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Background

* Deoxyribonucleic Acid (DNA) and chromosomes

— In the nucleus of each cell,
the DNA molecule is
packaged into thread-like
structures called
chromosomes.

— Each chromosome is made up
of DNA tightly coiled many
times around proteins called
histones that support its

structure.
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* In humans, each cell normally contains >1 S2< (3( 74( )J
23 pairs of chromosomes, for a total of
(7))

6 10 " 12

* Twenty-two of these pairs, called " " )‘ N M I
autosomes, look the same in both .
males and females.

14 15 16 17 18

f( ¢ 1Mo
19 20 21 22 X (Y
* The 23rd pair, the sex chromosomes,
differ between males and females. autosomes sex chromosomes

— Females have two copies of the
X chromosome

— males have one X and one
Y chromosome.




DNA structure

DNA STRUCTURE
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Figure 5-7

DNA is a double-stranded molecule twisted into a helix (think of a spiral staircase).
Each spiraling strand, comprised of a sugar-phosphate backbone and attached bases, is connected
to a complementary strand by non-covalent hydrogen bonding between paired bases.

The bases are adenine (A), thymine (T), cytosine (C) and guanine (G).
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Background

* Gene: a nucleotide (base pair) sequence in
DNA coding for a functional product (usually
protein and certain types of RNAs)

e --asegment of DNA that is transcribed into
MRNA and then translated into protein which
carries out biological function.




Questions?



Genomic Markers

DNA | Single nucleotide polymorphism (SNP)
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Genomic Markers

SNP arrays || DNA

~ 106 -- 107

\Study (GWAS)

Genome Wide
Association

~.

Quantitative phenotypes

Gene expression arrays in vitro/ex vivo cellular properties
RNA MRNA in vivo properties
cDNA PK/PD measurements
~ 105 -- 106 Gene \‘ clinical properties
expression toxicities
profiling minimal residual disease
treatment outcome
MRNA expression
protein expression/structure
Proteomics p,ote,';, Biological populations/time points
expression
structures




Gene Expression Profiling

* Gene Differential Expression and Association:
Structures of the data and statistical problems

Each gene expression is a (random) variable — m ~ 10° variables
Xy Xy ey X

n subjects, a microarray is run for each subject -- each subject has m observed gene
expression data points

Each gene expression has n observations: X.;, X.,, ..., X.;; i=1,2,...,m

A “phenotype” (biological feature) Y, is a variable observed on each subject
Y, Yy o Y,

Statistical problem: Detect the stochastic dependence between (X, Y), ..., (X, ,Y)
Test m (~ 10°) hypothesis. The it" test uses the data (X, Y,), ..., (X.., Y,); i=1,....,m

-- A massive multiple hypothesis tests problem



Gene Expression Profiling

 Test statistics @

Gene \

expression

profiling

Detect the stochastic dependence between
(Xll Y)I cee) (Xm ,Y)

Test m (~ 10°) hypothesis. The ith test uses the
data (X, Y;), .., (X, Y,); i=1,...,m

Quantitative phenotypes
in vitro/ex vivo cellular properties
in vivo properties
PK/PD measurements
clinical properties
toxicities
minimal residual disease
treatment outcome
MRNA expression
protein expression/structure
Biological populations/time points

ANOVA, t, Wilcoxon, regression coefficients, ranks statistics, Bayesian, and variants...




Gene Expression Profiling

Gene 1 2 g m

Hypo. (Ho1, Ha1) (Ho2, Ha2) (Hog, Hag) (Hom, Ham)

Test Stat. S: S2 Sg Sm

P values P1: P> Pg Pm
Declared Diff. Expr. Declared not Diff. Expr. Total

True Ho 4 U m,

True Ha R-V m-R-U m;

Total R m-—R m



Massive Multiple Hypothesis Tests

Detect the stochastic dependence between (X, Y), ..., (X, ,Y)
Test m (~ 10°) hypothesis.
-- A massive multiple hypothesis tests problem

Reject H, Fail to reject H, Tot
True H, % U m,
True H, R-V m-R-U m,

R m-R m

Benjamini and Hochberg (1995) JRSS-B, 57, 289-300

Significance criteria: FWER, gFWER, FDR/g-value, local
FDR, adaptive significance threshold




Massive Multiple Hypothesis Tests

Reject H, Fail to reject H, Tot
True H, % U m,
True H, R-V m-R-U m,

R m-R m

Family-Wise Error Rate (FWER) and generalized FWER (gFWER)
FWER = Pr(V>0)
gFWER = Pr(V=k|R>0) for a specified k
Pr(V/R2y|R>0) for a specified y
Van der Laan, Dudoit, Pollard (2004) SAGMB 3, Article 15
//www.bepress.com/sagmb/vol13/issl/art15
Ramano and Shaikah (2006) Annals of Statistics



Massive Multiple Hypothesis Tests

Reject H, Fail to reject H, Tot
True H, % U m,
True H, R-V m-R-U m,

R m-R m

False discovery rate (FDR)
FDR = E(V/R|R>0)Pr(R>0)
Benjamini and Hochberg (1995) JRSS-B, 57, 289-300



Massive Multiple Hypothesis Tests

False discovery rate (FDR)
FDR = E(V/R|R>0)Pr(R>0)
Benjamini and Hochberg (1995) JRSS-B, 57, 289-300

FDR Control: Sig. criteria assuring FDR<n
P Py S... <P, ordered P values
Hio11» Hioapr - Hjom) COrresponding sequence of Hy's
P” ) = Pi/(i/m) (“adjusted” P values)
i* =max{j:P",<n}
Reject the null hypotheses Hg,;, ..., Higix

* Canimprove power if m is replaced by m, (# of Hy's) in P”
* The number of null hypotheses m, is unknown!



