification.

• In many PCR applications (e.g., forensic), mutations hinder

analysis of the initial sample

• In other settings, however, PCR mutations are desirable, as is the

case in site-directed mutagenesis studies and artificial evolution

experiments. (Joyce 1992).

• In order to assess the genealogy of the molecules in a sample, one

must model the PCR and the structure of DNA replication.
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Modeling PCR

• Ideally, PCR is a binary fission process with discrete time

• PCR starts with S0 identical copies of single-stranded sequences

• Let Si be the number of sequences present after the i-th cycle.

• In cycle i each of the Si−1 template molecules is amplified

independently of the others with probability λi (the efficiency in

cycle i). More precisely, the efficiency does not simply depend on

the cycle number, but on the number of amplifications in the

previous cycles and on PCR conditions.
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• If λi = λ independently of the cycle number, then the the sequence

S0, S1, . . . , Si, . . .(accumulation of PCR product) is a

Galton-Watson branching process.

• We add a mutation process to the model: we assume that a new

mutation occurs at a position that has not mutated in any other

sequence before.

• We model the process of nucleotide substitution as a Poisson

process with parameter µ, which is the error rate (mutation rate)

of PCR per target sequence and per replication.
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Statistical estimation of the efficiency and mutation rate

E(Si)

E(Si−j)
= (1 + λi)

j , i ≥ j.

From simulation, the probabilities Pr(Mn = m|µ) that there are m

mutants in the n-th generation can be computed

lik(µ|Mn = m) = Pr(Mn = m|µ)

and the MLE of µ can be determined by maximization.
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The Galton-Watson process

• A single ancestor particle lives for exactly one unit of time and at

the moment of death produces a random number Z1 of progeny

according to a prescribed probability distribution

{pk; k = 0, 1, 2, . . .}, pk = P [Z1 = k]

• Each of the first generation progeny behaves, independently of

each other, as the initial particle did.

• The particle counts Zn in the successive generations n = 0, 1, 2, . . .

(where generation 0 is composed of the single initial particle) form

a sequence of random variables
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We have

Zn+1 =

Z1∑

j=1

Z
(j)
1,n+1.

where random variables Z
(j)
1,n+1 are independent identically distributed

(iid) copies of processes initiated by ancestor’s progeny with

distributions identical to that of Zn, so

Zn+1 =
Z1∑

j=1

Z(j)
n
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Definition 1. The pgf fX of a Z+-valued rv X is a function

fX (s) =E
(
sX

)
=

∑∞

i=0 pis
i, of a symbolic argument s ∈ U ≡ [0, 1].

With some abuse of notation, we write X ∼ fX(s). The following are

the basic properties of the pgf ’s.
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Theorem 1. Suppose X is a Z+-valued rv with pgf fX(s) which may

not be proper. Let us denote (N) the nontriviality condition p0 + p1 < 1.

1. fX is nonnegative and continuous with all derivatives on [0, 1).

Under (N), fX is increasing and convex.

2. If X is proper, fX(1) = 1, otherwise fX(1) =P[X < ∞].

3. dkfX(0)/dsk = k!pk.

4. If X is proper, the k-th factorial moment of X,

µk =E[X (X − 1) (X − 1) ... (X − k + 1)], is finite if and only if

f
(k)

X (1−) = lims↑1 f
(k)

X (s) is finite. In such case, µk = f
(k)

X (1−).
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5. If X and Y are two independent Z+-valued rv’s, then

fX+Y (s) = fX(s)fY (s).

6. If Y is a Z+ -valued rv and
{
X(i), i ≥ 1

}
is a sequence of iid

Z+-valued rv’s independent of Y , then V =
Y∑

i=1

X(i) has pgf

fV (s) = fY [fX(1) (s)].

