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Motivation

Challenges

o What estimator to use?

o General Approaches
o Restricted MLE

o Isotonic regression
o Pooled adjacent violators algorithm

e Bayesian: Impose restriction through prior distribution

o Inference: Confidence intervals
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Motivation

Motivation

(]

New cancer treatment. Drug 3 levels, di < ds < d3
Possible toxic side effects
o p; = P(Toxicity|d;)
o Know p; <ps < p3
o Utilize this information in the analysis
e Data
o Y; ~ Binomial(ny,p1)
o Y5 ~ Binomial(nz,p2)
o Y3 ~ Binomial(ns,p3)

(]

Want p1 < p2 < p3

o Why

o Gain efficiency, e.g. n; = 15,n, =3,n3 =14
o Consistent with truth
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Binomial: Two groups

Restricted MLE for two binomial probabilities

Y; ~ Binomial(n;,p;)
P1 < p2
restricted MLE is given by

o P1p, = min{dy/n1, (d1 +d2)/(n1 +n2)}
e Po, = Max {dz/ng, (d1 + d2)/(ﬂ1 + ng)}

Construction of confidence intervals is difficult if p; is close to po

Inference is difficult near or on boundary of parameter space
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Binomial: Two groups

Simulation results: Biases and Efficiency

Table: Restricted MLE and the unrestricted MLE ( n; = 50, ny = 100).

Restricted MLE

D1 P2
bias

p1=0.5,p2=0.5 -0.024 0.010
p1=0.5,p2 = 0.52 -0.017 0.009
pL=05,p>=0.7 0.001 0.001
p1=0.5,p2=0.9 -0.001 -0.001

Efficiency: Var(Restricted)/Var(Unrestricted)
p1=0.5,p2=0.5 0.562 0.784
p1=0.5,ps = 0.52 0.620 0.818
p1=0.5,p2 =0.7 0.993 0.996

p1=0.5,p2=0.9 1 1
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Binomial: Two groups

@ Theorem 0: CLT. Suppose that p; < ps. Then
V5 (Bjn — pj) —a N(0,p;(1 = pj)).

@ Theorem 1. Suppose that p; = py, lim,,_,oc n2/n1 = ¢, and
0 < ¢ < oo. Then

R ) 1 c
Vvn1(P1n — p1) —q min {W1, . Wi + Ve Wz} ,

+c 1+e¢
and
. c c
V/n2(Pan — p2) —q max {Wz, 1\£CW1 +3 - CWQ} ,

as n — oo, where W7 and Wy are independent and identically
distributed as N(0,p1(1 — p1)).

o Asymptotic results not useful or accurate for small n
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Binomial: Two groups

e Theorem 2. Suppose that po = p; + A/ /n1, lim, o n2/n1 = ¢,
and 0 < ¢ < co. We have, when p; = ps,
1 VG

n1(Pin — in ( W/ Wi W-
11 (Pin pl)—>dmln< 1,1+ +1+ 2 1—|—c )7

and

. Ve Ve
V2 (Pan — p2) —4q max <W2,1Jr Wi + 1+ Wo 1+CA ,

as n — oo, where Wi and W5 are independent with distribution
N(Ovpl(]' - pl))
o Confidence intervals don’t have good coverage rates

O Constrained estimation May, 2010 8 / 43



Binomial: Two groups

Bootstrap Confidence Intervals

Group 1, ny observations, (0,1,1,0,1,.....,0)
e Group 2, ng observations, (1,1,0,0,0,.....,1)
@ Resample within groups

o Bootstrap percentile confidence intervals

o Coverage rates good at moderate sample sizes
o Coverage rates OK at small sample sizes
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Binomial: Two groups