Massive Multiple Hypothesis Tests

g-values pFDR=E(V/R|R>0)
P...P,

F(t) = %f I(P <1), t€[0]1]

BIF(y 2 Mo, L il N Y
F(t).—E[F(t)]—mt+m2Fj(t) Jrot+m];Fj(t), T =~

Rejection rule - - Reject H,, if P < a. Then forsmall o

FDR(a) ~ 2o
F(a)
7a.P.
p= <UD 12, m
F(B,)

g, =min{r,, j =i}, i=12,..,m

Rejecting all the corresponding HO’s with g <n controls the positive FDR (pFDR) at level n.

Storey (2002) JRSS-B, 64, 479-498
Storey, Taylor, Siegmund (2003) JRSS-B, 66, 187-205
Storey (2003) Annals of Statistics, 31, 2103-2035



Massive Multiple Hypothesis Tests

FDR estimation
P,.,P

m

F(t) = %iz(}g <1), t€[0,1]

= E[F(r)]= "0+ —mte Ll S _m
F(t).—E[F(t)]—mt+m2Fj(t) Jtol‘+mj;Fj(t), o=

Rejection rule - - Reject H,, if P < . Then forsmall o
T FDRMN(a) ~ 2%
F(a)

FDR(ax) ~

Storey (2002) JRSS-B, 64, 479-498

Cheng et al. (2004) SAGMB, 3, Article 36. www.bepress.com/sagmb/vol13/iss1/art36
Pounds and Cheng (2003) Bioinformatics, 20, 1737-1745

Pounds and Cheng (2006) Bioinformatics, 22, 1979-1987

Cheng (2006) Optimality, The Second Lehmann Symposium 77-99

Hunt, Cheng, Pounds (2009) Comput. Statist. Data Anal. 53, 1688-1700

Allison et al (2002) Comput. Statist. Data Anal. 39, 1-20




Massive Multiple Hypothesis Tests

FDR estimation: The estimator _7"1:’0 T, = ™o the proportion of true null hypotheses
m

P...P,
Fy=—S1r =0, €
m =

m

e I _my 1 _ l ) _my
F(t):=E[F(?)] = L+ sz(t) ol +— j;Fj(t), o=

Pty =mp+ 2= LS p (1) =+ (1= 7)) (0;
m  m-m, <

1

FA(t)= "

_mo =

o F,(t)-F() - 1-F() 1-F(@)
" F(-t  F()-t 11—t
i = 1-F(A)

1-A
- - slope between the points (A, F(1)) and (1,1)

forzclosetol.

for some chosen A - - the "slope estimator’




Massive Multiple Hypothesis Tests

FDR estimation: The estimator j’i—o

T, = "o the proportion of true null hypotheses
m

P...P

m

F(t) = %i[(}g <1), t€[0,1]

— B[F()] = Moy, ] N L m
F(t).—E[F(t)]—mt+m2Fj(t) n01+mj;Fj(z), T, =

Flty—mp+ =0 S F(0) =yt + (1= 70) F,(0);

f(f) =Jl, + (1 _EO)fA(l‘)
7, 1s1identifiable and r, = f (1) iff f,(1) = 0 for monotone f.

7y = (1)

References in previous slide, plus
Langaas et al. (2005) JRSS-B, 67, 555-572



SUMMARY & additional references _my Ff)R(a) Ty

Benjamini & Hochberg (2000) JEBS: Adaptive FDR control
Estimate 7y by a graphical (simple slope) method;
use the EDF for F. —FDR control

Storey, Taylor, Siegmund (2003) JRSS-B

Storey (2002) JRSS-B: Estimate 7, by an empirical pdf (histogram/spacing);
use the EDF for F.

Pounds & Morris (2003) Bioinformatics: Beta-Uniform mixture model (BUM)
Estimate 7, and beta parameters by constrained maximum likelihood

Cheng, Pounds et al. (2004): Stat. Appl. Genetics Mol. Bio.

Estimate F and f=F’ by adaptive smoothing (B-spline series) under
stochastic order constraint, and estimate 7, by the minimum of f.

Pounds & Cheng (2004) Bioinformatics
Estimate Fand f by adaptive smoothing (LOESS), and
estimate 7, by the minimum of f.

Hunt, Cheng, Pounds (2009) Comp. Stat. Data. Anal.
FDR estimation for substantially dependent tests

Langaas et al. (2005) JRSS-B



Massive Multiple Hypothesis Tests
* Local FDR
Pr(H,) = m,; Pi(H ) = 1 - 11,
2(+): pdf of test statistic
g,(*): conditional pdf of test statistic given H
g,(*): conditional pdf of test statistic given H ,
gx)=mg,(x)+(1-m,)g,(x), xER

The empirical Bayes posterior probability of H, given test statistic S:

EBP(H, | S) = locFDR(S) = "080(5)
g(s)

Efron et al. (2001) JASA 96, 1151-1160
Efron (2004) JASA 99, 96-104



Questions?



Massive Multiple Hypothesis Tests

Significance criteria: adaptive significance threshold

* Previous criteria are concerned only with false
positive errors

FDR control — control at what level?
FDR estimation — estimate at which a?

* Flip side: false negative errors are equally
important in large microarray experiments

e Consider determination of significance threshold
(P value cutoff) adaptively




A

FDR(ct) = ;EZ)

FOR!

00 01 02 03 04 05 06 07 08 09 10

FDR control:

For a preset FDR level n, find the | R |
largest possible alpha, a™*, such

that A
 EDR(a*) <1

Reject all nulls with P value < a*.

(1) Controlling FDR addresses only one type of error because it ignores the
proportion of false negatives.

