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1. Kernel based methods 2. Some issues of interest

e as a computational trick e robustness

e to define (nonlinear) extensions e detecting influential variables

e for data with no natural vector representation ¢ KPCA and random projections



1.Kernel based methods

1.1. Principal Component Analysis (PCA)
Given X = (X1, -+, X,

we look for a direction u such that the projection (u, X) is informative.

In PCA, informative means maximun variance : arg max, Var({(u, X)).

Solution: u is the first eigenvector of C'ov(X).



1.Kernel based methods

1.1. Principal Component Analysis (PCA)
Given X = (X, -+, Xy),

we look for a direction u such that the projection (u, X) is informative.

In PCA, informative means maximun variance : arg max, Var({(u, X)).

Solution: u is the first eigenvector of C'ov(X).

Repeating this £ times and imposing decorrelation with previous found projections,

we obtain a k-dimensional space spanned by the first k eigenvectors of Cov(X).

Many nice properties (esp. if multinormal distributed);

e.g. characterization as best linear k-dim. predictor.



1.Kernel based methods

1.1. Principal Component Analysis (PCA)
Given X = (X1, -+, Xy,

we look for a direction u such that the projection (u, X) is informative.

In PCA, informative means maximun variance : arg max, Var({(u, X)).

Solution: u is the first eigenvector of Cov(X).

Define projection function: f(z):= (u,x) with u solution of PCA.
We show the contour lines of f;
the gradient(s) mark the direction of the most informative walk;

an order is also obtained.
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Example

Suppose objects are texts:

word; words

. wordy

doc;

doc,
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Example

word; word, . . . . . . wordy

. doc,
Suppose objects are texts:

doc,

Stylometry

Books of the Wizard of Oz (X): some written by Thompson, others by Baum.

Define the 50 most used words.

Define (X, -+, X5) with X, the (relative) frecuency of occurrence of word i in a chapter.



1.Kernel based methods

Example
word; word, . . . . . . wordy
. doc; . . C e e e .
Suppose objects are texts:
doc, . . C e e

Stylometry

Books of the Wizard of Oz (X): some written by Thompson, others by Baum.
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Define the 50 most used words.

Define (X1, -+, X5)) with X; the (relative) frecuency of occurrence of word ¢ in a chapter.



1.Kernel based methods

1.1. Principal Component Analysis (PCA)

Solution: u is the first eigenvector of Cov(X).

Suppose we estimate Cov(X) by the sample covariance

——

Cov(X) ~X'X with X the centered data matrix,



1.Kernel based methods

1.1. Principal Component Analysis (PCA)

Solution: u is the first eigenvector of Cov(X).

Suppose we estimate Cov(X) by the sample covariance

COT)(\X ) ~ X'X with X the centered data matrix,

Property

If {u;} are eigenvectors of X'X; and {v,} eigenvectors of XX’, then

; o~ Xtvj : Z o) T
Hence, if n < d, it is convenient to calculate eigenvectors of XX' = [(z;,x;)];;

f(x) = (uj,x Zoz z;, ), a depends on eigenvectors of XX’

this leads to the Kernel trick



1.Kernel based methods

f(x) = (uj,x Za z;,x), « depends on eigenvectors of XX' = [(z;,x;)];;

1. If n < d we have a computational convenient way (trick) to get f(x).

2. Only internal products of the observations are necessary.

This can be interesting for complex objects (see later).

This forms the basis of Kernel PCA.

In the same way: Kernel LDA, Kernel Ridge, etc.: how to kernelize known methods?
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flx) = (uj,x Zoz z;,x), « depends on eigenvectors of XX' = [(z;,x;)];; :

1. If n < d we have a computational convenient way (trick) to get f(x).

2. Only internal products of the observations are necessary.

This can be interesting for complex objects (see later).

This forms the basis of Kernel PCA.

In the same way: Kernel LDA, Kernel Ridge, etc.: how to kernelize known methods?