Table: Simulation: Coverage rates of 95% confidence intervals

n1 = 50, nz = 100

p1 = 0.5 p2 = 0.5 p2 = 0.52 p2 = 0.7 p2 = 0.9
Restricted MLE D1 0.94 0.93 0.90 0.93
Theorem 2 D2 0.94 0.94 0.96 1.00
percentile bootstrap CI D1 0.94 0.95 0.96 0.96
based on restricted MLE  p2 0.95 0.95 0.96 0.96
p1 =0.8 p2 =08 p2=082 p2=0.85 p2=0.9
Restricted MLE P1 0.96 0.92 0.88 0.86
Theorem 2 D2 0.95 0.96 0.96 0.97
percentile bootstrap CI P1 0.95 0.96 0.97 0.95
based on restricted MLE  p2 0.94 0.94 0.95 0.95
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Survival functions

Estimation of Survival Functions
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Survival functions

Stochastic Ordering

Survival Function
S(t) = Pr(T > t)

Definition of Stochastic Ordering:
Ty <g Ty if Pr(Ty >t) < Pr(Ty, >t) fort € R

One-sample Case: Estimation of S;(¢)
e Bounded Below: S;(t) > Sa(t), where Sa(t) is known;
e Bounded Above: S;(t) < Sa(t), where Sa(t) is known.

Two-sample Case:
e Si(t) > Sa(t), S1(t) and Sa(t) are unknown.

O Constrained estimation May, 2010 12 / 43



Survival functions

Motivation - Survival Analysis in Cancer Study
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Figure: Kaplan-Meier plots of larynx cancer patients(Kardaun, 1983)
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Survival functions

Motivation - Constrained Estimator
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Figure: Constrained NPMLE
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Survival functions

Motivation - Cont.

Wide Range of Applications.
o biomedical research; @ economics;

@ engineering sciences; o software reliability.

Estimators from separate samples may not satisfy constraint
e random variation;

o small sample size;

Constrained Estimator
o Potential to gain efficiency

@ Realistic estimate
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Survival functions

Literature

C-NPMLE: Two-sample case without censoring.
Brunk et al. (1966).

C-NPMLE: One- & two-sample with right censoring.
Dykstra (1982) - ( Correct in Bounded Below Case )

Some possible outcomes were not properly handled.
May not be C-NPMLE in bounded above and two-sample case.

Alternative: One-sample case.
Puri and Singh (1992); Rojo and Ma (1996).

Alternative: Two-sample case.

Lo (1987) - swapping estimates if violated,
Rojo (2004) - averaging estimates if violated;
Park et al (2010) - pointwise constrained MLE.
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Survival functions

One sample, No constraints

NPMLE: Kaplan-Meier estimator.

Product limit estimator.
Distribution is discrete. Jumps at the event times.

h; = log[S(t;)/S(ti-1)]
Discrete hazard = 1 — exp(h;)

S(ti) = exp[Xj_; hy]

d; = number of events at time ¢;

e 6 6 o o

n; = number at risk at time ¢;

The NPMLE of S(-) is given by

d;
" log(l— —) d; >0
B — og( ni) >

0 di=0
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Method: One-sample Bounded Above

One-sample Bounded Above
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Method: One-sample Bounded Above

Problem

Data

(Ylia Ali)7 1= 17 N L

A1; = 1 if event occurred or
Ay; = 0 if right censored

Goal
Estimate Si(¢) under Si(t) < Sa(t).

Likelihood
L =TT, [S1(Yai—) — S1(Y1:)]A1Sy (Yoy) =B

Discrete Case:
L =TI}, [S1(aj-1) — Si(aj)]"S1(a;)"

v
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Method: One-sample Bounded Above

Definitions

C-NPMLE

Constrained Nonparametric MLE: nonparametric estimator that
maximizes the likelihood amongst those that satisfy the constraint.
C-NPMLE may not be unique.

