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Introduction Motivation

Concentration of Measure:
What is it?

Recall: the Weak Law of Large Numbers

Xi are independent random variables with common mean µ and
uniformly bounded variance.
X̄n = 1

n

∑n
i=1Xi.

Result:
∀ε > 0 lim

n→∞
Pr
[∣∣X̄n − µ

∣∣ < ε
]

= 1

This is a statement about a particular function of independent
random variables being concentrated about its mean

X̄n = f (X1, X2, · · · , Xn)
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Introduction Motivation

Concentration of Measure:
The behavior of functions of independent random variables

Other functions are of interest, especially the norm of a linear
mapping

f(X1, X2, · · · , Xn) = ‖ΦX‖2
Possible mappings Φ

Projection Operator
Convolution Operator
Dictionary

Concentration probabilities for finite n are useful

Rates of decay can be important (want tight bounds)
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Introduction Examples

Example 1: Stable Embeddings

Rn

ψ(x)−−→

Rm

Map set of N data points into lower dimensional space while
preserving pair-wise distances.

Possible applications: search for nearest neighbors, compact data
representations, clustering

Questions:
For a given N and n, what is the required m to meet a specific
distortion bound? (Johnson and Lindenstrauss)
How do we find the mapping ψ?
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Introduction Examples

Example 2: Signal Recovery

Basic signal processing question: How many measurements needed to
represent a signal?

Measurement
Process

High Dimensional
Signal z Sampled Signal ym
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Introduction Examples

Example 2: Signal Recovery:
Spectral Recovery

Answer depends on signal model (s ∈ S) and measurement model
(ym = φm(s)).

Signal model: Signal has spectral representation (in Fourier basis)

s(t) =
∑
k

αke
jω0kt

Measurement model: Sampling

ym = s(m∆t)

Nyquist theorem: Original signal s can be recovered from samples ym
(over one period) if the sampling rate is twice the signal bandwidth.
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Introduction Examples

Example 2: Signal Recovery:
Compressive Sensing

Compressive Sensing has different signal and measurement models.

Signal model: Signal has sparse representation on some basis

s Φ x

=

Measurement model: Linear mapping

Questions (Answered next lecture):
What are the conditions on the measurement process that guarantee
that all signals s of given sparsity can be recovered?
How can we design a good measurement process?
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Introduction Examples

Example 3: Trace Estimate of a Matrix

In large scale problems, the matrix multiplication Mx may be
feasible, but tr(M) may not be.

M may not fit in memory, and may be defined via other operations

Estimate of trace for symmetric M ∈ Rn×n:

Select x ∼ N (0, I).
Calculate r = x′(Mx).

E [r] = trM .

Does this estimate concentrate around its mean? How does the
concentration probability depend on the properties of M?
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Basic Results Markov and Chebyshev inequalities

The Statement of Markov’s Inequality

Theorem (Markov’s Inequality)

For any nonnegative random variable X with finite mean and t > 0,

Pr [X ≥ t] ≤ E [X]

t
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Basic Results Markov and Chebyshev inequalities

Proof of Markov’s Inequality

x

xpX(x)

︸ ︷︷ ︸
E[X]

≥

x

tpX(x)

t

︸ ︷︷ ︸
tE[IX≥t]

E [X] ≥ tPr [X ≥ t]
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Basic Results Markov and Chebyshev inequalities

Application of Markov’s Inequality: Chebyshev’s Inequality

Theorem (Chebyshev’s Inequality)

For random variable X with finite variance σ2,

Pr [|X − E [X]| ≥ t] ≤ σ2

t2
∀t > 0
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Basic Results Markov and Chebyshev inequalities

Proof of Chebyshev’s Inequality

Note that Pr [|X − E [X]| ≥ t] = Pr
[
|X − E [X]|2 ≥ t2

]
Apply Markov’s Inequality to the random variable

φ = |X − E [X]|2 .

E [φ] = Var (X)

Pr
[
φ ≥ t2

]
≤ E [φ]

t2

Pr
[
|X − E [X]|2 ≥ t2

]
≤ Var (X)

t2

Pr [|X − E [X]| ≥ t] ≤ Var (X)

t2
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Basic Results Markov and Chebyshev inequalities

Application of Chebyshev’s Inequality: The Weak Law of
Large Numbers

Xi are independent random variables with common mean µ and
uniform variance bound σ2sup
X̄n = 1

n

∑n
i=1Xi.

E
[
X̄n

]
= µ

Var
(
X̄n

)
=

1

n2

n∑
i=1

Var (Xi)

≤ 1

n
sup
i

Var (Xi) =:
σ2sup
n

Chebyshev’s Inequality

Pr
[∣∣X̄n − µ

∣∣ ≥ ε] ≤ σ2sup
nε2
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Basic Results Markov and Chebyshev inequalities

How Tight is Chebyshev’s Inequality?