(2) In practice, there may not be much clue for how to balance between the
FDR level and the statistical significance level — which alpha level?
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Massive Multiple Hypothesis Tests

Detect the stochastic dependence between (X, Y), ..., (X, ,Y)
Test m (~ 10°) hypothesis.
-- A massive multiple hypothesis tests problem

Reject H, Fail to reject H, Tot
True H, % U m,
True H, R-V m-R-U m,

R m-R m

Benjamini and Hochberg (1995) JRSS-B, 57, 289-300

Significance criteria: FWER, gFWER, FDR/g-value, local
FDR, adaptive significance threshold




Massive Multiple Hypothesis Tests

Significance criteria: adaptive significance threshold

e Profile Information Criteria (Ip): Cheng et al. (2004), Cheng (2006)
Provide a guide for determination of significance level complementary to FDR control/estimation

Borrow idea from model selection criteria.

Form a criterion function with two terms: a term represents the “significance” (i.e., small magnitude of the
P values) in terms of a deviation from uniformity, and a penalty term monotonically increasing in
the expected number of false positives.

]P(O{) = $+A’ﬁom&

The first term measures the amount of aggregate evidence against nulls (supporting alternative hypotheses)

as reflected by the small P values; it is non-increasing in a: at, D(a)1, 1/D(a){
The second term 1 in o and penalizes with the estimated number of false discoveries from

rejecting too many nulls (calling too many genes differentially expressed).

The optimal significance threshold is @* that minimizes 7 (@). Reject all nulls

with P values < g *.



2000 4000 6000 8000 10000 12000 14000

0

pioO

0.8932 alph.opt = 0.003997 FDR

0.3614 min Ip

137.3318

0.02

0.04

alpha

0.06

0.08

0.10




l,(a)= 5(105) + At ,ma

D(a) = {m, [t - O()]3dy"?

A

A recent development: Use an AUC of ROC type statistic for the first term
-- work in progress




For 0 <t <1,



F(t) =B [Fu(t)| = ot + (1= mo)Fi(t) 0 <t <1

cd
00 01 02 03 04 05 06 07 08 09 °

T0
t

S argmax {F(t)—t, 0 <t <1} ifng<1
YTt if 7o = 1



F(t)=E [ﬁm(t)] — 1ot + (1= m) Fy (1) . {Eltl‘gmax{F(t)—t. 0st<1} Hm<]

A Receiver Operating
Characteristic (ROC) Curve

00 02 04 06 08 10

AUC measures performance

. /

o —1
I(a) = / Fi(t)dt] +(1-mm+m™) " mma
0

o =argmin{/,(a), 0 < a < ap}



Penalty{lambda)
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o —1
[,(q) = [ /O Fl(t)dt] +(1—0%0?0—|—m_A)_7T0 " mTo

~
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A Q1 (u) = F7 ' (u), so for small u
Q1 (1) = Qu(0) + a1 (0)u+ g (0)u® + =g (€)us

Fi(t) = pt° for small ¢
>1,0<0<1

_ a -1
I,(00) = / F (t)dt] + (1 — ToTo + m_/\)_mﬂo Mo
LJ0o

o = 5(1+5)] 2 (1 —mom0 +m~ A) T2, TP m T T

Complete uniformity: mo =17 ==0=1

* —(A
a* = 413y (ATD/3 A=4.7 for a,=0.05

loo 41/3 Bonf. adjustment

D
Set A = = —logag + 5 gives
3 logm
a* = apm ™! under complete uniformity




Penalty{lambda)
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Massive Multiple Hypothesis Tests
A Simulation Study

FDR Control (Storey et al. 2003) at 1, 5, 10, 15, 20, 25, 30, 40, 60, 75 percent level
I, in Cheng et al. (2004)

New 1,

Bias of FDR estimator in Cheng et al. (2004)

(Estimated) Actual FDR = Average proportion of false positives across simulations
(Estimated) Average Power = Average proportion of captured true H,’s



Two Group Differential Expression, m Genes
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Two Group Differential Expression, m Genes
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Nucleotide: basic chem
unit in DNA (chrom).
At each position of a
chromosome pair, the
two nucleotides (one
on each chrom) form a
base pair; the SNP at
this position is given by
the exact nucleic acids
(allele) in the base pair.

“SNP genotype”
Homozygote (A) Homozygote (B)

Heterozygote (AB)

v
>
o

A

Borrowed from Dr. Geoff Neale’s lecture



Traces of genetic ancestry

Borrowed from Dr. Geoff Neale’s lecture



SNP Array
Affymetrix GeneChip Technology

GeneChip Probe Array

Millions of copies of a specific
oligonucleotide probe
5 um features

2

>7.5 million different
complementary probes

Borrowed from Dr. Geoff Neale’s lecture
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Borrowed from Dr. Geoff Neale’s lecture



SNP Assay Performance

SNP
Assay

10K 10,204 113 kb 258 kb 0.38 >99.6%
100K 116,204 8 kb 22.5 kb 0.30 40% >99.7%
500K 500,000 2.5kb 5.8 kb 0.29 85% >99.6%

Red = atleast 1 SNP per 100 kb
Black = Gaps

[ |
I
|| = —
— |
— I |
|| —— . — =
L] s O
|| |
—1 —] |}
[ | — —
. . . = . L - N | =
| = H = =
— m =
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& = o S S ERRERE=0= B
= = = = = = - = = = = = = = - -
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Borrowed from Dr. Geoff Neale’s lecture



Genome-Wide Association Study (GWAS)

Affy SNPChip6.0: Assay 1.2 million SNPs, 900,000 for
genotypes and 300,000 for copy number variation

Whole-genome sequencing: many, many more
Goal: Discover genotype-phenotype association

Procedure: Test each SNP’s association with the trait
of interest and determine by some criteria which
SNPs are statistically (and hopefully, biologically as
well) significant in explaining the phenotypic
variation in the population under study.

