Constrained estimation for binary and survival data

Jeremy M. G. Taylor
Yong Seok Park
John D. Kalbfleisch
Biostatistics, University of Michigan

May, 2010
Outline

- Motivation
- Two Binomial probabilities, $p_1 \leq p_2$
- Survival functions, $S_1(t) \geq S_2(t)$
Challenges

- What estimator to use?
- General Approaches
 - Restricted MLE
 - Isotonic regression
 - Pooled adjacent violators algorithm
 - Bayesian: Impose restriction through prior distribution
- Inference: Confidence intervals
Motivation

- New cancer treatment. Drug 3 levels, $d_1 < d_2 < d_3$
- Possible toxic side effects
 - $p_j = P(\text{Toxicity}|d_j)$
 - Know $p_1 \leq p_2 \leq p_3$
 - Utilize this information in the analysis
- Data
 - $Y_1 \sim \text{Binomial}(n_1, p_1)$
 - $Y_2 \sim \text{Binomial}(n_2, p_2)$
 - $Y_3 \sim \text{Binomial}(n_3, p_3)$
- Want $\hat{p}_1 \leq \hat{p}_2 \leq \hat{p}_3$
- Why
 - Gain efficiency, e.g. $n_1 = 15, n_2 = 3, n_3 = 14$
 - Consistent with truth
Restricted MLE for two binomial probabilities

- $Y_j \sim \text{Binomial}(n_j, p_j)$
- $p_1 \leq p_2$
- restricted MLE is given by
 - $\hat{p}_{1n} = \min \{d_1/n_1, (d_1 + d_2)/(n_1 + n_2)\}$
 - $\hat{p}_{2n} = \max \{d_2/n_2, (d_1 + d_2)/(n_1 + n_2)\}$.
- Construction of confidence intervals is difficult if p_1 is close to p_2
- Inference is difficult near or on boundary of parameter space
Simulation results: Biases and Efficiency

Table: Restricted MLE and the unrestricted MLE (\(n_1 = 50, n_2 = 100\)).

<table>
<thead>
<tr>
<th>p_1 \text{ (bias)} \text{ (Restricted MLE)}</th>
<th>p_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_1 = 0.5, p_2 = 0.5)</td>
<td>-0.024</td>
</tr>
<tr>
<td>(p_1 = 0.5, p_2 = 0.52)</td>
<td>-0.017</td>
</tr>
<tr>
<td>(p_1 = 0.5, p_2 = 0.7)</td>
<td>0.001</td>
</tr>
<tr>
<td>(p_1 = 0.5, p_2 = 0.9)</td>
<td>-0.001</td>
</tr>
</tbody>
</table>

Efficiency: \(\text{Var(Restricted)}/\text{Var(Unrestricted)}\)

<table>
<thead>
<tr>
<th>p_1 \text{ (Efficiency)}</th>
<th>p_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_1 = 0.5, p_2 = 0.5)</td>
<td>0.562</td>
</tr>
<tr>
<td>(p_1 = 0.5, p_2 = 0.52)</td>
<td>0.620</td>
</tr>
<tr>
<td>(p_1 = 0.5, p_2 = 0.7)</td>
<td>0.993</td>
</tr>
<tr>
<td>(p_1 = 0.5, p_2 = 0.9)</td>
<td>1</td>
</tr>
</tbody>
</table>
Theorem 0: CLT. Suppose that \(p_1 < p_2 \). Then
\[
\sqrt{n_j}(\hat{p}_{jn} - p_j) \rightarrow_d N(0, p_j(1 - p_j)).
\]

Theorem 1. Suppose that \(p_1 = p_2 \), \(\lim_{n \to \infty} n_2/n_1 = c \), and \(0 < c < \infty \). Then
\[
\sqrt{n_1}(\hat{p}_{1n} - p_1) \rightarrow_d \min \left\{ W_1, \frac{1}{1 + c} W_1 + \frac{\sqrt{c}}{1 + c} W_2 \right\},
\]

and
\[
\sqrt{n_2}(\hat{p}_{2n} - p_2) \rightarrow_d \max \left\{ W_2, \frac{\sqrt{c}}{1 + c} W_1 + \frac{c}{1 + c} W_2 \right\},
\]

as \(n \to \infty \), where \(W_1 \) and \(W_2 \) are independent and identically distributed as \(N(0, p_1(1 - p_1)) \).