7. Suppose that {Xi, i ≥ 1} is a sequence of Z+-valued rv’s.

limi→∞ fXi
(s) = fX(s) exists for each s ∈ [0, 1) if and only if the

sequence {Xi, i ≥ 1} converges in distribution to a rv X, i.e., if

limits limi→∞P[Xi = k] exist for all k and are equal to P[Xi = k],

respectively. Then fX(s) is the pgf of the limit rv X.
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Application of the pgf Theorem to the Galton-Watson process

Zn+1 =

Z1∑

j=1

Z(j)
n

• Denote f(s) = f1(s), the pgf of Z1,and by fn(s), the pgf of Zn,

• The pgf Theorem (part 6) yields the following pgf identity

fn+1(s) = f1[fn(s)] = f [fn(s)].
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• If we note that Z0 = 1 implies f0(s) = s, this yields

fn(s) = f (n)(s) = f{· · · f [f
︸ ︷︷ ︸

(s)] · · · }

n times

,

i.e., the pgf of Zn is the n-th functional iterate of the progeny pgf

f(s).
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Moments of the GW process

• The moments of the process are expressed in the terms of the

derivatives of f(s) at s = 1,e.g.,

E(Z1) = f ′(1−) ≡ m,

where m is the mean number of progeny of a particle. From the

chain rule

E(Zn) = f ′
n(1−) = f ′

n−1(1−)f ′(1−) = . . . = mn.

• GW process is subcritical if m < 1, critical if m = 1, supercritical

if m > 1.
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• Similarly, using the chain rule for the second derivative, one

concludes that

Var(Zn) =







σ2mn−1(mn−1)
m−1

; m 6= 1,

nσ2; m = 1,

where σ2 = Var(Z1) is the variance of the progeny count.

• The linear growth of variance in the critical case (m = 1) is

consistent with the “heavy tails” of the distribution of Zn in the

critical case.
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Linear fractional case of the GW process

• After several iterations, the functional form of the iterates fn(s)

becomes intractable.

• The linear fractional case is the only non-trivial counterexample.

Suppose

p0 =
1 − b − p

1 − p
, pk = bpk−1, k = 1, 2, . . . ., p ∈ (0, 1).

f(s) = 1 −
b

1 − p
+

bs

1 − ps
,

and m = b
(1−p)2

.
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• Equation f(s) = s has roots q and 1.

fn(s) = 1 − mn(
1 − q

mn − q
) +

mn( 1−q

mn−q
)2s

1 − (mn−1
mn−q

)s
; m 6= 1,

fn(s) =
np − (np + p − 1)s

1 − p + np − nps
; m = 1.

• The linear functional pgf corresponds to the geometric distribution

with a rescaled term at zero.
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Application : Cell cycle model with death and quiescence

• Fundamental step in the proliferation of a population of cells is the

division of one cell into two cells.

• After completing its life cycle each cell approximately doubles in

size and then divides into two progeny cells of approximately equal

sizes.

• Populations derived from single cells are referred to as clones or

colonies.

• Founder cells may not yield colonies with the same number of cells

after the same time. This may be due to various factors, like the

randomness of cell death and quiescence.
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Mathematical description of the cell cycle model

• Process more general than the standard Galton-Watson process,

initiated by a single proliferating cell, which divides and each of its

progeny, independently, may

– become proliferative with probability (wp) p2,

– become quiescent wp p1, or

– die wp p0.
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(Z1, Q1) Probability (Zn+1, Qn+1) fn+1(s, w)

(0, 0) p2
0 (0, 0) 1

(0, 1) 2p0p1 (0, 1) w

(0, 2) p2
2 (0, 2) w2

(1, 0) 2p2p0 (Z
(1)
1,n+1, Q

(1)
1,n+1) fn(s, w)

(1, 1) 2p2p1 (Z
(1)
1,n+1, Q

(1)
1,n+1 + 1) fn(s, w) w

(2, 0) p2
2 (Z

(1)
1,n+1 + Z

(2)
1,n+1, Q

(1)
1,n+1 + Q

(2)
1,n+1) fn(s, w)2
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Pgf equations for the cell cycle model

Zn+1 =

Z1∑

j=1

Z
(j)
1,n+1.

Qn+1 =

Z1∑

j=1

Q
(j)
1,n+1 + Q1.

fn(s, w) the joint pgf of random variables Zn and Qn. We obtain the

pgf recurrence:

fn+1(s, w) = [p2fn(s, w) + p1w + p0]
2.
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Modeling biological cell cycle data

• In the experiment, it is impossible to discern proliferative cells

from quiescent cells. Therefore, distributions of Zn + Qn are used.

• The pgf of this sum is equal to gn(s) = fn(s, s), and therefore

gn+1(s) = [p2gn(s) + p1s + p0]
2.