Many questions of interest; e.g.:

1. What if the sample covariance matrix is a bad estimator?

2. How to obtain insight about which variables are influential?

-~



1.Kernel based methods

1.2. (Nonlinear) Extensions of Principal Component Analysis (PCA)
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1.Kernel based methods

1.2. (Nonlinear) Extensions of Principal Component Analysis (PCA)
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Solution: transform X = (X, X5) into ®(X) = (X?, X5); apply PCA on {®(z;)}.

Projection function f(z) in original space looks like:

by
»

ohe o
%
.

1.0 05 0.0

Contour lines defined by: (u,®(x)) = constant.

How to define &()?



1.Kernel based methods

1.2. (Nonlinear) Extensions of Principal Component Analysis (PCA)

For some transformations it is computationaly convenient to work with kernels.

Before:

(u;, x a (x;,x), a depends on eigenvectors of XX' = [(z;, z;)];
j AN

Suppose we transform z into ®(z) and define Kg(z,y) =< ®(x), P(y) >:

f(x) = (uj,x Zo/Kq) z;,x), o« depends on eigenvectors of [Kg(x;, x;)]; ;
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1.2. (Nonlinear) Extensions of Principal Component Analysis (PCA)

For some transformations it is computationaly convenient to work with kernels.

Before:

f(x) = (uj,x ch z;,x), « depends on eigenvectors of XX' = [(z;,x;)];;

Suppose we transform z into ®(z) and define Kg(z,y) =< ®(x), P(y) >:

f(x) = (uj,x Zo/Kq) z;,z), o depends on eigenvectors of [Kq(x;, x;)]; ;

Example:

If

O(z = (21, 22)) = (1, V221, V22, 23, V22129, 23)

Ko(z,y) = (1+ < 2,9 >)* more general: Ky(z,y) = (14+ < z,y >)"

This is easier to calculate then ®(z), ¢(y) and afterwards < ¢(z), d(y) > !

Observe: only ®(z) should belong to a vector space, not necessary z.

Useful for objects with no natural vector representation.



1.Kernel based methods

1.2. (Nonlinear) Extensions of Principal Component Analysis (PCA)

For some transformations it is computationally convenient to work with kernels.

Before:

(u;, x a (x;,x), a depends on eigenvectors of XX' = [(z;, z;)];
j AN

Suppose we transform z into ®(z) and define Kg(z,y) =< ®(x), P(y) >:

f(x) = (uj,x Zo/Kq) z;,x), o« depends on eigenvectors of [Kg(x;, x;)]; ;

Example:

Suppose = and y are strings of length d over the alphabet A, i.e. z,y € A?

Define = (®4(x)),. 4« With ®,(z) the number of occurrences of substring s in .

Much easier to calculate (®(x), ®(y)) directly:

(D(x Z O (2)Ps(y) with S(x,y) substrings of x and y.
seS(z,y)



1.Kernel based methods

How to choose K(-,-)?

1. For which K(-,-) exists a ®() such that Kq(y,z;) =< ®(y), d(x;) >7
2. How to understand it in data space? (and how to tune the parameters?)

Problem
We do not have a good intuition to think in terms of inner products.

Much easier to think in terms of distances.

E.g. K(x,y) = P(x)P(y) leads to diste(z,y) = (P(x) — P(y))?



1.Kernel based methods

1.3. The very particular case of kernel PCA with a Radial Base Kernel

Define
K(z,y) = exp(—||lz — y|[*/o).

What can we say about ¢()?



1.Kernel based methods

1.3. The very particular case of kernel PCA with a Radial Base Kernel

Define

K(z,y) = exp(—||z — y[[*/0).
What can we say about ¢()?
19(2)]]* = K(z,2) =1

i.e, we map = on a hypersphere ... of infinite dimension, ®(x) € R>.

