
Kernel PCA:

keep walking ... in informative directions

Johan Van Horebeek, Victor Muñiz, Rogelio Ramos
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1. Kernel based methods 2. Some issues of interest

• as a computational trick • robustness

• to define (nonlinear) extensions • detecting influential variables

• for data with no natural vector representation • KPCA and random projections
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1.Kernel based methods

1.1. Principal Component Analysis (PCA)

Given X = (X1, · · · , Xd)
t,

we look for a direction u such that the projection 〈u, X〉 is informative.

In PCA, informative means maximun variance : arg maxu V ar(〈u, X〉).
Solution: u is the first eigenvector of Cov(X).
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1.Kernel based methods

1.1. Principal Component Analysis (PCA)

Given X = (X1, · · · , Xd)
t,

we look for a direction u such that the projection 〈u, X〉 is informative.

In PCA, informative means maximun variance : arg maxu V ar(〈u, X〉).
Solution: u is the first eigenvector of Cov(X).

Repeating this k times and imposing decorrelation with previous found projections,

we obtain a k-dimensional space spanned by the first k eigenvectors of Cov(X).

Many nice properties (esp. if multinormal distributed);

e.g. characterization as best linear k-dim. predictor.
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1.Kernel based methods

1.1. Principal Component Analysis (PCA)

Given X = (X1, · · · , Xd)
t,

we look for a direction u such that the projection 〈u, X〉 is informative.

In PCA, informative means maximun variance : arg maxu V ar(〈u, X〉).
Solution: u is the first eigenvector of Cov(X).

Define projection function: f(x) := 〈u, x〉 with u solution of PCA.

We show the contour lines of f ;

the gradient(s) mark the direction of the most informative walk;

an order is also obtained.
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1.Kernel based methods

Example

Suppose objects are texts:

word1 word2 . . . . . . wordd

doc1 . . . . . . . . .

. . . . . . . . . .

docn . . . . . . . . .
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1.Kernel based methods

Example

Suppose objects are texts:

word1 word2 . . . . . . wordd

doc1 . . . . . . . . .

. . . . . . . . . .

docn . . . . . . . . .

Stylometry

Books of the Wizard of Oz (X): some written by Thompson, others by Baum.

Define the 50 most used words.

Define (X1, · · · , X50) with Xi the (relative) frecuency of occurrence of word i in a chapter.
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1.Kernel based methods

1.1. Principal Component Analysis (PCA)

Solution: u is the first eigenvector of Cov(X).

Suppose we estimate Cov(X) by the sample covariance

̂Cov(X) ∼ XtX with X the centered data matrix,
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1.Kernel based methods

1.1. Principal Component Analysis (PCA)

Solution: u is the first eigenvector of Cov(X).

Suppose we estimate Cov(X) by the sample covariance

̂Cov(X) ∼ XtX with X the centered data matrix,

Property

If {uj} are eigenvectors of XtX; and {vj} eigenvectors of XXt, then

uj ∼ Xtvj :=
∑

i

αj
ixi.

Hence, if n < d, it is convenient to calculate eigenvectors of XXt = [〈xi, xj〉]i,j :

f(x) = 〈uj, x〉 =
∑

i

αj
i 〈xi, x〉, α depends on eigenvectors of XXt

this leads to the Kernel trick
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1.Kernel based methods

f(x) = 〈uj, x〉 =
∑

i

αj
i 〈xi, x〉, α depends on eigenvectors of XXt = [〈xi, xj〉]i,j :

1. If n < d we have a computational convenient way (trick) to get f(x).

2. Only internal products of the observations are necessary.

This can be interesting for complex objects (see later).

This forms the basis of Kernel PCA.

In the same way: Kernel LDA, Kernel Ridge, etc.: how to kernelize known methods?
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1.Kernel based methods

f(x) = 〈uj, x〉 =
∑

i

αj
i 〈xi, x〉, α depends on eigenvectors of XXt = [〈xi, xj〉]i,j :

1. If n < d we have a computational convenient way (trick) to get f(x).

2. Only internal products of the observations are necessary.

This can be interesting for complex objects (see later).

This forms the basis of Kernel PCA.

In the same way: Kernel LDA, Kernel Ridge, etc.: how to kernelize known methods?