• This pgf is equal to gn(s) =
∑

j πn(j)sj, where

πn(j) =P{Zn + Qn = j} and so

{πn+1(j)} = {p2πn(j) + p1δj1 + p0δj0} ∗ {p2πn(j) + p1δj1 + p0δj0},

• During the time of the experiment, about n = 8 divisions

occurred. Distributions {π8(j), j ≥ 0} of colony size can be

computed using different values of probabilities p0 and p1.
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Extinction and criticality

• Asymptotic behavior of {fn(s)} provides insight into the limit

theorems for the {Zn} process.

• f(s) is a power series with nonnegative coefficients {pk} and with

p0 + p1 < 1, so that

• f(s) is strictly convex and increasing in [0, 1];

• f(0) = p0; f(1) = 1;

• if m ≤ 1 then f(s) > s for s ∈ [0, 1);

• if m > 1 then f(s) = s has a unique root in [0, 1).

• Let q be the smallest root of f(s) = s for s ∈ [0, 1].
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Lemma 1. If m ≤ 1 then q = 1; if m > 1 then q < 1.

Lemma 2. If s ∈ [0, q) then fn(s) ↑ q as n → ∞. If s ∈ (q, 1) then

fn(s) ↓ q as n → ∞. If s = q or 1 then fn(s) = s for all n.

As a special case of the Lemma 2 we note that fn(0) ↑ q.

lim
n→∞

fn(0) = lim
n

P{Zn = 0} = lim
n

P{Zi = 0, for some 1 ≤ i ≤ n}

= P{Zi = 0, for some i ≥ 1} = P{ lim
n→∞

Zn = 0},

Therefore q is the extinction probability

Critical process becomes extinct wp. q = 1 although its mean stays

constant (!)
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Application : Complexity threshold in the evolution of early

life

• Consider a polymeric chain of ν nucleotides

• If p is the probability that a single nucleotide is correctly copied,

then the probability that a copy of the whole chain is correct is pν.

• During one generation step the molecule either survives (with

probability w) and produces a copy, which is accurate with

probability pν, or it is destroyed with probability 1 − w.
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• A given molecule yields 0, 1 or 2 molecules of the same type after

one unit of time: the probabilities are 1 − w, w(1 − pν) and wpν ,

respectively.

f(s) = (1 − w) + w(1 − pν)s + wpνs2

• This biomolecule is indefinitely preserved with a positive

probability only if the process is supercritical, i.e., if

m = w(1 + pν) > 1, which yields

pν >
1 − w

w
.
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Asymptotics of the supercritical GW process

If we set

Wn ≡ Zn/m
n,

then E(Wn) = 1 and

E(Wn+1|Wn) = m−(n+1)E(Zn+1|Zn) = m−(n+1)mZn = Wn.

Since the Galton-Watson process is a Markov chain, this means that

Wn is a martingale. By Doob’s Theorem
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Theorem 2. If 0 < m ≡ f ′(1−) < ∞, then there exists a random

variable W such that

lim
n→∞

Wn = W, wp 1.

W might be nondegenerate only if m > 1.

Theorem 3. If m > 1, σ2 < ∞, and Z0 ≡ 1, then

1. limn→∞ E(Wn − W )2 = 0

2. E(W ) = 1,Var(W ) = σ2/(m2 − m)

3. P{W = 0} = q =P{Zn = 0 for some n}.
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Subcritical process

In the subcritical case, the process becomes extinct with probability 1.

What can be said about the asymptotic behavior?

Example: Linear Fractional Case. The probability of nonextinction is

now equal to

1 − fn(0) = mn(
1 − q

mn − q
),

E(Zn|Zn > 0) =
E(Zn)

1 − fn(0)
=

mn − q

1 − q
→

q

q − 1
; n → ∞.

Conditioning on nonextinction sufficient to obtain a limit law.
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Theorem 4. (Yaglom’s) . If m < 1 then P{Zn = j|Zn > 0} converges,

as n → ∞, to a probability function whose generating function B(s)

satisfies equation

B[f(s)] = mB(s) + (1 − m). (2)

Also,

1 − fn(0) ∼
mn

B′(1−)
; n → ∞. (3)

Convergence to a limit distribution conditional on nonabsorption is

known as quasistationarity
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Application : Gene amplification and drug resistance

• Amplification of a gene is an increase of the number of copies of

that gene in a cell.

• Amplification of genes coding for the enzyme dihydrofolate

reductase (DHFR) has been associated with cellular resistance to

the anticancer drug methotrexate (MTX).

