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1. INTRODUCTION and MOTIVATION

2. PROPOSED METHOD

• Random Forests

• Classification and Regression Trees

3. SIMULATED DATA
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SETTING: RANDOMIZED CLINICAL TRIAL

• Two treatment groups

• Binary outcome

– Efficacy

– Toxicity

• Lots of baseline covariates

– Range 5 to 100

• Trial is already completed, small or marginal overall effect
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GOAL

• Find subgroup of patients with enhanced treatment

effect, if it exists

• Issues

– What do you mean by enhanced?

– Desire subgroup to be based on a small number of

covariates

– What is the strategy for finding the subgroup

– Can you provide honest estimates of how good the

subgroup is.
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SEARCHING FOR SUBGROUPS IN RANDOMIZED

CLINICAL TRIAL DATA IS A STATISTICAL NO-NO

• Data dredging

• Mining the data

• Overfitting the data

• Look hard enough you will find something

• Sample sizes tend not to be large enough to find

subgroups
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Large literature on dangers of subgroup analysis

• Pocock et al 2002

• Rothwell et al 2005

• Lagakos 2009

• Brookes et al 2001, 2004

• Cui et al 2002

• Yusuf et al 1991

• Assman et al 2000

• Examples of people finding sign of the zodaic being

important (Peto et al 1995)

• Message: use extreme caution in interpreting subgroups
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Consensus opinion: Need a predefined plan for subgroup

analysis

• Interpretation 1. Predefine the subgroups you are going

to look at

• Interpretation 2. Predefine the strategy for searching for

subgroups
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A Clinicostatistical Tragedy (Feinstein 1998)

• Believes there is a patho-physiology reason for existence

of categories

• Believes statistical doctrines have become too dominant

• ”Potential tragedy now is what may seem to be good

statistics will be bad science”
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Need for validation

• External validation: Ideally find subgroup in one trial,

validate in other trials

• Internal validation: Try to give honest estimate of quality

of subgroup using the same dataset
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Notation

• Y = outcome, binary

• T = treatment group, binary

• X1, ...,Xp baseline covariates

• P (Y = 1|T,X)

• A subgroup (A) is a region of the design space

– eg A = {X1 > 3}

– eg A = {X1 > 3 and X7 < 6)}

– eg A = {2X1 + 3X4 < 2}
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• Artificial data

– 1000 observations

– 15 X’s

– Generated from

logit(P (Y = 1)) = −1 + 0.5∗X1 + 0.5∗X2 − 0.5∗X7 +

0.1∗T + 0.5∗X∗

2X7 + 0.95∗TI(X ∈ A)

– A = {X1 > 0,X2 < 0}, 25% of observations

– Treatment group response rate = 0.408

– Control group response rate = 0.290

11



−3 −2 −1 0 1 2 3

−4
−2

0
2

4

Scatterplot for controls

X1

X
2

Responders
Non−responders

12



−2 0 2 4

−3
−2

−1
0

1
2

3

Scatterplot for treated individuals

X1

X
2

Responders
Non−responders

13



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response rate by X1

X1

R
es

po
ns

e 
ra

te

(−Inf,−1.5] (−1.5,−0.5] (−0.5,0.5] (0.5,1.5] (1.5, Inf]

Treated
Controls

14



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Response rate by X2

X2

R
es

po
ns

e 
ra

te

(−Inf,−1.5] (−1.5,−0.5] (−0.5,0.5] (0.5,1.5] (1.5, Inf]

Treated
Controls

15



Enhanced treatment effect: no unique definition

• Difference in absolute risk,

P (Y = 1|T = 1,X) − P (Y = 1|T = 0,X)

• Relative risk, P (Y = 1|T = 1,X)/P (Y = 1|T = 0,X)

• Difference in log-odds,

logit(P (Y = 1|T = 1,X)) − logit(P (Y = 1|T = 0,X))
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• Simple model

– Treatment effect

– X1 is prognostic

– No interaction

– logit(P (Y = 1|T,X1)) = −1 + T + X1
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Interactions in statistical models