~10° to 102 SNPs — about the same number of
statistical tests in a single study




GWAS Designs and Statistical Models

e Case-Control Study
— Binary phenotype (present/1, absent/0)
— Cases: phenotype=1; Controls: phenotype=0

— Obtain (large) numbers of cases and controls from
the study population

— Often retrospective: identify cases and controls
from what’s available in the tissue bank(s)

— Run SNP array on each case and each control



GWAS Designs and Statistical Models

e Case-Control Study

— Run SNP array on each case and each control
— Each case/control has say 600,000 SNPs typed
— Test SNP association for each typed SNP (600K

tests)

AA AB BB
Case 1010 3218 5126
Control 100287 40125 1021

Chi-square test, Cochran-Armitage trend test



GWAS Designs and Statistical Models

e Cohort Study (in Oncology)
— “Arbitrary” phenotype: binary, ordinal, continuous

— Obtain (a large) number of subjects from the
study population (e.g., “uniformly” treated
patients): the study cohort

— Can be retrospective or prospective
— Run SNP array on each subject in the cohort



GWAS Designs and Statistical Models
e Cohort Study (in Oncology)

— Run SNP array on each subject in the cohort
— Each subject has say 600,000 SNPs typed
— Test SNP association for each SNP (600K tests)

A

ANOVA, K-W test, ...

Trait value
0000000000

00000000000000000
00 000 00000 0 000

>
>
>
vy

BB



Genome-wide Association Study

* Multiple Hypothesis Tests
— Statistical errors
— Genome-wide significance (FWER)

— False discovery rate
* Estimation
e Control

— Adaptive significance thresholds

* Genome-wide significance: Race/population
specific!



Genome-wide Association Study

* Multiple Hypothesis Tests

— Family-Wise Error Rate (FWER): The probability of
making one or more type-l errors in m tests (say
m=600K) — the “alpha level” of multiple tests

— Based on the Binomial model:

* If the probability of type-I error on a single SNP is 5x10
(5%), the FWER for 600K SNPs is essentially 1.00 (100%)

* If the probability of type-| error on a single SNP is 8x10°,
the FWER for 600K SNPs is 0.047.

Has to be extremely conservative on single test in order to
control the FWER



Genome-wide Association Study

* Multiple Hypothesis Tests
— Genome-Wide Significance (an a level for GWAS)

Genetic Epidemiology 32: 227-234 (2008)

Estimation of Significance Thresholds for Genomewide
Association Scans

Frank Dudbridge™ and Arief Gusnanto

MRC Biostatistics Unit, Institute for Public Health, Cambridge, United Kingdom




Abstract
The question of what significance threshold is appropriate for genomewide association studies is somewhat unresolved.

Previous theoretical suggestions have yet to be validated in practice, whereas permutation testing does not resolve a
discrepancy between the genomewide multiplicity of the experiment and the subset of markers actually tested. We used
genotypes from the Wellcome Trust Case-Control Consortium to estimate a genomewide significance threshold for the
UK Caucasian population. We subsampled the genotypes at increasing densities, using permutation to estimate the nominal
P-value for 5% family-wise error. By extrapolating to infinite density, we estimated the genomewide significance threshold
to be about 7.2 x 10", To reduce the computation time, we considered Patterson’s eigenvalue estimator of the effective
number of tests, but found it to be an order of magnitude too low for multiplicity correction. However, by fitting
a Beta distribution to the minimum P-value from permutation replicates, we showed that the effective number is a
useful heuristic and suggest that its estimation in this context is an open problem. We conclude that permutation is still
needed to obtain genomewide significance thresholds, but with subsampling, extrapolation and estimation of an

effective number of tests, the threshold can be standardized for all studies of the same population. Genet. Epidemiol. 32:
227-234, 2008. ©) 2008 Wiley-Liss, Inc.

Genome-wide significance control FWER and is population-specific!

For 600K tests, the Bonferroni adjustment to achieve 5% FWER is
0.05/600,000=8.3x108. The estimated genome-wide significance for 5% FWER is
essentially the same as Bonferroni adjustment.

In very large GWAS (say 5 million tests), 7.2x108is appropriate for controlling the
FWER at 5% for studies “of the same population.”



Discussion

We have shown that previous proposals for
genomewide significance have been in the right

order of magnitude. It seems clear that, in a Western
population, any P-value less than say 5 x 10™" can be

regarded as convincingly significant. We rely on

permutation testing to estimate significance thresh-
olds, but these should be adjusted to reflect the
genomewide multiplicity. Estimation of an effective
number of tests remains an open problem but one
which has potential to considerably reduce the
computational burden. The next generation of
genotyping chips should allow more accurate
estimation of significance thresholds with applica-
tion to a wider range of genomic variation.

Often YOUR study population (patients, mice, cell lines ...) is NOT the same as
“the Western Population.”

Do not blindly follow the “genome-wide significance” HYPE!



Genome-wide Association Study
* Multiple Hypothesis Tests

— Family-Wise Error Rate (FWER): The probability of making one or more type-I
errors in m tests (say m=600K)
— Based on the Binomial model:
* |If the probability of type-I error on a single SNP is 5x102 (5%), the FWER for
600K SNPs is essentially 1.00 (100%)
* |f the probability of type-l error on a single SNP is 8x108, the FWER for 600K
SNPs is 0.047 (Bonferonni adjustment).

— Genome-wide significance 7.2x108

Is FWER a reasonable measurement of error level for GWAS?
NO!



Genome-wide Association Study

* Multiple Hypothesis Tests

— Family-Wise Error Rate (FWER): The probability of
making one or more type-| errors in m tests (say
m=600K)

— FWER is unnecessarily conservative, unfit for
exploratory studies such as GWAS.
— False Discovery Rate (FDR)

* Look directly at the number of false positive errors in all
positive findings, instead of the probability of making a
false positive error in all tests.

— Adaptive significance thresholds



Questions?