Asymptotic results not useful or accurate for small \(n \).
• **Theorem 2.** Suppose that $p_2 = p_1 + \Delta / \sqrt{n_1}$, $\lim_{n \to \infty} n_2/n_1 = c$, and $0 < c < \infty$. We have, when $p_1 = p_2$,

$$\sqrt{n_1}(\hat{p}_{1n} - p_1) \rightarrow_d \min \left(W_1, \frac{1}{1 + c} W_1 + \frac{\sqrt{c}}{1 + c} W_2 + \frac{c}{1 + c} \Delta \right),$$

and

$$\sqrt{n_2}(\hat{p}_{2n} - p_2) \rightarrow_d \max \left(W_2, \frac{\sqrt{c}}{1 + c} W_1 + \frac{c}{1 + c} W_2 - \frac{\sqrt{c}}{1 + c} \Delta \right),$$

as $n \to \infty$, where W_1 and W_2 are independent with distribution $N(0, p_1(1 - p_1))$.

• Confidence intervals don’t have good coverage rates
Bootstrap Confidence Intervals

- Group 1, n_1 observations, (0,1,1,0,1,.....,0)
- Group 2, n_2 observations, (1,1,0,0,0,.....,1)
- Resample within groups
- Bootstrap percentile confidence intervals
 - Coverage rates good at moderate sample sizes
 - Coverage rates OK at small sample sizes
Table: Simulation: Coverage rates of 95% confidence intervals

\[n_1 = 50, \ n_2 = 100 \]

<table>
<thead>
<tr>
<th></th>
<th>(p_1 = 0.5)</th>
<th>(p_2 = 0.5)</th>
<th>(p_2 = 0.52)</th>
<th>(p_2 = 0.7)</th>
<th>(p_2 = 0.9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted MLE</td>
<td>(p_1)</td>
<td>0.94</td>
<td>0.93</td>
<td>0.90</td>
<td>0.93</td>
</tr>
<tr>
<td>Theorem 2</td>
<td>(p_2)</td>
<td>0.94</td>
<td>0.94</td>
<td>0.96</td>
<td>1.00</td>
</tr>
<tr>
<td>percentile bootstrap CI</td>
<td>(p_1)</td>
<td>0.94</td>
<td>0.95</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>based on restricted MLE</td>
<td>(p_2)</td>
<td>0.95</td>
<td>0.95</td>
<td>0.96</td>
<td>0.96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(p_1 = 0.8)</th>
<th>(p_2 = 0.8)</th>
<th>(p_2 = 0.82)</th>
<th>(p_2 = 0.85)</th>
<th>(p_2 = 0.9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted MLE</td>
<td>(p_1)</td>
<td>0.96</td>
<td>0.92</td>
<td>0.88</td>
<td>0.86</td>
</tr>
<tr>
<td>Theorem 2</td>
<td>(p_2)</td>
<td>0.95</td>
<td>0.96</td>
<td>0.96</td>
<td>0.97</td>
</tr>
<tr>
<td>percentile bootstrap CI</td>
<td>(p_1)</td>
<td>0.95</td>
<td>0.96</td>
<td>0.97</td>
<td>0.95</td>
</tr>
<tr>
<td>based on restricted MLE</td>
<td>(p_2)</td>
<td>0.94</td>
<td>0.94</td>
<td>0.95</td>
<td>0.95</td>
</tr>
</tbody>
</table>
Estimation of Survival Functions
Stochastic Ordering

Survival Function

\[S(t) = Pr(T > t) \]

Definition of Stochastic Ordering:

\[T_1 \leq_{st} T_2 \text{ if } Pr(T_1 > t) \leq Pr(T_2 > t) \text{ for } t \in R \]

One-sample Case: Estimation of \(S_1(t) \)

- Bounded Below: \(S_1(t) \geq S_2(t) \), where \(S_2(t) \) is known;
- Bounded Above: \(S_1(t) \leq S_2(t) \), where \(S_2(t) \) is known.

Two-sample Case:

- \(S_1(t) \geq S_2(t) \), \(S_1(t) \) and \(S_2(t) \) are unknown.
Motivation - Survival Analysis in Cancer Study

Figure: Kaplan-Meier plots of larynx cancer patients (Kardaun, 1983)
Motivation - Constrained Estimator

Figure: Constrained NPMLE
Wide Range of Applications.

- biomedical research;
- engineering sciences;
- economics;
- software reliability.

Estimators from separate samples may not satisfy constraint

- random variation;
- small sample size;

Constrained Estimator

- Potential to gain efficiency
- Realistic estimate
Survival functions

Literature

C-NPMLE: Two-sample case without censoring.
Brunk et al. (1966).