• Main Effects Model

– logit(P (Y = 1|T,X)) = α + βT + γ1X1 + γ2X2

– Note, no interaction on logit scale may have

interaction on absolute risk scale

• Main Effects + Interaction

– logit(P (Y = 1|T,X)) = α+βT + γ1X1 + γ2X2 + δTX1

– logit(P (Y = 1|T,X)) =

α + βT + γ1X1 + γ2X2 + δTI(X ∈ A)

• Need large sample sizes to find interactions
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Naive method: Forward stepwise logistic regression

• Include

– Main effects for T and X’s

– Interactions Xj ∗ Xk

– Interactions T ∗ Xj

– Interactions T ∗ Xj ∗ Xk

• Estimate P̂1i = P (Yi = 1|Ti = 1,Xi) and

P̂0i = P (Yi = 1|Ti = 0,Xi) for each person i.

• New variable Zi = P̂1i − P̂0i is then created,

• Subjects i in group A if Zi > c (c=cutoff, say 0.15)
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Table 1: Logistic Regression Results

Coefficients Estimate SE p-value

X1 0.27 0.11 0.011

X2 0.32 0.08 <0.0001

X7 -0.68 0.11 <0.0001

X14 -0.14 0.07 0.045

X2 : X7 0.49 0.08 <0.0001

T 0.51 0.15 0.001

X1 : T 0.29 0.15 0.052

X7 : T 0.24 0.15 0.117
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• X-by-T interaction found

• Region Â estimated as Ẑi > 0.168
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Table 2: Number of subjects in 4 cells (Logit)

Â not Â

Treatment 110 390 500

Control 99 401 500

Overall 209 791 1000
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Table 3: Response rate in 4 cells (Logit)

Treatment Control

Â 0.518 0.333

not Â 0.377 0.279

Overall 0.408 0.290
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Table 4: How close is Â to A (Logit)

Â not Â

A 57 177 234

not A 152 614 766

Overall 209 791 1000

• Sensitivity = 0.24

• Specificity = 0.80

• Positive Predictive Value = 0.27

• Negative Predictive Value = 0.78
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Virtual Twins method

• For each person think about outcome if they got

treatment and outcome if they got placebo

• Two steps

– Step 1. Use Random Forests (RF) on all the data

– Step 2. Run output from RF down a regression tree

to find region A
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Random Forests: A type of non-parametric regression

• A statistical learning algorithm for estimating function

f(.) in the model P (Y = 1) = f(T,X1, ..,Xp)

• An ensemble method combining 250 trees

– Combine many simple trees

– Uses Bootstrap samples

– Uses randon subsets of covariates at each split

– Combine 250 predictions

• A black box

– Input, values of T and X’s

– Output, estimate of P (Y = 1|T,X)
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Step 1.

• Apply Random Forests to all the data

– Covariates X, T, X*I(T=0), X*I(T=1)

– Produces black box predictor

• For each subject apply predictor twice

– Once to (T = 1,X1i, ...,Xpi)

– Once to (T = 0,X1i, ...,Xpi)

– Gives P̂1i = P (Yi = 1|Ti = 1,Xi) and

P̂0i = P (Yi = 1|Ti = 0,Xi)

• Form Zi = P̂1i − P̂0i

• A measure of the treatment effect for subject i
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Histogram of difference in estimated response probabilities
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Step 2. Regression Trees

• Find small number of variables that are most associated

with Zi

• Estimate regression tree for Zi with covariates X1i, ...,Xpi

• The result, a small number of X’s with cutpoints
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Virtual twins tree

x1< 0.114
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Â classification

Table 5: Number of subjects in 4 cells (VT)

Â not Â

Treatment 175 325 500

Control 159 341 500

Overall 334 666 1000
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Table 6: Response rate in 4 cells (VT)

Treatment Control

Â 0.537 0.277

not Â 0.338 0.296

Overall 0.408 0.290
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Properties of subgroup

• How big is Â?