Many questions of interest; e.g.:

1. What if the sample covariance matrix is a bad estimator?

2. How to obtain insight about which variables are influential?
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1.Kernel based methods

1.2. (Nonlinear) Extensions of Principal Component Analysis (PCA)

Solution: transform X = (X1, X2) into Φ(X) = (X2
1 , X2); apply PCA on {Φ(xi)}.
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1.Kernel based methods

1.2. (Nonlinear) Extensions of Principal Component Analysis (PCA)

Solution: transform X = (X1, X2) into Φ(X) = (X2
1 , X2); apply PCA on {Φ(xi)}.

Projection function f(x) in original space looks like:

Contour lines defined by: 〈u, Φ(x)〉 = constant.

How to define Φ()?
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1.Kernel based methods

1.2. (Nonlinear) Extensions of Principal Component Analysis (PCA)

For some transformations it is computationaly convenient to work with kernels.

Before:

f(x) = 〈uj, x〉 =
∑

i

αj
i 〈xi, x〉, α depends on eigenvectors of XXt = [〈xi, xj〉]i,j :

Suppose we transform x into Φ(x) and define KΦ(x, y) :=< Φ(x), Φ(y) >:

f(x) = 〈uj, x〉 =
∑

i

αj
iKΦ(xi, x), α depends on eigenvectors of [KΦ(xi, xj)]i,j
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1.Kernel based methods

1.2. (Nonlinear) Extensions of Principal Component Analysis (PCA)

For some transformations it is computationaly convenient to work with kernels.

Before:

f(x) = 〈uj, x〉 =
∑

i

αj
i 〈xi, x〉, α depends on eigenvectors of XXt = [〈xi, xj〉]i,j :

Suppose we transform x into Φ(x) and define KΦ(x, y) :=< Φ(x), Φ(y) >:

f(x) = 〈uj, x〉 =
∑

i

αj
iKΦ(xi, x), α depends on eigenvectors of [KΦ(xi, xj)]i,j

Example:

If

Φ(z = (z1, z2)) = (1,
√

2z1,
√

2z2, z
2
1,
√

2z1z2, z
2
2)

KΦ(x, y) = (1+ < x, y >)2 more general: KΦ(x, y) = (1+ < x, y >)k

This is easier to calculate then Φ(x), Φ(y) and afterwards < Φ(x), Φ(y) > !

Observe: only Φ(x) should belong to a vector space, not necessary x.

Useful for objects with no natural vector representation.
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1.Kernel based methods

1.2. (Nonlinear) Extensions of Principal Component Analysis (PCA)

For some transformations it is computationally convenient to work with kernels.

Before:

f(x) = 〈uj, x〉 =
∑

i

αj
i 〈xi, x〉, α depends on eigenvectors of XXt = [〈xi, xj〉]i,j :

Suppose we transform x into Φ(x) and define KΦ(x, y) :=< Φ(x), Φ(y) >:

f(x) = 〈uj, x〉 =
∑

i

αj
iKΦ(xi, x), α depends on eigenvectors of [KΦ(xi, xj)]i,j

Example:

Suppose x and y are strings of length d over the alphabet A, i.e. x, y ∈ Ad

Define = (Φs(x))s∈Ad with Φs(x) the number of occurrences of substring s in x.

Much easier to calculate 〈Φ(x), Φ(y)〉 directly:

〈Φ(x), Φ(y)〉 =
∑

s∈S(x,y)

Φs(x)Φs(y) with S(x, y) substrings of x and y.
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1.Kernel based methods

How to choose K(·, ·)?

1. For which K(·, ·) exists a Φ() such that KΦ(y, xi) :=< Φ(y), Φ(xi) >?

2. How to understand it in data space? (and how to tune the parameters?)

Problem

We do not have a good intuition to think in terms of inner products.

Much easier to think in terms of distances.

E.g. K(x, y) = P (x)P (y) leads to distΦ(x, y) = (P (x) − P (y))2
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1.Kernel based methods

1.3. The very particular case of kernel PCA with a Radial Base Kernel

Define

K(x, y) = exp(−||x − y||2/σ).

What can we say about Φ()?
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1.Kernel based methods

1.3. The very particular case of kernel PCA with a Radial Base Kernel

Define

K(x, y) = exp(−||x − y||2/σ).

What can we say about Φ()?

||Φ(x)||2 = K(x, x) = 1

i.e, we map x on a hypersphere ... of infinite dimension, Φ(x) ∈ R∞.