• A resistant population with an increased number of DHFR gene

copies per cell can be obtained after a sensitive population is

grown in increasing concentrations of the drug.
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• Increased resistance is correlated with increased numbers of gene

copies on small extrachromosomal DNA elements called double

minute chromosomes.

• The number of DHFR genes on double minutes in a cell may

increase or decrease at each cell division. This is because double

minutes do not have centromeres, which are required to faithfully

segregate chromosomes into progeny cells.

• Increased drug resistance and the increase in number of gene

copies are reversible. Cells grown in the absence of the drug

gradually lose resistance to the drug, by losing extra gene copies.
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Loss of resistance visualized by flow cytometry

• Population distribution of num-

bers of copies per cell can be es-

timated by the experimental tech-

nique called flow cytometry.

• Proportion of cells with amplified

genes decreases with time.

• The shape of the distribution of

gene copy number within the sub-

population of cells with amplified

genes appears stable as resistance

is being lost.
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Galton-Watson process model of gene amplification and

deamplification

• Consider a cell, one of its progeny (randomly selected), one of the

progeny of that progeny (randomly selected) and so forth.

• Cell of the n-th generation contains Zn double minutes.

• During cell’s life, each double minute is either replicated with

probability a, or not replicated, with probability 1 − a,

independently of the other double minutes.
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• At the time of cell division, the double minutes are segregated to

progeny cells.

– If the double minute has not been replicated, it is assigned to

one of the progeny cells with probability 1
2
.

– If it has been replicated, then either both copies are assigned to

progeny 1 (wp α/2), or to progeny 2 (wp α/2), or they are

divided evenly between both progeny (wp 1 − α).
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Galton-Watson process model of gene amplification and

deamplification

Randomly selected progeny in the line of descent contains

• no replicas of the original double minute (wp (1 − a)/2 + aα/2), or

• one replica of the original double minute (wp

(1 − a)/2 + a(1 − α)), or

• both replicas of the original double minute (wp aα/2).
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• The count of double minutes in the n-th generation of the cell

lineage is a Galton-Watson process with

f(s) = d + (1 − b − d)s + bs2,

where b = aα/2 and d = (1 − a)/2 + aα/2 are the probabilities of

gene amplification and deamplification

• The process is subcritical, b < d and m = f ′(1−) = 1 + b − d < 1.
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Mathematical model of the loss of resistance

• Cell is resistant if it carries at least one double minute

chromosome with the DHFR gene.

• Otherwise it is called sensitive.

• Population of cells resistant to MTX, previously cultured for N

generations in medium containing MTX, initially consists only of

cells with at least one DHFR gene copy, i.e., ZN > 0.
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• By Yaglom Theorem, if N is large, distribution of {ZN | ZN > 0}

has pgf B(s)

B[f(s)] = mB(s) + (1 − m)

• For n > N, when the cell clone has been transferred to the

MTX-free medium, based on Yaglom Theorem, the fraction of

resistant cells decreases roughly geometrically

1 − fn(0) ∼ mn−N/B′(1−)

while {Zn | Zn > 0} stays unchanged.

• This behavior is consistent with the flow cytometry experimental

data.
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Application : Iterated Galton-Watson (IGW) process and

dynamic mutations

• Several heritable disorders have been associated with dynamic

increases of the number of repeats of DNA-triplets in certain

regions of human genome. In two to three subsequent generations,

the transitions from normal individuals to non-affected or

mildly-affected carriers, and then to full-blown disease, occur.

Examples:

– The fragile X syndrome, caused by a mutation of the FMR-1

gene characterized by expansion of the (CCG)n repeats

(normal 6-60, carrier, 60-200, affected >200 repeats).

– Myotonic dystrophy, caused by a mutation of the DM-1

autosomal gene characterized by expansion of the (AGC)n

repeats (normal 5-27, affected >50 repeats).
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Important questions that have not been fully answered are:

1. What is the mechanism of fluctuation of the number of repeat

sequences in normal people (not in affected families)?

2. What is the mechanism of the modest increase in repeat sequences

in unaffected carriers?

3. What is the mechanism of the rapid expansion of the number of

repeat sequences in affected progeny within one or two

generations?
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Proposed biological mechanism to answer questions 1, 2 and 3

Formation of branching hairpin structures during DNA replication,

facilitated by GC-rich repeats.
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Definition of the IGW model

Assume a specific scenario of expansion of repeats:

• In the initial, 0-th, replication round, the number of repeats is n.