Validation of Positive Findings

* Biological Validation

— Demonstrate the biological relationship discovered from
microarray experiments by additional wet-lab experiments, in
e.g., cell lines, animal models, (prospective clinical trials?), etc.

e Statistical Validation

— Validate discovered genomic associations
* Internal “validation”: based only on the study dataset
e External validation: based on independent dataset(s)

— Validate classifiers
* Internal validation: cross validation using the study dataset only
* External validation: assess the classifier using independent data

* |nternal validation -- Split dataset once: bad idea!



Internal Validation of Discovered Genomic
Associations: What does this mean?

Gene Expression Profiling of the Development of
Secondary Myeloid Leukemia (t-ML)

Bogni, Cheng, Liu, ... Relling Leukemia, 20:239-246, 2006

TOTAL-XIIIA & TOTAL-XIIIB Patients

267 with gene expression data (ALL blasts at diagnosis)
Affymetrix U95Av.2 GeneChip

14 have developed t-ML at the time of analysis

Median length of follow-up 6.1 years.

First Stage Analysis:

1. Probesets (genes) were selected by hazard rate regression modeling
241 probes were identified at a=0.01.
2. The 267 patients were clustered into 3 groups using the 241 probesets
as features by Ward’s hierarchical clustering and cutting the tree at the
3-cluster level --> all 14 t-MLs were clustered together




3D plot of PCA for selected 241 genes from CRR model for tML in T13 group (N=267)

Event-free survival @ tML @  Other 2" malignancy @  Other adverse events @



Must demonstrate that the observed cluster is
NOT completely attributable to CHANCE;

otherwise we would have made a ...

Circular Reasoning!

Dupuy A, Simon R (2007) JNCI, 99:147-157



Validation of discovered genomic
associations: Definition

* |Internal validation
— “validation” using only the study dataset

* Validation: A convincing statistical argument
(evidence) that the discovery of the
(statistically) significant findings is not entirely
due to chance — evidence in addition to error
control for multiple hypothesis tests

— Significance: gFWER, FDR, adaptive threshold ...

— Model for chance (null hypothesis)



Internal validation of discovered
genomic associations: Definition

* Validation: A convincing statistical argument
(evidence) that the discovery of the (statistically)
significant findings is not entirely due to chance —
evidence in addition to error control for multiple
hypothesis tests

* A higher level hypothesis test demonstrating a
global association between the discovered set of
genomic variables (genes) and the “response
variable” (phenotype); e.g. association between
clusters generated by the discovered gene
expression profile and the phenotype.




3D plot of PCA for selected 241 genes from CRR model for tML in T13 group (N=267)

Event-free survival @ tML @  Other 2" malignancy @  Other adverse events @



Split data validation (one-round cross validation)
Bullinger ... Pollack NEJM 350(16), April 2004

116 AML samples

v

Training set
(n=59)

1. Random division
of samples into
training and
test sets

2. Select genes according to a
specific statistical procedure Class
(testing association between 1

gene expression and outcome.

3. Build a classifier; further
filter/select genes for

Identification
of outcome-
class

the classification model
predictor

10-Fold
Cross-
validation

P=0.034

OQutcome-class
prediction

T

133 genes

y

Test set
(n=57)

l

Evaluate
predictive value
by means of
Kaplan—Meier
analysis

Use of
outcome-
class
predictor

Figure 3. Overview of the Strategy Used for the Development and Validation
of an Outcome Predictor Based on Gene-Expression Signatures.
SAM denotes significance analysis of microarrays, and PAM prediction analy-

sis of microarrays.




Training vs. Test sets split from entire cohort

Reduction in Power Castaldi et al. (2010) Briefings in Bioinformatics, 12(3):189-202

e Splitting cohort reduces statistical power to detect important genes on the training set.

¢ The relatively small “test set” reduces power to test the association between the
expression profile and the outcome (phenotype), and it reduces the accuracy of

estimating the classification error.

Michiels et al. (2005) The Lancet, 365:488-492
Lack of Stabilitv and interpretabilitv Cheng (2009) CSDA, 53:788-800

e Will the same 133 genes “PAM” out if the 116-pts cohort is split again?
for third time? the fourth time? ...

e PAM prediction of individuals into good vs. bad outcome on test set is weakly
significant (P=0.034)
Will one get the same if the cohort is randomly split again,
third time, ...?

WHAT HAS BEEN VALIDATED?



Back to the t-ML example...

Internal Validation: A convincing statistical argument (evidence)
that the discovery of the (statistically) significant findings (cluster-
tML association) is not entirely due to chance.

If there is no gene (represented by the probes) associated with t-ML,
how often one would observe the glorious clusters by exactly the same
analyses in Steps 1 and 2?

First Stage Analysis:

1. Probesets/Genes were selected by hazard rate regression
241 probes were identified at a=0.01 (FDR=high!)
2. The 267 patients were clustered into 3 groups using the 241 probesets as
features by Ward’s hierarchical clustering and cutting the tree at the
3-cluster level --> all 14 t-MLs were clustered together




One can conclude no more nor any stronger by one-round split
than what can be achieved by a straightforward association
analysis without splitting the whole dataset into two.

How to meaningfully validate the significant findings in an
association analysis internally (using the entire study set
alone)? Cheng (2009) Comput. Statist. Data Anal. 53, 788-800

Computational Statistics and Data Analysis 53 (2009) 788-800

Contents lists available at ScienceDirect - ‘0""‘5:‘1"?,':‘(‘;

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda - =

Internal validation inferences of significant genomic features in
genome-wide screening

Cheng Cheng*

Department of Biostatistics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, United States




If there is no gene (represented by the probes) associated with t-ML,
how often one would observe the glorious clusters by exactly the same
analyses in Steps 1 and 2?

Permutation Internal Validation (Basic Idea):

Answer the above “how often” question by estimating
the probability via permutation/re-sampling methods

Test the strength of the signal, i.e. global stochastic
dependence between the set of significant findings and
the phenotype against the completely null hypothesis
(white noise background):

a hovel family of test statistics coupled with
permutation tests.