MC-NPMLE

Maximum C-NPMLE, which is C-NPMLE that maximizes the
estimate of the survivor function in the class of all C-NPMLE.
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Method: One-sample Bounded Above Theorem

Theorem: Bounded Above

For Si(-) and Sa(-) discrete the MC-NPMLE of Si(-) is given by

dy;
log(1 — L -) dy; >0
nlz—k

min[ Zhgj Zhlj} di; =0

Bli =

and k' = ming<; maxys; min(K~(a, b), n1,), where
(Dykstra 1982: k' = min,<; max;>; K (a,b))
*(a b) = max{0, —K(a,b)} and K~ (a,b) is the solution of

dq
P Jlog(l— o) — > haj = 0.
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Method: One-sample Bounded Above Algorithm

Algorithm: Bounded Above

Q Setig=0,0=1,m = max(i : ny; > 0).

© Let ¢y = minys;, {b: H(ig—1 +1,b,0) > 0}. If no such 4, exists,
set iy = m/ and ky, = 0 and go to step 6, otherwise go to step 3.

Q If dy;, =0 and H(iy—1 + 1,ip, —n1;,) > 0, then set ky = ny;, and
go to step 5, otherwise set ky = —K (iy_1 + 1,4¢) and go to step 4.

Q Let I = mings;, {b:nip > ky and H(ig + 1,b, —k¢) > 0}. If no
such I exists, then go to step 5. Otherwise, set i = I and go to

step 3.
@ Let }Allj = log[l — dlj/(nlj — k:g)],ig_l +1<5<4,,—1
iL _ log[l — dlie/(nu[ — ]{?g)], if k?g < N1,
1ip — 4 ~ ip— 2 .
T, he = S il i ke =y,

@ If iy = m/, stop. Otherwise, set £ = ¢+ 1 and go to step 2.
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Method: One-sample Bounded Above Algorithm

Proof that Algorithm gives MC-NPMLE

(]

Constrained optimization problem

Maximize likelihood subject to some constraints

o Max log(L(hy,..., ht)
e s.t. S1(f) Z Sg(t), hj S 0

Kuhn-Tucker conditions

(]

(]

Lagrange multipliers
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Method: One-sample Bounded Above Example

Example: Bounded Above

Pr(T>t)
0.0 0.2 04 06 0.8 1.0

O

Upper Bound
Kaplan-Meier(-10.65)
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Dykstra(-13.22)
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Extension: continuous cons traint function

One-sample Bounded Above
with Continuous Constraint
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Extension: continuous constraint function Example

Example

Pr(T>t)
0.0 0.2 04 06 0.8 1.0

O

—o— Upper Bound
Kaplan-Meier(-10.65)
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Extension: continuous constraint function Naive Method

Naive Method

“limit approaching”

Use the limit of a discrete function to approach a continuous one;

For example

Choose R evenly spaced times between 0 and max(Y3;) as potential
death times and obtain the limiting estimate of Sy(t) with discrete
method as R goes to infinity;

Drawback

Computationally intensive.
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Extension: continuous constraint function

12 potential event times

Pr(T>t)
0.0 0.2 04 06 0.8 1.0

O
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Extension: continuous constraint function Naive Method

36 potential event times

o
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Extension: continuous constraint function

360 potential event times

Pr(T>t)
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Naive Method
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Extension: continuous constraint function Simple Algorithm

Simple algorithm

Let C;,i =1,--- ,n. be all distinct observed censoring times and let
X, be the time just before observed death time X;.

@ Let X/, i=1,2,--- ,n4 be the distinct ordered set of times from
the union of X;, X;” and Cj;

@ Estimate S (t), which is the MC-NPMLE with potential death
times at X/, i =1, -+, nyor;

@ Let S1(t) = min(S(t), Sa(t)), which is the MC-NPMLE of S (t)
subject to S1(t) < Sa(t) for t > 0.
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Extension: continuous constraint function Simple Algorithm

Simple Algorithm in Example

Pr(T>t)
0.0 0.2 04 06 0.8 1.0

O

—e— Upper Bound
Kaplan—-Meier(-10.65)

- 5,(-13.03)

e @ MC-NPMLE(-13.03)
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Two-sample Case

Two-sample Case
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Two-sample Case Problem

Problem - Two sample case

Data

(YgivAgi)a g = 1’27 1= 11 cr o, Ngs
Ay = 1 if event occurred or

Ag; = 0 if right censored

Goal
Estimate Sy(t), Sa(t) under Sy(t) > Sa(t).