• In each new DNA replication round, a random number of new

branching events (i.e., “initiation without termination of

replication” events) occur at the endpoint of each repeat (this

random number is characterized by the pgf f(s)), and
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• All resulting branches become resolved and reintegrated into the

linear DNA structure, which becomes the template for the

successive replication round.

• A precedent exists in the replication of the T4 bacteriophage.

– Virus induces production, in the host cell, of branched networks

of concatenated DNA

– Branched DNA subsequently is resolved into unbranched phage

genomes

Attention : Branching along DNA repeat sequence, not in

time (!)
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Definition of the IGW process

• Let

{Zk, k ≥ 0}

be the ordinary Galton-Watson process with pgf f(s), and let

{Yk, k ≥ 0}, where Yk = Z0 + Z1 + . . . + Zk, , k = 0, 1, 2, . . .

be the total progeny process.

• Let {Z
(i)
k , k ≥ 0}, i ≥ 0 be a sequence of iid copies of {Zk} with

total progeny processes {Y
(i)
k , k ≥ 0}, i ≥ 0. Generic {Zk} is called

the underlying GW process.

• Process {Xi, i ≥ 0} is defined in a recursive manner,

X0 = n, Xi+1 = Y
(i)
Xi−1, i ≥ 0.

Sequence {Xi} is Markov and, since Y
(i)
0 = 1, state 1 is absorbing.
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Plausible example of IGW

• Suppose that at the end of each repeat a new branching event

occurs with small probability p, so that

f(s) = (1 − p)s + ps2.

• The number of branches stemming from each ramification point is

1 or 2, the latter less likely.

– This leads to a “sparse” tree =⇒ for a number of generations

the growth will be slow.
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Binomial thinning of IGW

• Fluctuations of the number of triplets in unaffected individuals can

be explained by coexistence of triplet increase and triplet loss.

• Accordingly, we assume that the process of resolution and

reincorporation of repeats into the linear chromosomal structure

has a limited efficiency u < 1.

• The new process {X̃i, i ≥ 0} including the imperfect efficiency is

defined as

X̃0 = n,

X̃i+1 = B(u, Y
(i)

X̃i−1
− 1) + 1, i ≥ 0,

where, conditional on N , B(u, N) is a binomial rv with parameters

u and N .

This process produces runs of fluctuations, followed by explosive

growth.
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Properties of the IGW process

P[{Xi → 1} ∪ {Xi → ∞}] = 1. Let X∞ denote the almost sure limit of

Xi and let g(s, ν) denote the pgf of Yν . Then

g(s, 0) = s and g(s, ν + 1) = sf [g(s, ν)]

It follows from the definition that

E(sXi+1) = E[g(s, Xi − 1)],

and hence in all cases

E(sX∞) = E[g(s, X∞ − 1)]. (4)
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If

0 < p0 < 1,

we may choose s ∈ (0, q) and then f(s) > s. This gives

g(s, 1) > sf(s) > s and hence, by induction, that g(s, ν − 1) > sν .

Since (4) can be written as

s + E(sX∞ , X∞ > 1) = s + E[g(s, X∞ − 1), X∞ > 1],

it can hold if and only if P[X∞ > 1] = 0 and so the process is absorbed

at unity when 0 < p0 < 1.

If p0 = 0, then Y
(i)
ν > ν + 1 and hence definition implies Xi+1 ≥ Xi.

So, Xi ↑ ∞ if X0 ≥ 2.
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Theorem 5. Let us consider the IGW process with no thinning (i.e.,

with u = 1). Then

1. m < 1 yields E(Xi) → 1 and Xi
a.s.
→ 1;

2. m = 1 yields E(Xi) =E(X0) and Xi
a.s.
→ X∞ where X∞ is a finite

rv, and X∞ = 1 if p0 < 1;

3. m > 1 yields E(Xi) → ∞, and

(a) if p0 > 0 then Xi
a.s.
→ 1,

(b) if p0 = 0 i.e., f(s) = p1s + p2s
2 + · · · , then Xi

p
→ ∞.
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Theorem 6. Suppose {X̃n} is the IGW process with binomial thinning.

1. Suppose m > 1. For each integer M > 0, there exists an integer

N0 > 0 such that

E(X̃i+1|X̃i = N0) > MN0.