Back to the t-ML Example — Second Stage Analysis:

Permutation internal validation (test) indicated that if the
completely null (white noise) hypothesis is true, the chance
(probability) of obtaining a gene expression profile as strong
as shown by the cluster analysis was 4/1000=0.4%!



Permutation Internal Validation

— Randomly assign the 267 (time, censor) pairs to the 267 patients
Repeat EXACTLY Steps 1 and 2 on permuted data
1. Probes selection by CIN regression (Fine & Gray 1999)
death, relapse, and SMN as competing risks
2. Cluster the 267 patients into 3 groups using the
selected probes as features and Ward’s algorithm;
cut the tree at the 3-cluster level
—— Compute Gray'’s test statistic over the clusters
Repeat the above steps 1000 times

A permutation round is considered significant if and only if
e the number of selected probes at 0.01 level is at least 1, and
» the cluster with the highest percentage of t-ML events must
contain at least k t-ML events, and
e Gray’s statistic is greater than or equal to 267.8, the value
observed on the original dataset.

Profile Significance = #(significant permutation rounds)=1000



k Prof. Siq.
V4 0.004
8 0.004
9 0.004
10 0.004
11 0.004
12 0.004

k = cluster coverage of t-ML



Questions?



External Validation of Discovered
Genomic Associations

e External validation: study design?

* Replicate (some of) the discovered gene-
phenotype relationships on an independent
dataset according to specified criteria

* Similar to a single-stage phase-ll clinical trial

— Population (and patient cohort/treatment)

— Effect size (estimated using the discovery data)
— Power/probability of replication

— Sample size required

— Data collection: Genome-wide scan or focused (on
“discovered genes” only)? Scale of multiplicity?




External Validation of Discovered
Genomic Associations

e “Replicate” (some of) the discovered gene-
phenotype relationships on an independent
dataset according to some specified criteria

* [llustrative example: criteria/inference for
“replication” -- Validation of gene co-expression

clusters using related phenotype/outcome




An Example:

Leukemia blast gene expression and minimal residual disease (MRD)

NEOPLASIA

Genes contributing to minimal residual disease in childhood acute lymphoblastic
leukemia: prognostic significance of CASPSAP2

Christian Flotho, Elaine Coustan-Smith, Deqing Pei, Shotaro lwamoto, Guangchun Song, Cheng Cheng, Ching-Hon Pui,

James R. Downing, and Dario Campana

In childhood acute lymphoblastic leuke-
mia (ALL), early response to treatment is
a powerful prognostic indicator. To iden-
tify genes associated with this response,
we analyzed gene expression of diagnos-
tic lymphoblasts from 189 children with
ALL and compared the findings with mini-
mal residual disease (MRD) levels on days
19 and 46 of remission induction treat-
ment. After excluding genes associated
with genetic subgroups, we identified 17
genes that were significantly associated
with MRD. The caspase 8-associated pro-

tein 2 (CASP8AP2) gene was studied fur-
ther because of its reported role in apopto-
sis and glucocorticoid signaling. In a
separate cohort of 99 patients not in-
cluded in the comparison of gene expres-
sion profiles and MRD, low levels of
CASP8AP2 expression predicted a lower
event-free survival (P = .02) and a higher
rate of leukemia relapse (P =.01) and
were an independent predictor of out-
come. High levels of CASP8AP2 expres-
sion were associated with a greater pro-
pensity of leukemic lymphoblasts to

undergo apoptosis. We conclude that
measurement of CASP8AP2 expression
at diagnosis offers a means to identify
patients whose leukemic cells are highly
susceptible to chemotherapy. Therefore,
this gene is a strong candidate for inclu-
sion in gene expression arrays specifi-
cally designed for leukemia diagnosis.

Blood. 2006:108:1050-

©2006 by The American Society of Hematology



An Example (Cont.)

Contemporary chemotherapy of childhood acute lymphoblastic leukemia (ALL)

Remission

Consolidation Continuation

induction
~1-1.5 I
month Day-46
MRD

Minimal Residual Disease/leukemia (MRD) in bone marrow is detected by flow
cytometry or PCR. Sensitivity of flow is 1/10,000 (0.01%). The flow is extremely

specific.

Clinical MRD Positive (Negative): > 0.01% (< 0.01%)
This is the phenotype of interest: represents the sensitivity/resistance of the leukemia

to the given chemotherapy in vivo.
Dichotomized MRD level (MRD+ vs. MRD-)



An Example (Cont.)

«  Want to find genes associated with /n vivo sensitivity/resistance to
the given chemotherapy as represented by the Day-46 MRD status:
positive vs. negative (< 0.01%)

* Genome-wide gene differential expression analysis

« Gene (MRNA) expression in leukemia blasts at diagnosis
Affymetrix U133A GeneChip®: 22,200+ features (probe sets)

Initial Analysis:

* Probeset-by-probeset test for differential expression between the
two MRD status by the rank-sum (Wilcoxon) test

 Declare statistically significant differential expression by the Ip
criterion for massive multiple tests (Cheng et al. 2004)



An Example (Cont.)

« At a=0.003997 significance level, 223 probe sets were declared as
signiflican’rly differentially expressed between Day 46 MRD+ and MRD-
samples

Questions:

* | Are there "co-differentially-expressed” genes that did not make to
the 0.003997 cut?

— Co-expressed genes may be biologically related
Supervised Sequential Clustering Algorithm

« How to do a validation?