Likelihood
L = T T 5 (Ypem) — S¥yn) 18, (1)~

Discrete Case:

L = [T ATT7[Sg (1) — Sg(a;)] s Sg(az)°s'}

v
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Two-sample Case Theorem

Theorem for two-sample case

The C-NPMLE of S1(-) and the MC-NPMLE of Sy(-) are given by

S1(t) = exp(D_,,<; hi) and Sa(t) = exp(_,. <; ha2i), where

hli = 10g(1 — dh ~
ny; + k*
da;
log(l — A,) dgi >0
« no; — k?
ho; = '

A i—1
min |:0, Z hlj - Z }ALQJ':| dgi =0
7j=1 7j=1

and ki = ming<; Maxp>; min(K;(a, b),nap),
(Dykstra 1982: k' = min,<; max;>; K, (a,b)) where
K (a,b) = max(K2(a,b),0) and Ks(a,b) is the solution of

b dyj b da;j
0 (log(1 — ;47) = S8 (log(1 — 27,

O Constrained estimation May, 2010

33 / 43



Two-sample Case Example

Example - Two sample

Pr(T>t)
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Example - C-NPMLE, Dykstra

Pr(T>t)
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Simulation

Simulation in Two-sample Case
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Simulation

Simulation - Two-sample case

Finite sample property

e MSE = (5(t) — S(t))?; Pointwise criteria

Event distributions and sample sizes
e Si(t) = exp(—t), n1 = 100;
e Sy(t) = exp(—1.2t), ng = 40.

Scenarios
@ Same censoring: S{(t) = 55(t) = exp(—1.5t);

@ Excessive censoring 1: S{(t) = exp(—3t), S5(t) = 1;
@ Excessive censoring 2: S{(t) = 1, S5(t) = exp(—3t).
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Simulation

Simulation - estimators in comparison

@ C-NPMLE from this paper:
© Dykstra (1982)'

© Lo (1987): 8 (1) = max(S}(1), 55 (1))
SE(t) = min(S (¢), S5(1));

@ Rojo (2004): $(t) = max (s (t), 50,
S51(t) = min(MELOS, 55 (4)):

@ Park et al (2010): PC-NPMLE (pointwise C-NPMLE)
SE(t) = Si(t;1), S5 (1) = Sa(t;1)
where Si(t;x) and Sy(t;x) are the MLE
subject to S1(z) > Sa(x) at fixed time z.
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Simulation

Pointwise C-NPMLE

Fix a time z of interest

Find NPMLE S, (t) and S5(t) such that Sy (z) > So(x)
This gives S1(¢) and So(t) at t =

Repeat for all x

(]
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Simulation

Simulation - same censoring distributions

RMSE
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Figure: Same censoring distributions
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Simulation

Simulation - different censoring dist’n
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Figure: Excessive censoring group 1
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Simulation

Simulation - different censoring dist’n
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Figure: Excessive censoring group 2
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Conclusion and Related Problems

Conclusion

@ Developed methods to obtain the C-NPMLE in the one- and
two-sample cases;

Including a correction of Dykstra’s(1982) estimator and
computationally efficient algorithms;

@ Developed a simple method to obtain the MC-NPMLE in the
one-sample situation with a bounded above constraint when the
constraint survivor function is continuous;

© C-NPMLE is better than Dykstra’s estimator;

C-NPMLE and Rojo’s estimator outperform each other at
different situations;
Pointwise C-NPMLE performs better in all cases considered.
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Conclusion and Related Problems

Related Problems

Q@ 3 groups. Si(t) > Sa(t) > S5(t)
© 4 groups. S1(t) > S2(t) > Sa(t) and S1(t) > S3(t) > Sa(t)

© Inference: Confidence Intervals
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