2. Suppose u > 1/2 and p0 = 0. There exist N0 ≥ 0 and α > 1 such

that

E(X̃n+1|X̃n ≥ N0) ≥ αE(X̃n − 1|X̃n ≥ N0).

• Theorem shows that no matter how small the efficiency u in the

process with thinning, the process will increase (in the expected

value sense) by an arbitrary factor, after it exceeds certain

threshold.
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The age-dependent process: Markov case

• A single ancestor particle is born at t = 0.

• Ancestor lives for time τ which is exponentially distributed with

parameter λ

τ ∼ exp(λ)

• At the moment of death the particle produces a random number of

progeny according to a probability distribution with pgf f(s).

• Each of the first generation progeny behaves, independently of

each other, in the same way as the initial particle.

If we denote Z(t, ω) the particle count at time t, we obtain a stochastic

process

{Z(t, ω), t ≥ 0}.
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Differential Equation for the pgf
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Differential Equation for the pgf

From the branching property

Z(t + ∆t) =

Z(∆t)
∑

i=1

Z(i)(t) =⇒ F (s, t + ∆t) = F [F (s, t), ∆t].,

F (s, t + ∆t) − F (s, t) = F [F (s, t), ∆t] − F [F (s, t), 0]. (5)
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If ∆t is small

F (s, ∆t) = se−λ∆t + f(s)(1 − e−λ∆t) + o(∆t), (6)

or

F (s, ∆t) − F (s, 0) = [−s + f(s)](1 − e−λ∆t) + o(∆t). (7)

Substituting (7) into (5) and dividing by ∆t we obtain

F (s, t + ∆t) − F (s, t)

∆t
=

{−F (s, t) + f [F (s, t)]}(1 − e−λ∆t) + o(∆t)

∆t
.

∆t → 0 =⇒ dF (s, t)/dt = −λ{F (s, t) − f [F (s, t)]}, F (s, 0) = s.
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Application : Clonal resistance theory of cancer cells

• Developed by Coldman and Goldie, the only mathematical theory

that had any impact on practice of cancer chemotherapy.

• The aim of cancer chemotherapy is to achieve remission, i.e.,

disappearance of clinically detectable cancers and then to prevent

relapse, i.e., the regrowth of cancer.

• In many cases the failure of chemotherapy is associated with the

growth of cells resistant to further treatment with the same drug.
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• Two modes of drug resistance:

– Resistant cells might spontaneously arise in tumors and be

selected for during treatment.

– Alternatively, they might be induced by treatment.

• We focus on the first possibility
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Assumptions of the clonal theory

1. Cancer cell population is initiated by a single cell which is

sensitive to the cytotoxic (chemotherapeutic) agent. The

population proliferates without losses.

2. Interdivision time of cells is a random variable with a given

distribution.

3. At each division, with given probability, a single progeny cell

mutates and becomes resistant to the cytotoxic agent.

4. Mutations are irreversible.
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• Aim : Compute the probability that when the tumor is

discovered, it does not contain resistant cells.

– Only in such situation, the use of a cytotoxic agent is effective.

– If a subpopulation of resistant cells exists, the cancer cell

population will eventually re-emerge despite the therapy.
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Markov branching process model: Single-mutation case
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Markov branching process model: Single-mutation case

1. In the process, there exist two types of particles, labeled 0

(sensitive) and 1 (resistant).

2. The process is initiated by a single type 0 particle.

3. The lifespans of particles are independent exponential random

variables with parameter λ.

4. Each particle, at death, divides into exactly two progeny particles:

• 0-particle produces either two 0-particles, wp 1 − α, or one 0−

and one 1-particle, wp α.

• 1-particle produces two 1-particles.
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Notation and the ODE system

• F0(s0, s1; t) pgf of the numbers of cells of both types, at time t in

the process initiated at time 0 by a type 0 cell.

• F1(s1; t) is the pgf of the numbers of cells of type 1, at time t in

the process initiated at time 0 by a type 1 cell.