Define the mean mΦ =
∑

i Φ(xi)/n, and p̂(x) =
∑

j K(xj, x)/n

‖Φ(xi) − mΦ‖2 ∼ c − 2p̂(xi)
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1.Kernel based methods

1.3. The very particular case of kernel PCA with a Radial Base Kernel

Define

K(x, y) = exp(−||x − y||2/σ).

What can we say about Φ()?

The corresponding distance function:

dΦ(x1, x2)
2 = 2(1 − exp(−||x1 − x2||2/σ)).

Observe: the distance can not be arbitrarly large.

Useful to understand it using the link with Classical Dimensional Scaling.
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1.Kernel based methods

1.3. The very particular case of kernel PCA with a Radial Base Kernel

Not obvious what kernel PCA stands for in this case.
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1.Kernel based methods

1.3. The very particular case of kernel PCA with a Radial Base Kernel

Not obvious what kernel PCA stands for in this case.

In the following we motivate that KPCA is sensitive to the densities of the

observations.
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1.Kernel based methods

1.3. The very particular case of kernel PCA with a Radial Base Kernel

Property

Define:

fα(x) :=
∑

i

αiK(xi, x),

The projection function of the first principal component of KPCA (no centered) is

the solution fα(·) of::

max
α

∑

j

(fα(xj))
2 with appropiate boundry conditions
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2. Issues related to KPCA

2.1. Need for robust versions (work with M. Debruyne, M. Hubert)
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2. Issues related to KPCA

2.1. Need for robust versions (work with M. Debruyne, M. Hubert)

The influence function can be calculated and is not always bounded.

Good idea to work with bounded kernels.

Even with RBK we can have problems:

Many robust methods for PCA; how to transpose them to KPCA?
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Spherical KPCA

We adapt Spherical PCA (Marron et al.)
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Spherical KPCA

We adapt Spherical PCA (Marron et al.)

Idea

1. Look for θ such that { xi−θ
||xi−θ||} equals 0

To obtain θ: iterate

θ(m) =

∑
i wixi∑

wi
con wi =

1

||xi − θ(m−1)||

2. Apply PCA to { xi−θ
||xi−θ||}.
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1. Look for θ such that { xi−θ
||xi−θ||} equals 0.

To obtain θ, iterate

θ(m) =

∑
i wixi∑

wi
con wi =

1

||xi − θ(m−1)||

Observe: the optimal θ is of the form:

∑

i

γixi.

Rewrite the calculations in terms of γ:

γ(m) =
w∑
wi

con w−1
i =

√
K(xi, xi) − 2

∑

k

γ
(m−1)
k K(xi, xk) +

∑

k,l

K(xk, xl)

2. Apply PCA to { xi−θ
||xi−θ||}.

Use the kernel

K∗(xi, xj) =

K(xi, xj) −
∑

k γkK(xi, xk) −
∑

k γkK(xj, xk) +
∑

k,l K(xk, xl)√
K(xi, xi) − 2

∑
k γkK(xi, xk) +

∑
k,l K(xk, xl)

√
K(xj, xj) − 2

∑
k γkK(xj, xk〉 +

∑
k,l K(xk, xl)

30



1. Look for θ such that { xi−θ
||xi−θ||} equals 0.

To obtain θ, iterate

θ(m) =
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con wi =
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||xi − θ(m−1)||

Observe: the optimal θ is of the form:

∑

i

γixi.

Rewrite the calculations in terms of γ:
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wi

con w−1
i =

√
K(xi, xi) − 2

∑

k

γ
(m−1)
k K(xi, xk) +

∑

k,l

K(xk, xl)

2. Apply PCA to { xi−θ
||xi−θ||}.

Use the kernel

K∗(xi, xj) =

K(xi, xj) −
∑

k γkK(xi, xk) −
∑

k γkK(xj, xk) +
∑

k,l K(xk, xl)√
K(xi, xi) − 2

∑
k γkK(xi, xk) +

∑
k,l K(xk, xl)
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K(xj, xj) − 2

∑
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∑
k,l K(xk, xl)
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Examples
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Weighted KPCA

Idea: introduce fake transformations

K(·, ·)

K∗(·, ·)

Φ(·)

Φ∗(·)

Robust estimator for

Cov(Φ(X))