— An independent set of 99 samFles from earlier trials, incomplete
MRD data but high-quality follow-up (outcome) data
— Well known that MRD is very prognostic
(Coustan-Smith et al. 2000, Blood; 2002 Blood; 2004 Leukemia)

— Use these 99 samples and their failure (hematological relapse)
time to perform “validation” (assurance assessment) - to be
detailed later



The Clustering Algorithm

Step 1: Gene-by-gene screening; obtain a P value for each gene
Step 2: Sort the genes by their P values in increasing order;
Step 3: Select a number (V) of top genes by a criterion
Step 4: X4,...,X,,: the expression vectors
X7, ..., X} the expression vectors of the IV selected top genes ordered by P values
po: a specified correlation (similarity) threshold
nc current number of clusters

SET nc=10
—REPEAT for each X (j=1,...N)
IF X7 is already in a cluster THEN skip ELSE
—>REPEAT for each X; (i=1,...,m)
IF X; is already in a cluster THEN skip ELSE
COMPUTE p(X7, X;)
IF p(X7, X;) > po THEN put X; into cluster nc (the current cluster)
— END
nc=nc—+1
— END




Back to the Example

« Used the 223 probesets as leads to generate clusters of
probesets/genes whose expressions are highly correlated

— Supervised sequential clustering algorithm
— Similarity measure p: rank correlation (py= 0.8)

« 188 clusters

Size 1 2 3 4 5 6 10 11 13
Num 162 11 4 4 3 1 1 1 1

All together containing 267 probesets



Back to the Example (Cont.)

« 223 probesets were declared as "significant” at a=0.003997

Questions:

* Are there "co-differentially-expressed” probesets/genes that did not
make to the 0.003997 cut?

— Co-expressed genes may be biologically related

« | How to do a "“validation"?

— An independent set of 99 samrles from earlier trials, incomplete
MRD data but high-quality follow-up (outcome) data

— Well known that MRD is very prognostic
(Coustan-Smith et al. 2000, Blood; 2002 Blood; 2004 Leukemia)

— Use these 99 samples and their failure (hematological relapse)
time to perform validation

Validation inference for the identified co-expression clusters
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Validation Inference Using the Validation Dataset

Step 1: Gene-by-gene screening on the validation set; obtain a P value for each gene
Step 2: Sort the genes by their P values in increasing order;
Step 3:

Cr ={Xj,,..., Xjy, }: the kth cluster; N genes

DI = {D}I, . .,DJTNk }: direction of associaiton (diff. expr.) on “training” set

D = —1, 1: e.g., sign of correlation (regression) coefficient or difference of mean (median)

Ri={R],.. .,R}/Nk }: Ranks on the validation set

D, ={Dy,.. .,vak }: direction of associaiton (diff. expr.) on “validation” set

\%4
The cluster rank score S, = — Z;V:kl I(Dny > 0) log <,fi1>

Step 4: Test the null hypothesis that I(DJ-TD;/ > () are i.i.d. Bernoulli(0.5) and that the
unitized ranks (Ry /(m+1)’s) with I (D].TD;-/ > (0) = 1 come from a homogeneous point process
on [0, 1]; or equivalently, given M = Z;\fz’”l I(DJTD;/ > 0), such unitized ranks are i.i.d. U(0,1).
Under this null hypothesis, the distribution of Si has the cdf

07 <0
0.5V +Z§V:'“1 b(j; Nk, 0.5)G(x;7,1) x>0
where b(-;n, ) is the Binomial(n,7) pmf and G(+; a, () is the Gamma(a, () cdf.
One-sided P value P =1 — F(Sg).




Back to the Example (Cont.)

An independent set of 99 samples from earlier trials, incomplete
MRD data but high-quality outcome data

Well known that MRD is very prognostic
(Coustan—Smith et al. 2000, Blood; 2002 Blood; 2004 Leukemia)

Use these 99 samples and their failure (hematological relapse) time
to perform validation

Perform probeset-by-probeset test for association with failure time
using a Cox-type regression model; obtain model coefficient P
values

Sort the probesets by the above P values

Carry out the validation inference on the gene co-expression
clusters as described



Back to the Example (Cont.)

| #65: P*=0.0003 /

| Bonferroni #70: P*=0.0751
adjustment for

Bonf. adj.
_ lért sts ‘
| I‘ “HHH“H‘ Il I|‘||‘H‘H‘h‘llll”hm‘H M ‘ I|II|||‘|I‘I‘I|H|‘H|I‘IlmHIIII|I|“ ||| ||H||‘|I‘||‘|||‘H|H|In

100
Cluster #



Questions?



External Validation of Genomic
Prognhostic Predictors

Test set
. « . ——————
Discovery/training set
1. Select genes according to a l
. g . - Evaluate
specific statistical procedure Class predictive value
(testing association between 1 Outcome-class by means of
gene expression and outcome. preeleiien Kaplan—Meier
analysis
2. Bu_lld a classifier; further ldentification 3. Use of
filter/select genes for of outcome- I outcome-
class — class

predictor

the classification model
predictor

10-Fold
Cross-
validation




External Validation of Genomic
Prognhostic Predictors

e External validation: study design?
* Assess the predictor’s accuracy in prospective clinical trials

— A predictor working by itself
— A predictor that potentially improves existing clinical classification

e Similar to a phase-lll clinical trial ?
— Population (treatment and patient cohort)
— Expected accuracy (clinically useful; estimation from discovery data)
— Power/probability of achieving the expected accuracy
— Sample size required

— Stratified randomization: make sure the distribution of treatments is
the same across the predicted good vs. bad prognosis.