• Progeny pgf’s for cells of type 0 and 1

f0(s0, s1) = (1 − α)s2
0 + αs0s1, f1(s1) = s2

1

In consequence,

dF0

dt
= −λF0 + λf0(F0, F1) = −λF0 + λ[(1 − α)F 2

0 + αF0F1],

dF1

dt
= −λF1 + λf1(F1) = −λF1 + λF 2

1 .
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Solutions

Theorem 7. The solution of the differential equation

dF (t)

dt
= f(t)F (t) + hF (t)2, (8)

where f ∈ C[0,∞), with initial condition F (0), is a uniquely defined

function F ∈ C1[0,∞)

F (t) =
F (0)e

R

t

0 f(u)du

1 − hF (0)
∫ t

0
e

R

u

0 f(v)dvdu
. (9)
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Second equation is solved by separation of variables,

F1(s; t) =
s1

s1 + (1 − s1)eλt
.

Substituting this into the first equation and employing Theorem we

obtain

F0(s; t) =
s0e

−λt[e−λts1 + (1 − s1)]
−α

1 + s0{[e−λts1 + (1 − s1)]1−α − 1}s−1
1

.
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Conclusions

Differentiating F0(s; t) with respect to s0 and s1 we obtain expected

counts of the sensitive and resistant cells

M0(t) =
∂F (1, 1; t)

∂s0

= eλ(1−α)t, t ≥ 0,

M1(t) =
∂F (1, 1; t)

∂s1

= eλt − eλ(1−α)t, t ≥ 0.

Conclusion: In absence of intervention, resistant cells eventually

outgrow the sensitive ones.

Probability of no resistant cells at time t

P (t) = lim
s0↑1

lim
s1↓0

F0(s; t) =
1

(1 − α) + αeλt
=

1

(1 − α) + α[M0(t) + M1(t)]
.
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Conclusions

Based on the model, the following observations can be made:

• The probability that there are no resistant cells at time t is

inversely related to the total number of cells.

• For different mutation rates α, if α’s are small, the plots of P (t) are

approximately shifted, with respect to each other, along the t axis.

• The time interval in which the resistant clone is likely to emerge,

i.e., in which P (t) falls from near 1 to near 0, for example from

0.95 to 0.05, constitutes a relatively short “window” (Fig. 4.3).

• Therefore, the therapy should be prompt and radical to decrease

cell number and probability (1 − P (t)) of emerging resistance.
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Quasistationarity in a branching model of

division-within-division

• Examples of branching-within-branching occurs in various settings

in cell and molecular biology.

– Gene amplification in cancer cells

– Plasmid dynamics in bacteria

– Proliferation of viral particles in host cells.

• General motivating idea: Stability arising from selection

superimposed on a random mechanism.

• Consider a set of large particles (biological cells), following a

binary fission process.

• Each of the large particles is born containing a number of small

particles, which multiply or decay during the large particle’s

lifetime.
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• Arising population of small particles is then split between the two

progeny of the large particle

• Suppose the presence of at least one small particle is necessary to

ensure the viability of the large particle. This can be due to a

selection factor existing in the environment.

• We are interested in the behavior of the population of large

particles surviving selection, i.e., large particles having at least one

small particle inside.

Marek Kimmel Sept/Oct 2004



Branching Processes in Biology

Marek Kimmel Sept/Oct 2004



Branching Processes in Biology

Definition of the process

1. Population of large particles evolves according to a binary-fission

time-continuous Markov branching process, i.e., each particle lives

for a random time τ ∼ exp(λ), and then splits into two progeny,

each of which independently follows the same scenario.

2. Each large particle contains X small particles at its birth. Each of

these proliferates producing

Y (1), Y (2), . . . , Y (X),

small particle progeny at the end of the large particle’s lifetime.

3. Each of the Y (k) progeny of the initial k−th small particle is

independently split between the progeny of the large particle, so

that large progeny 1 and 2 receive correspondingly Y
(k)
1 and Y

(k)
2

small progeny.
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4. The joint distributions of the pairs (Y
(k)
1 , Y

(k)
2 ) are identical,

independent for all (k), and symmetric in Y
(k)
1 and Y

(k)
2 . They are

described by the pgf

f12(s1, s2) = E[s
Y

(1)
1

1 s
Y

(1)
2

2 ].

5. As a result, each of the large progeny receives the total of

X1 =

X∑

k=1

Y
(k)
1 and X2 =

X∑

k=1

Y
(k)
2

small progeny particles.

Marek Kimmel Sept/Oct 2004



Branching Processes in Biology

Resulting branching process and its properties

• Markov time-continuous process with denumerable infinity of types

of large particles. The large particle is of type i if it contains i

copies of small particles at its birth.