C-NPMLE: One- & two-sample with right censoring.
Dykstra (1982) - \(\langle \) Correct in Bounded Below Case \(\rangle \)
Some possible outcomes were not properly handled.
May not be C-NPMLE in bounded above and two-sample case.

Alternative: One-sample case.
Puri and Singh (1992); Rojo and Ma (1996).

Alternative: Two-sample case.
Lo (1987) - *swapping estimates if violated*;
Rojo (2004) - *averaging estimates if violated*;
One sample, No constraints

NPMLE: Kaplan-Meier estimator.
Product limit estimator.
Distribution is discrete. Jumps at the event times.

- \(h_i = \log\left[S(t_i)/S(t_{i-1}) \right] \)
- Discrete hazard = 1 - \(\exp(h_i) \)
- \(S(t_i) = \exp[\sum_{j=1}^{i} h_j] \)
- \(d_i = \) number of events at time \(t_i \)
- \(n_i = \) number at risk at time \(t_i \)

The NPMLE of \(S(\cdot) \) is given by

\[
\hat{h}_i = \begin{cases}
\log(1 - \frac{d_i}{n_i}) & d_i > 0 \\
0 & d_i = 0
\end{cases}
\]
One-sample Bounded Above
Method: One-sample Bounded Above

Problem

Data

\((Y_{1i}, \Delta_{1i}), \ i = 1, \cdots, n;\)

\(\Delta_{1i} = 1\) if event occurred or
\(\Delta_{1i} = 0\) if right censored

Goal

Estimate \(S_1(t)\) under \(S_1(t) \leq S_2(t)\).

Likelihood

\(L = \prod_{i=1}^{n} [S_1(Y_{1i}) - S_1(Y_{1i})]^{\Delta_{1i}} S_1(Y_{1i})^{1-\Delta_{1i}}\)

Discrete Case:

\(L = \prod_{j=1}^{m} [S_1(a_{j-1}) - S_1(a_{j})]^{d_{1i}} S_1(a_{j})^{c_{1i}}\)
Definitions

C-NPMLE
Constrained Nonparametric MLE: nonparametric estimator that maximizes the likelihood amongst those that satisfy the constraint. C-NPMLE may not be unique.

MC-NPMLE
Maximum C-NPMLE, which is C-NPMLE that maximizes the estimate of the survivor function in the class of all C-NPMLE.
Theorem: Bounded Above

For $S_1(\cdot)$ and $S_2(\cdot)$ discrete the MC-NPMLE of $S_1(\cdot)$ is given by

$$
\hat{h}_{1i} = \begin{cases}
\log(1 - \frac{d_{1i}}{n_{1i} - \hat{k}_i}) & d_{1i} > 0 \\
\min\left[0, \sum_{j=1}^{i} h_{2j} - \sum_{j=1}^{i-1} \hat{h}_{1j}\right] & d_{1i} = 0
\end{cases}
$$

and $\hat{k}_i = \min_{a \leq i} \max_{b \geq i} \min(K^-(a, b), n_{1b})$, where

(Dykstra 1982: $\hat{k}_i = \min_{a \leq i} \max_{b \geq i} K^-(a, b)$

$K^-(a, b) = \max\{0, -K(a, b)\}$ and $K^-(a, b)$ is the solution of

$$
\sum_{j=a}^{b} \log\left(1 - \frac{d_{1j}}{n_{1j} + k}\right) - \sum_{j=a}^{b} h_{2j} = 0.
$$
Algorithm: Bounded Above

1. Set $i_0 = 0$, $\ell = 1$, $m' = \max(i : n_{1i} > 0)$.

2. Let $i_\ell = \min_{b > i_{\ell-1}} \{b : H(i_{\ell-1} + 1, b, 0) > 0\}$. If no such i_ℓ exists, set $i_\ell = m'$ and $k_\ell = 0$ and go to step 6, otherwise go to step 3.

3. If $d_{1i_\ell} = 0$ and $H(i_{\ell-1} + 1, i_\ell, -n_{1i_\ell}) \geq 0$, then set $k_\ell = n_{1i_\ell}$ and go to step 5, otherwise set $k_\ell = -K(i_{\ell-1} + 1, i_\ell)$ and go to step 4.

4. Let $I = \min_{b > i_\ell} \{b : n_{1b} > k_\ell \text{ and } H(i_\ell + 1, b, -k_\ell) > 0\}$. If no such I exists, then go to step 5. Otherwise, set $i_\ell = I$ and go to step 3.