XΦ∗t
XΦ∗
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Weighted KPCA

Idea: introduce fake transformations

K(·, ·)

K∗(·, ·)

Φ(·)

Φ∗(·)

Robust estimator for

Cov(Φ(X))

XΦ∗t
XΦ∗

E.g. one can use introduce weights (e.g. by means of Mahalanobis distance):

K∗ = W (K − 1wWK − KW1w + 1wWKW1w)W

W = Diag({wi}), 1w = 1∑
wi

1 and wi is a function of:

d2
mah.(xi, x̄) = n

∑

k

(
∑

j αk
jk(xi, xj))

2

λk
,

KPCA using K∗ corresponds to PCA with the Campbell weighted covariance estimator

using the kernelized Mahalanobis distance.
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Examples

Projecting images on a subspace using (K)PCA to extract background.

Second column: ordinary KPCA;

Third column: robust version.
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(K)PCA as a preprocessor for a classifier (SVM) of digits (USPS).

Data

Polynomial kernel
SVM classifier

dimension
reductionScholkopf

Polynomial kernel

dimension

reduction SVM classifier
Robust Kernel PCA

Kernel PCA

Proposal

Some outliers.

Classification error standard KPCA vs robust KPCA:

Rows: # of components used; Columns: degree of polynomial kernel
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2. Issues related to KPCA

2.2. Detecting influential variables
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Anova KPCA

(Inspired by work of Yoon Lee for classification)

Instead of

K(x, y) = exp(−||x − y||2/σ),

we use

Kβ(x, y) = β1 exp(−(x1 − y1)
2/σ) + · · · + βd exp(−(xd − yd)

2/σ).
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Anova KPCA

(Inspired by work of Yoon Lee for classification)

Instead of

K(x, y) = exp(−||x − y||2/σ),

we use

Kβ(x, y) = β1 exp(−(x1 − y1)
2/σ) + · · · + βd exp(−(xd − yd)

2/σ).

The optimization problem:

max
α,β

∑

j

(fα,β(xj))
2 con fα,β(x) =

∑

i

αiKβ(xi, x), s.a. ||β||1 ≤ c, ||β||2 = 1.

To get a solution we alternate:

• optimize over α, fixing β:

leads to KPCA;

• optimize over β, fixing α:

leads to a cuadratic optimization problem with restrictions.
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Example 1

10 dimensional data set; (x3, · · · , x10) de N (0, 3.52) y (x1, x2):
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Example 1

10 dimensional data set; (x3, · · · , x10) de N (0, 3.52) y (x1, x2):

−0.4 −0.2 0.0 0.2

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

first score

se
co

nd
 s

co
re

Weightings Projections Projections Projections

(βi’s) PCA Kernel PCA proposed method
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Example 2: segmentation of fringe patterns

Task: assign each pixel to the pattern it belongs to.

Variables: magnitud of the response to 16 (=d)

filters tuned at different frequencies.

n = 128 × 128 pixels.
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Example 2: segmentation of fringe patterns

Task: assign each pixel to the pattern it belongs to.

Variables: magnitud of the response to 16 (=d)

filters tuned at different frequencies.

n = 128 × 128 pixels.

Projections Weightings Effect of c
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2. Issues related to KPCA

2.3. KPCA and random projections

Motivation:

In case of many observations, because of its dimension, working with K becomes

computationally intractable.
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2. Issues related to KPCA

2.3. KPCA and random projections

Motivation:

In case of many observations, because of its dimension, working with K becomes

computationally intractable.

Idea:

Generate a new (low dimensional) data matrix Z and apply PCA on Z.

Choose Z such that Kz := ZZt is a good approximation of K: e.g E(Kz) = K.
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2. Issues related to KPCA

2.3. KPCA and random projections

Motivation:

In case of many observations, because of its dimension, working with K becomes

computationally intractable.

Idea:

Generate a new (low dimensional) data matrix Z and apply PCA on Z.

Choose Z such that Kz := ZZt is a good approximation of K: e.g E(Kz) = K.

ω

for different wk, bk, calculate:zi,k =
√

2cos(wt
kxi + bk)
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Final remark

Although kernel based methods have been around for a while, many open questions.

If the choice of first names is a good trend detector, ....

... kernels have a promising future!

Thanks

References/preprints can be found at http://www.cimat.mx/˜horebeek
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