——

Define the mean mg =}, ®(z;)/n, and p(z) = > K(zj,x)/n

—

[P () — mo||* ~ ¢ — 2p(x;)
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1.Kernel based methods

1.3. The very particular case of kernel PCA with a Radial Base Kernel

Define
K(z,y) = exp(—||lz — y|[*/o).

What can we say about ¢()?

The corresponding distance function:

do (11, 22)* = 2(1 — exp(—||z1 — 22||*/0)).

Lo}
™

10 15

dix_1x_2)"2

05
|

0.0

[lx_1-x 2 |*2

Observe: the distance can not be arbitrarly large.

Useful to understand it using the link with Classical Dimensional Scaling.



1.Kernel based methods

1.3. The very particular case of kernel PCA with a Radial Base Kernel
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Not obvious what kernel PCA stands for in this case.




1.Kernel based methods

1.3. The very particular case of kernel PCA with a Radial Base Kernel
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Not obvious what kernel PCA stands for in this case.

In the following we motivate that KPCA is sensitive to the densities of the

observations.



1.Kernel based methods

1.3. The very particular case of kernel PCA with a Radial Base Kernel

Property
Define:

falz) = Z a; K (x;, ),

The projection function of the first principal component of KPCA (no centered) is

the solution f,(-) of::

max Z( fo(z;))? with appropiate boundry conditions
J
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2. Issues related to KPCA

2.1. Need for robust versions (work with M. Debruyne, M. Hubert)




2. Issues related to KPCA

2.1. Need for robust versions (work with M. Debruyne, M. Hubert)

The influence function can be calculated and is not always bounded.

Good idea to work with bounded kernels.
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Figure 1: {a): Simple 21} data example: (b) — (e): [[TFi(z;e1, Fan)|| as a function of z. White represents
values equal to 0, large values tend to black. (b): linear kernel; (¢) REF kernel.

Even with RBK we can have problems:
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Many robust methods for PCA; how to transpose them to KPCA?




Spherical KPCA

We adapt Spherical PCA (Marron et al.)
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Spherical KPCA
We adapt Spherical PCA (Marron et al.)
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Idea
1. Look for 6 such that {ﬁ} equals 0
To obtain #: iterate
P 1
glm) — 2 Wil -
Sw, o - 6]

2. Apply PCA to {ﬁ}



1. Look for # such that {ﬁ} equals 0.

To obtain 0, iterate

ey 1
glm) — 2 Wit -
Sw; o T = o]

2. Apply PCA to {ﬁ}



1. Look for # such that {ﬁ} equals 0.

To obtain 0, iterate

Zwi con w; = sz — Q(m—l)H

Observe: the optimal 6 is of the form:

Z Vil

Rewrite the calculations in terms of ~:

w
et emurt = o) 2 K+ K

ki k)l

2. Apply PCA to {H —9||}
Use the kernel
K*(zj,x;) =
Kz x5) = 3 el (@i xn) — Do welK (@, xp) + 3 gy Ko, 1)
\/K(% i) = 23wl (@i, wp) + 32, Kz, xz)\/K(%a 2j) = 20 B (@ 2) + Dy K (@, 1)
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Weighted KPCA

Idea: introduce fake transformations

K(-,) — O+ ——— Cov(P(X))

Robust estimator for
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Weighted KPCA

Idea: introduce fake transformations

K(-,) — O+ ——— Cov(P(X))

Robust estimator for

E.g. one can use introduce weights (e.g. by means of Mahalanobis distance):

K*=W(K — 1,WK — KW1, + LLWEKW1,)W

W = Diag({w;}), 1, = ﬁl and w; is a function of:

2

dmah I’L? nz it ’

KPCA using K* corresponds to PCA with the Campbell weighted covariance estimator

using the kernelized Mahalanobis distance.
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Examples

Projecting images on a subspace using (K)PCA to extract background.

Second column: ordinary KPCA;

Third column: robust version.