• What X’s does it depend on

• Quantify magnitude of enhanced treatment effect

• If know true A

– Are we finding the correct X’s

– How close is Â to true A

– Sensitivity, Specificity

– Positive Predictive Value, Negative Predictive Value
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Table 7: How close is Â to A (VT)

Â not Â

A 159 75 234

not A 175 591 766

Overall 334 666 1000

• Sensitivity = 0.68

• Specificity = 0.77

• Positive Predictive Value = 0.48

• Negative Predictive Value = 0.89
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Metrics for enhanced treatment effects

Q(Â) = (P (Y = 1|T = 1,X ∈ Â) − P (Y = 1|T = 0,X ∈ Â))

−(P (Y = 1|T = 1) − P (Y = 1|T = 0))

Table 8: Response rate in 4 cells (VT)

Treatment Control

Â 0.537 0.277

not Â 0.338 0.296

Overall 0.408 0.290

• Q̂(Â)V T = (0.537-0.277)-(0.408-0.290)=0.142
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Table 9: Response rate in 4 cells (Logit)

Treatment Control

Â 0.518 0.333

not Â 0.377 0.279

Overall 0.408 0.290

• Q̂(Â)Logit = (0.518-0.333) - (0.408-0.290) = 0.067
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• Notation

– Q(Â) = true value of Q for Â

– Q̂(Â) = estimate of Q for Â

– Want estimates to have low bias and small variability

(small SE)
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Resubstitution estimates

• Q̂(Â)V T = 0.142

• Q̂(Â)Logit = 0.067

• Almost certainly optimistically biased estimates

• Need honest estimate of Q(Â)

– What would Q(Â) be with this Â in the next very

large trial
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Methods of estimating Q(Â)

• Resubstitution method

• Simulate new data

• Cross-validation of P̂1i and P̂0i.

• Full Cross-validation
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Simulate new data

• Simulate new data, that ”looks like” original data, but is

”independent”

• Generate binary Yi using either P̂1i or P̂0i.

• if Ti = 1 then Y ∗

i ∼ Bernoulli(P̂1i)

• if Ti = 0 then Y ∗

i ∼ Bernoulli(P̂0i)

• Calculate Q̂(Â) from these new data

• Repeat many times and average

• Q̂(Â)V T = 0.095, Q̂(Â)Logit = 0.103
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Cross-validation of P̂1i and P̂0i.

• Same as Simulate New Data, except P̂1i and P̂0i are

derived after cross-validation

• Take 9/10 of data, run Random Forest (or Logit model

with forward selection), predict for left out 1/10

• Repeat 10 times

• Q̂(Â)V T = 0.124, Q̂(Â)Logit = 0.081
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Full Cross-validation

• Take 9/10 of data

• Find region Âk

• Find Q̂(Âk) for left out 1/10

• Repeat 10 times

• Combine 10 separate Q̂(Âk) to final Q̂(Â)

• Q̂(Â)V T = 0.089, Q̂(Â)Logit = −0.071
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Table 10: Summary of estimates of Q(Â)

Estimation Method Virtual Twins Logit

Resubstitution 0.142 0.067

Simulate new data 0.095 0.103

Cross-validation of P̂1i and P̂0i 0.124 0.081

Full Cross-validation 0.089 -0.071

True value of Q(Â) 0.031 -0.008

True value of Q(A) 0.133 0.133
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Sampling variability of Q̂(Â)

• Also desirable to attach standard errors to Q̂(Â)

• We propose the following:

1. Simulate many datasets using P̂1i and P̂0i from

random forest/logistic method

2. For each data set, estimate a new Â and calculate

Q̂(Â)

3. Estimated standard error equals the standard

deviation of these Q̂(Â)
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Table 11: Standard errors for Q̂(Â)

Virtual Twins Logit

Method Est. SE Est. SE

Resubstitution 0.142 0.094 0.067 0.072

Sim. new data 0.095 0.055 0.103 0.077
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Null distribution of Q̂(Â) and p-values

• Null distribution ≡ no region of enhanced treatment

effect

• Null should allow possibility of main effects for X and T ,

but with no interaction

• We propose the following:

1. Define Vi = logit(P̂1i) − logit(P̂0i) and V = 1
n

∑
Vi

2. Define P̂N
1i = expit( logit(P̂1i)+logit(P̂0i)

2 + V
2 ), and

P̂N
0i = expit( logit(P̂1i)+logit(P̂0i)

2 − V
2 )

3. Simulate many datasets using P̂N
1i and P̂N

0i
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4. For each data set, first estimate Â and calculate Q̂(Â)

5. P-value is the fraction of these Q̂(Â) that are larger

than the observed Q̂(Â)

6. If original Â is empty, take p-value to be 0.5.
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Table 12: P-values for Q̂(Â)

Method Virtual Twins Logit

Resubstitution 0.335 0.085

Simulate new data 0.295 0.110
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Simulation study

• Generate multiple datasets from

logit(P (Y = 1|T,X) = α + βT + γh(X) + θTI(X ∈ A)

• A is a known region in the design space defined by a

small number of X’s

• Possible factors to consider

– sample size, number of X’s, correlation between X’s,

– size of true A, number of X’s that determine true A,

strength of enhanced treatment effect
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Properties of subgroup

• Simulations (know true A)

– Are we finding the correct X’s

– How big is Â?

– How close is Â to true A

– Sensitivity, Specificity

– Positive Predictive Value, Negative Predictive Value

– Accuracy of estimates of Q(Â)
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• Used model:

logit(P (Y = 1)) =

−1+0.5X1+0.5X2−0.5X7+0.1T+0.5X2X7+θTI{X ∈ A}

• 100 datasets generated

• For each, n = 1000
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Table 13: Selected X’s, θ = 0.75, A = {X1 > 0,X2 < 0}

Logit Virtual Twins

Mean (# Unique X’s) 0.98 3.45

SD (# Unique X’s) 0.99 0.91

Pct. Found X1 (int) 27 87

Pct. Found X2 (int) 31 72

Pct. Found X7 (main) 15 59

Pct. Found X3 (null) 0 13

Pct. Found X1 at top of tree 71

Pct. Found X1 top 2 of tree 62

Pct. Found no int/tree 39 0
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Table 14: Compare A to Â, θ = 0.75, A = {X1 > 0,X2 < 0}

Logit Virtual Twins

percent Â empty 39 7

size of Â (median): 189 204

Sensitivity 0.29 0.44

Specificity 0.89 0.87

PPV 0.29 0.50

NPV 0.80 0.83

AUC 0.55 0.75
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Table 15: Q Estimates, θ = 0.75, A = {X1 > 0,X2 < 0}

Logit Virtual Twins

Mean SD Mean SD

Q(A) 0.11 0.11

Q(Â) 0.027 0.03 0.050 0.042

Q̂(Â) :

Resub 0.055 0.061 0.150 0.077

SimNewDat 0.061 0.052 0.104 0.048

Cr.Val 0.049 0.047 0.132 0.064

FullCr.Val -0.016 0.107 0.110 0.088
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Table 16: Selected X’s, Null case

Logit Virtual Twins

Mean (# Unique X’s) 0.18 3.34

SD (# Unique X’s) 0.58 1.13

Pct. Found X1 (int) 6 72

Pct. Found X2 (int) 6 62

Pct. Found X7 (main) 2 70

Pct. Found X3 (null) 0 9

Pct. Found no tree/int 90 0
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Table 17: Properties of Â, Null case

Logit Virtual Twins

percent Â empty 89 16

Specificity 0.97 0.84
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Table 18: Q Estimates, Null case

Logit Virtual Twins

Mean SD Mean SD

Q(A) 0.003 0.003

Q(Â) 0.001 0.007 0.005 0.036

Q̂(Â) :

Resub 0.011 0.033 0.128 0.096

SimNewDat 0.012 0.034 0.088 0.054

Cr.Val 0.008 0.024 0.112 0.075

FullCr.Val -0.018 0.145 0.092 0.106
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Lots of possibilities for adaptation and extension

• Replace Random Forest with other predictor

• Generalize to high dimensional data (genomic/genetic)

• Build in to the study design

• Vary thresholds to make smaller or larger Â

• Use different metrics for Q(A)

• Use different definitions of Zi
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