5. Let $\hat{h}_{1j} = \log[1 - d_{1j}/(n_{1j} - k_\ell)], i_{\ell-1} + 1 \leq j \leq i_\ell - 1$

$$\hat{h}_{1i_\ell} = \begin{cases} \log[1 - d_{1i_\ell}/(n_{1i_\ell} - k_\ell)], & \text{if } k_\ell < n_{1i_\ell} \\ \sum_{j=i_{\ell-1}+1}^{i_\ell} \hat{h}_{2j} - \sum_{j=i_{\ell-1}+1}^{i_\ell-1} \hat{h}_{1j}, & \text{if } k_\ell = n_{1i_\ell} \end{cases}$$

6. If $i_\ell = m'$, stop. Otherwise, set $\ell = \ell + 1$ and go to step 2.
Proof that Algorithm gives MC-NPMLE

- Constrained optimization problem
- Maximize likelihood subject to some constraints
 - Max $\log(L(h_1, \ldots, h_k)$
 - s.t. $S_1(t) \geq S_2(t)$, $h_j \leq 0$
- Kuhn-Tucker conditions
- Lagrange multipliers
Example: Bounded Above

The graph illustrates the probability of $T > t$ for different methods. The x-axis represents time (t), and the y-axis represents the probability ($\Pr(T > t)$). The methods compared include:

- Upper Bound
- Kaplan–Meier (-10.65)
- MC–NPMLE (-12.4)
- Dykstra (-13.22)

The graph shows the constrained estimation.
One-sample Bounded Above with Continuous Constraint
Example

Pr(T > t)

Upper Bound
Kaplan–Meier(-10.65)
Naïve Method

“limit approaching”
Use the limit of a discrete function to approach a continuous one;

For example
Choose R evenly spaced times between 0 and $\max(Y_{1i})$ as potential death times and obtain the limiting estimate of $\hat{S}_1(t)$ with discrete method as R goes to infinity;

Drawback
Computationally intensive.
12 potential event times
36 potential event times
360 potential event times
Simple algorithm

Let $C_i, i = 1, \cdots, n_c$ be all distinct observed censoring times and let X_i^- be the time just before observed death time X_i.

1. Let $X_i', i = 1, 2, \cdots, n_{tot}$ be the distinct ordered set of times from the union of X_i, X_i^- and C_i;

2. Estimate $\hat{S}_1(t)$, which is the MC-NPMLE with potential death times at $X_i', i = 1, \cdots, n_{tot}$;

3. Let $\tilde{S}_1(t) = \min(\hat{S}_1(t), S_2(t))$, which is the MC-NPMLE of $S_1(t)$ subject to $S_1(t) \leq S_2(t)$ for $t > 0$.
Simple Algorithm in Example

- **Upper Bound**: The upper bound of the probability distribution.
- **Kaplan–Meier (−10.65)**: The Kaplan–Meier estimator with a value of −10.65.
- **\(\hat{S}_1 (−13.03) \)**: The constrained estimate \(\hat{S}_1 \) with a value of −13.03.
- **MC–NPMLE (−13.03)**: The Monte Carlo–Nonparametric Maximum Likelihood Estimator (NPMLE) with a value of −13.03.
Two-sample Case
Problem - Two sample case

Data

\((Y_{gi}, \Delta_{gi}), g = 1, 2, i = 1, \ldots, n_g;\)
\(\Delta_{gi} = 1\) if event occurred or
\(\Delta_{gi} = 0\) if right censored

Goal

Estimate \(S_1(t), S_2(t)\) under \(S_1(t) \geq S_2(t)\).

Likelihood

\[L = \prod_{g=1}^{2} \prod_{i=1}^{n_g} [S_g(Y_{gi}-) - S_g(Y_{gi})]^{\Delta_{gi}} S_g(Y_{gi})^{1-\Delta_{gi}} \]

Discrete Case:
\[L = \prod_{g=1}^{2} \{\prod_{j=1}^{m} [S_g(a_{j-1}) - S_g(a_{j})]^{d_{gi}} S_g(a_{j})^{c_{gi}}\} \]
Theorem for two-sample case