(K)PCA as a preprocessor

Scholkopf

Classification

Kernel PCA
Polynomial kernel

Robust Kernel PCA

Polynomial kernel

dimension
reduction

dimension

reduction

SVM classifier

SVM classifier

for a classifier (SVM) of digits (USPS).

LE1RA
R 2
=k =

Some outliers.

error standard KPCA vs robust KPCA:

2 3 4 5 6 7
16 69/69 77/74 81/81 88/88 10.6/105 13.3/124
32 6.1/56 64/58 66/65 15/69 79/76 8.5/82
64 55/54 59/49 64/58 68/68 13/73 8.0/8.0
120| 54/53 48147 50/51 6.2/59 75173 85/87

Rows: # of components used; Columns: degree of polynomial kernel



2. Issues related to KPCA

2.2. Detecting influential variables




Anova KPCA

(Inspired by work of Yoon Lee for classification)

Instead of
K(xay) — eXp(—HiC o yHQ/O_)a
we use

Ky(z,y) = frexp(—(z1 — y1)* /o) + -+ - + Baexp(—(xq — ya)* /o).



Anova KPCA

(Inspired by work of Yoon Lee for classification)
Instead of

K (x,y) = exp(—||lz —yl[*/0),

we use

Ky(z,y) = frexp(—(z1 — y1)* /o) + -+ - + Baexp(—(xq — ya)* /o).

The optimization problem:

IE%XZ(]C@,/%(%)V con f, 5(x) = Z%Kﬂ(l’z‘,«f), s.a. |[B]l1 <¢, |[B]la=1.
b e Z.

To get a solution we alternate:

e optimize over «, fixing [:
leads to KPCA;

e optimize over [, fixing a:

leads to a cuadratic optimization problem with restrictions.



Example 1

10 dimensional data set; (z3,---,z19) de N(0,3.5%) y (@1, x9):

o
o
w
ES



Example 1

10 dimensional data set; (z3,---,z19) de N(0,3.5%) y (@1, x9):
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Example 2: segmentation of fringe patterns

Task: assign each pixel to the pattern it belongs to.

Variables: magnitud of the response to 16 (=d)

filters tuned at different frequencies.

n = 128 x 128 pixels.




Example 2: segmentation of fringe patterns

Task: assign each pixel to the pattern it belongs to.

Variables: magnitud of the response to 16 (=d)

filters tuned at different frequencies.

n =128 x 128 7
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2. Issues related to KPCA

2.3. KPCA and random projections

Motivation:
In case of many observations, because of its dimension, working with K becomes

computationally intractable.
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2.3. KPCA and random projections

Motivation:

In case of many observations, because of its dimension, working with K becomes
computationally intractable.

Idea:

Generate a new (low dimensional) data matrix Z and apply PCA on Z.

Choose Z such that K. := ZZ' is a good approximation of K: e.g E(K.) = K.



2. Issues related to KPCA

2.3. KPCA and random projections

Motivation:

In case of many observations, because of its dimension, working with K becomes
computationally intractable.

Idea:

Generate a new (low dimensional) data matrix Z and apply PCA on Z.

Choose Z such that K. := ZZ' is a good approximation of K: e.g E(K.) = K.

for different wy, by, calculate:z; ; = ﬂcas(w,@xi + by

4 p—



Final remark

Although kernel based methods have been around for a while, many open questions.

If the choice of first names is a good trend detector, ....

412 Control éptimo de una epidemia (Reporte de Tesis)

Kernel Prieto Moreno, kerpel@ciencias. unam.mx (MAS, UNAM)
Coautor: Maria de Lourdes Esteva Peraita
El virus de la influenza causa problemas médicos y sociales sustancial
tramos en una pandemia ocasionada por el virus de influenza AHINL, |
estrategias para mitigar una epidemia usando teoria de control dptimo y ¢
En gl primer modelo se uso vacunacion, en el segundo campana educa
educativa con administracidn de medicamentos.

... kernels have a promising future!

Thanks

References/preprints can be found at http://www.cimat.mx/ horebeek