• Denote the vector of counts of large particles of all types at time t,

by

Z(t) = [Z0(t), Z1(t), Z2(t), . . .],

and the infinite matrix of expected values M(t) = [Mij(t)] by

Mij(t) = E[Zj(t)|Zi(0) = 1, Zk(0) = 0, k 6= i].
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• Let us define coefficients anm(i) using the expansion of the pgf of

the sums of numbers of small particles, given X = i,

[f12(s1, s2)]
i =

∑

n,m≥0

anm(i)sn
1s

m
2 .

anm(i) is equal to the probability that among the progeny of the i

small particles present at birth of the large particle, n will end in

large progeny 1 and m will end in large progeny 2.
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• The expected value equations

d

dt
M(t) = λ(2A − I)M(t), M(0) = I,

where A = [Aij ] = [aj(i)] is the matrix of coefficients of the

marginal pgf of X1 given X = i

[f(s1)]
i = [f12(s1, 1)]

i =
∑

j,l≥0

ajl(i)s
j
1 =

∑

j≥0

aj(i)s
j
1,

aj(i) is equal to the probability that of the i small particles present

in the large particle at its birth, j will end in large progeny 1 (or in

large progeny 2).
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• Equations can be explicitly solved using the Laplace transform.

The solution can be expressed in the form of generating function

Mk(u, t) =
∑

l≥0

Mkl(t)u
l, u ∈ [0, 1].

We obtain

Mk(u, t) =
∑

j≥0

(2λt)j

j!
[fj(u)]ke−λt, k ≥ 0.

where fj(u) is the j-th iterate of the marginal pgf of Y
(1)
1 .
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Quasistationarity

Back to the Galton-Watson process with progeny pgf f(u):

• If f ′(1−) < 1 (the subcritical case) then as j → ∞,

fj(u) − fj(0)

1 − fj(0)
→ B(u),

i.e., conditionally on nonextinction, the process tends to a limit

distribution. This behavior is known as quasistationarity.
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• Moreover, as j → ∞

fj(u) − 1 ∼ ρjQ(u),

where ρ = f ′(1−) and the function Q(u) satisfies

Q(0) − Q(u)

Q(0)
= B(u),

with Q(1) = 0, Q′(1−) = 1, Q(u) ≤ 0 and Q(u) increasing for

u ∈ [0, 1].

• Functions B(u) and Q(u) are unique solutions of certain functional

equations.
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Theorem 8. Let us consider the process defined in Section ?? started

by a large ancestor of type k and let ρ = f ′(1−) < 1. Then, as t → ∞,

eλt − Mk(u, t) ∼ −kQ(u)e(2ρ−1)λt, (10)

for all k ≥ 1.

Corollary 1. The expected frequencies {µkl(t), l ≥ 1} of large

particles of type l among the particles of nonzero type tend, as t → ∞,

to a limit distribution independent of k, characterized by the pgf B(u).
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Application : Gene amplification

• During cell’s lifetime each extrachromosomal copy of the gene is

successfully replicated with probability β, less than 1.

• The resulting two copies are segregated to the same progeny cell

with probability α and to two different progeny cells with

probability 1 − α. α may be called the probability of co-segregation

and has been showed to be ≈ 0.9 in one cell system.

• The above hypotheses yield

f12(s1, s2) = β
[

(1 − α)s1s2 +
α

2
(s2

1 + s2
2)

]

+ (1 − β), (11)

f(u) =
βα

2
u2 + β(1 − α)u +

(
βα

2
+ 1 − β

)

, (12)

with ρ = f ′(1−) = β < 1. Therefore our Theorem and its

Corollary apply.
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• Qualitatively, all the experimental observations above are

explained by our results: The stable quasistationary distribution of

gene copy count is predicted by the Corollary.

• If the type 0 cells are not removed by the drug, then the Theorem

proves they dominate the population. Indeed by the Theorem the

resistant cells grow as
∑

l≥1

Mkl(t) = Mk(1, t) − Mk(0, t) ∼ −kQ(0)e(2ρ−1)λt, ρ < 1, (13)

while the entire population grows as eλt.

• If ρ > 1/2, then in the presence of the drug, resistant cells grow as

e(2ρ−1)λt, i.e., exponentially but slower than in the nonselective

conditions.
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