— Evaluation of clinical value: correlation/association of prediction with
prospectively observed treatment response/outcome; prediction
accuracy




Genomic Markers in Cancer Trials

The Duke University fallout: To make a ~5-year long story short

— Scientifically flawed and problematic genomic classifiers validated with
corrupted validation data lead to three unethical cancer trials that may
have put patients at undue risk of over- or under-treatment

Duke University investigators:
Anil Potti and Joseph Nevins
Biostatisticians who discovered flaws and problems in Duke studies:
Keith Baggerly, Kevin Coombes
M. D. Anderson Cancer Center, Houston, TX
US Federal agencies eventually involved:
National Cancer Institute (NCI)
Food and Drug Administration (FDA)

Institute of Medicine (IOM) Committee on constructing guidelines
for clinical trials using risk/prognostic/response classifiers based on
genomic “signatures” (e.g. gene/mRNA expression profiles)




Genomic Markers in Cancer Trials

* Forensic Bioinformatics:

* Baggerly and Coombes (2010) Deriving chemosensitivity
from cell lines: Forensic bioinformatics and reproducible
research in high-throughput biology. Annals of Applied
Statistics 3, 1309-1334



Genomic Markers in Cancer Trials

e Some materials from Cancer Letter and IOM website:

Cancer Letter:
http://www.cancerletter.com/search?searchtext=Potti

IOM: Baggerly’s presentation
http://www.iom.edu/~/media/Files/Activity%20Files/Research/OmicsBasedTests/
baggerly iom11.pdf

IOM: Lisa McShane’s (NCI) presentation
http://www.iom.edu/~/media/Files/Activity%20Files/Research/OmicsBasedTests/PAF
%20Document%2021.pdf

IOM: Nevins’ presentation

http://www.iom.edu/~/media/Files/Activity%20Files/Research/OmicsBasedTests/
Meeting-2-March-2011/Nevins.pdf




Genomic Markers in Cancer Trials

e Lessons: Dr. Nevins
Lessons Learned and Questions

 Importance of an infrastructure for collecting
samples and generating data even in early
observational studies

— Data and samples for validation are the limiting
resources in further developing and validating
biomarkers

— Critical to develop high quality data to facilitate the
goal of further development and validation

— An opportunity for this committee to establish
guidelines and standards to best achieve this goal?




Genomic Markers in Cancer Trials

* Issues: Dr. Baggerly

Barriers we Encountered 1/4 (Data)

Data were never clearly provided.
Data were never clearly identified.
Clinical data were not supplied.
Data processing was not described.
Data changed over time.

There was no point at which the data were locked down
(frozen) with a clear record of provenance.




Genomic Markers in Cancer Trials

* Issues: Dr. Baggerly
Barriers we Encountered 2/4 (Questions)

Specific questions were unanswered.
Specific algorithms were not supplied.
Worked examples were not supplied.

Specific and documented objections were countered with
assertions without evidence.

Authors were never required to substantiate their claims,
(a) to us,

(b) to the journals, or

(c) to Duke’s internal review.




Genomic Markers in Cancer Trials

* Issues: Dr. Baggerly

Barriers we Encountered 3/4 (Duke Review)

The Duke reviewers didn’t verify provenance.
The Duke report wasn'’t published.
The Duke data weren’t released.

Members of the Duke administration and IRB withheld
iInformation from the reviewers.

The review was neither complete nor transparent.



Genomic Markers in Cancer Trials

* Issues: Dr. Baggerly

Barriers we Encountered 4/4 (Appeals)

Questions posed by the ORI:

can you prove fraud?

can you prove patient harm?

This is what was required before they could get involved.

How long should we fight?
What was the NCI doing?

Where could we have gone next?




Genomic Markers in Cancer Trials

* What’s Needed: Dr. Baggerly
What are Our Recommendations?

We’ve outlined some in recent notes: Nature letter, Clin
Chem editorial, ENAR notes

We need data.

We need metadata (clinical information, run order, design
information).

We need evidence of provenance.

We need the code (MAQC II, NCI experience).

We need auditability before trials begin (Duke TMQF docs).

We need reproducibility.



Genomic Markers in Cancer Trials

* What’s Needed: Dr. Baggerly
How Do We Get There?

Investigators need to think of reproducibility as a goal from
the outset.

Journals need to ask (and check) for code and data
deposition (and be prepared to host code and clinical data).

Agencies need to provide data repositories. They need to
check for data and code availability at renewal time. They
need to budget for reproducibility audits.

Institutions need to help with training and infrastructure.




Genomic Markers in Cancer Trials
* |ssues and What’s Needed: Dr. McShane

Reflection on NCl’s experiences with the Duke genomic predictors identifies several issues to be

considered as the committee begins its deliberations. Investigators conducting studies using

omics technologies face many .challenges. Frequently investigators must acquire additional

expertise themselves or find collaborators with the relevant expertise to address these
challenges that include handling high volumes of data and use of new and complex
bioinformatic, computational and statistical tools. Massive amounts of data are publicly
available, and data analysis software is often freely shared. Errors can be introduced in data
handling, and poorly documented data can be misinterpreted. Computer software might be
“research-grade” and highly complex and can be misunderstood or used inappropriately. There

has to be a level of trust in the competence, carefulness, and integrity with which individual

members of the research team carry out their responsibilities because it is a rare individual who

possesses all of the required types of expertise to carefully monitor and fully understand all

aspects of a project.



Genomic Markers in Cancer Trials
* |ssues and What’s Needed: Dr. McShane

Sometimes the glamour of the technology or the sheer volume of omics data seem to make

investigators forget basic scientific principles. In addition, mistakes or other unfortunate events

can occur, and their occurrence is harder to detect when the data sets are bigger and the data
and analysis methods are more complex. If we are going to move clinical tests based on omics
technologies into clinical trials where they will have an impact on patient treatment and

outcome, we need to instill more rigor into the development and validation process. When we

conduct clinical trials of new therapeutics, we would not accept situations in which data
sources could not be verified or trusted, drug formulations were not clearly specified or
documented, and drug delivery mechanisms only delivered the right dose 75% of the time. We
don’t assume that a drug that has beén studied in ovarian cancer ohly would automatically
work in lung cancer. We have long understood the valuable role that blinding can play and the
importance of pre-specified analysis plans in therapy trials. There are many common sense
principles that could be applied but have not been consistently applied in the development of

omics-based tests.
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