The C-NPMLE of $S_1(\cdot)$ and the MC-NPMLE of $S_2(\cdot)$ are given by $S_1(t) = \exp(\sum_{a_i \leq t} h_{1i})$ and $S_2(t) = \exp(\sum_{a_i \leq t} h_{2i})$, where

$$\hat{h}_{1i} = \log(1 - \frac{d_{1i}}{n_{1i} + \hat{k}^i})$$

$$\hat{h}_{2i} = \begin{cases}
\log(1 - \frac{d_{2i}}{n_{2i} - \hat{k}^i}) & d_{2i} > 0 \\
\min \left[0, \sum_{j=1}^{i-1} h_{1j} - \sum_{j=1}^{i-1} \hat{h}_{2j} \right] & d_{2i} = 0
\end{cases}$$

and $\hat{k}^i = \min_{a \leq i} \max_{b \geq i} \min(K_2^+(a, b), n_{2b})$,

(Dykstra 1982: $\hat{k}^i = \min_{a \leq i} \max_{b \geq i} K_2^+(a, b)$) where $K_2^+(a, b) = \max(K_2(a, b), 0)$ and $K_2(a, b)$ is the solution of

$$\sum_{j=a}^{b} (\log(1 - \frac{d_{1j}}{n_{1j}+k})) = \sum_{j=a}^{b} (\log(1 - \frac{d_{2j}}{n_{2j}-k})).$$
Example - Two sample

Pr(T > t)

t

KM 1
KM 2
Example - C-NPMLE, Dykstra

![Graph showing survival functions for different methods: KM 1, KM 2 (-28.252), C-NPMLE 1, MC-NPMLE 2 (-28.835), Dykstra 1, Dykstra 2 (-29.196).]
Simulation in Two-sample Case
Simulation - Two-sample case

Finite sample property

- $\text{MSE} = (\hat{S}(t) - S(t))^2$; Pointwise criteria

Event distributions and sample sizes

- $S_1(t) = \exp(-t), \, n_1 = 100$;
- $S_2(t) = \exp(-1.2t), \, n_2 = 40$.

Scenarios

1. Same censoring: $S_1^c(t) = S_2^c(t) = \exp(-1.5t)$;
2. Excessive censoring 1: $S_1^c(t) = \exp(-3t), \, S_2^c(t) = 1$;
3. Excessive censoring 2: $S_1^c(t) = 1, \, S_2^c(t) = \exp(-3t)$.
Simulation - estimators in comparison

1. C-NPMLE from this paper:
2. Dykstra (1982):
 \[\hat{S}_1^L(t) = \max(S_1^*(t), S_2^*(t)), \]
 \[\hat{S}_2^L(t) = \min(S_1^*(t), S_2^*(t)); \]
4. Rojo (2004):
 \[\hat{S}_1^R(t) = \max(S_1^*(t), \frac{n_1S_1^*(t)+n_2S_2^*(t)}{n_1+n_2}); \]
 \[\hat{S}_2^R(t) = \min(\frac{n_1S_1^*(t)+n_2S_2^*(t)}{n_1+n_2}, S_2^*(t)); \]
5. Park et al (2010): PC-NPMLE (pointwise C-NPMLE)
 \[\hat{S}_1^P(t) = \tilde{S}_1(t; t), \hat{S}_2^P(t) = \tilde{S}_2(t; t) \]
 where \(\tilde{S}_1(t; x) \) and \(\tilde{S}_2(t; x) \) are the MLE subject to \(S_1(x) \geq S_2(x) \) at fixed time \(x \).
Pointwise C-NPMLE

• Fix a time \(x \) of interest
• Find NPMLE \(\hat{S}_1(t) \) and \(\hat{S}_2(t) \) such that \(\hat{S}_1(x) \geq \hat{S}_2(x) \)
• This gives \(\hat{S}_1(t) \) and \(\hat{S}_2(t) \) at \(t = x \)
• Repeat for all \(x \)
Simulation - same censoring distributions

Figure: Same censoring distributions
Simulation - different censoring dist’n

Figure: Excessive censoring group 1
Simulation - different censoring dist’n

Figure: Excessive censoring group 2
Conclusion

1. Developed methods to obtain the C-NPMLE in the one- and two-sample cases; Including a correction of Dykstra’s (1982) estimator and computationally efficient algorithms;

2. Developed a simple method to obtain the MC-NPMLE in the one-sample situation with a bounded above constraint when the constraint survivor function is continuous;

3. C-NPMLE is better than Dykstra’s estimator; C-NPMLE and Rojo’s estimator outperform each other at different situations; Pointwise C-NPMLE performs better in all cases considered.
Related Problems

1. 3 groups. \(S_1(t) \geq S_2(t) \geq S_3(t) \)
2. 4 groups. \(S_1(t) \geq S_2(t) \geq S_4(t) \) and \(S_1(t) \geq S_3(t) \geq S_4(t) \)
3. Inference: Confidence Intervals