Chebyshev bound

Pr
[∣∣X̄n − µ

∣∣ ≥ ε] ≤ σ2sup
nε2

Suppose Xi are Gaussian, Xi ∼ N (µ, σ2)

Then X̄n ∼ N (µ, σ2/n) (would approach Gaussian regardless by CLT)

From tail bound on Gaussian distribution,

Pr
[∣∣X̄n − µ

∣∣ ≥ ε] ≤ σ

ε
√

2πn
e−nε

2/(2σ2)

Chebyshev’s bound decreases as 1/n. The actual probability
decreases exponentially in n.
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Basic Results Markov and Chebyshev inequalities

Comparison of bounds

n

B
o
u
n
d

Chebyshev bound

Gaussian Tail Bound

101 102 103 104
10−20

10−15

10−10

10−5

100

Exponential dependence implies critical n. If probability of failure is
small for n = n0, it is really small for n = 10n0.
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Basic Results Chernoff’s bounding method

Idea of Chernoff’s bounding method

For Chebyshev’s bound, we applied the second moment function
φ(x) = x2 before applying Markov’s inequality.

Some moments may be better than others.

Idea: choose
φ(x, s) = esx,

(which includes all moments,) then optimize over s.
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Basic Results Chernoff’s bounding method

Process for Chernoff’s bounding method

Given: random variable X.

By monotonicity of esx for s > 0,

Pr [X ≥ t] = Pr
[
esX ≥ est

]
Apply Markov’s inequality to right hand side

Pr [X ≥ t] ≤
E
[
esX
]

est

E
[
esX
]

is moment generating function for X
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Basic Results Chernoff’s bounding method

Chernoff’s bounding method summary

Theorem (Chernoff’s bounding method)

For any random variable X and t > 0,

Pr [X ≥ t] ≤ min
s>0

E
[
esX
]

est

Pr [X ≤ t] ≤ min
s>0

E
[
e−sX

]
e−st

when RHS exists.
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Basic Results Chernoff’s bounding method

Application: Norm of a Random Vector

Let

X =


X1

X2
...
Xn


be a Gaussian random vector with mean 0 and covariance matrix P .

Does ‖X‖22 concentrate around its mean?
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Basic Results Chernoff’s bounding method

Application: Norm of a Random Vector
Step 1: Moment Generating Function

Moment Generating Function for ‖X‖22:

E
[
e±s‖X‖

2
2

]
=

1√
det (I ∓ 2sP )

Proof: Completion of squares

Special case: P = I (‖X‖22 ∼ χ2
n)

E
[
es‖X‖

2
2

]
= (1− 2s)−

n
2
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Basic Results Chernoff’s bounding method

Application: Norm of a Random Vector
Step 2: Use Chernoff’s Method

Concentration of norm of X ∼ N (0, σ2I) around mean.

Expected Norm

E
[
‖X‖22

]
=

n∑
i=1

E
[
X2
i

]
= nVar (X1) = nσ2

Chernoff’s bound, ε > 0:

Pr
[
‖X‖22 ≥ (1 + ε)E

[
‖X‖22

]]
≤ min

s>0

(
1− 2sσ2

)−n
2 e−s(1+ε)nσ

2
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Basic Results Chernoff’s bounding method

Application: Norm of a Random Vector
Step 3: Optimize over s

Pr
[
‖X‖22 ≥ (1 + ε)E

[
‖X‖22

]]
≤ min

s>0

(
1− 2sσ2

)−n
2 e−s(1+ε)nσ

2

optimal s = ε
2(1+ε)σ2

Pr
[
‖X‖22 ≥ (1 + ε)E

[
‖X‖22

]]
≤
(
(1 + ε)e−ε

)n
2

Pr
[
‖X‖22 ≥ (1 + ε)E

[
‖X‖22

]]
≤ e−ε2n/6 0 < ε < 1/2
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Basic Results Chernoff’s bounding method

Application: Norm of a Random Vector:
Result

Pr
[
‖X‖22 ≥ (1 + ε)E

[
‖X‖22

]]
≤ e−ε2n/6

Pr
[
‖X‖22 ≤ (1− ε)E

[
‖X‖22

]]
≤ e−ε2n/4

In high dimensions, X ∼ N (0, 1nI) is concentrated near the unit
sphere

R2:

-2 0 2
-2

-1

0

1

2

Rn:

-2 0 2
-2

-1

0

1

2
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Basic Results Chernoff’s bounding method

Application: Stable Embedding

Rn

ψ(x)−−→

Rm

Theorem (Johnson-Lindenstrauss)

Given ε > 0 and integer N , let m be a positive integer such that

m ≥ m0 = O

(
logN

ε2

)
.

For every set P of N points in Rn, there exists ψ : Rn → Rm such that for all
u, v ∈ P,

(1− ε)‖u− v‖2 ≤ ‖ψ(u)− ψ(v)‖2 ≤ (1 + ε)‖u− v‖2
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Basic Results Chernoff’s bounding method

Application: Stable Embedding

Original proof utilized geometric approximation theory

Simplified and tightened by Frankl and Maehara, Indyk and Motwani,
Dasgupta and Gupta, using random mappings/concentration of
measure
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Basic Results Chernoff’s bounding method

Application: Stable Embedding:
Proof of J-L theorem

Choose mapping

ψ(x) :=


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 an2 · · · amn

x = Ax

where aij ∼ N
(
0, 1

m

)
, indepdenent.

Given set P of N points, there are
(
N
2

)
vectors x = u− v, u, v ∈ P.
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Basic Results Chernoff’s bounding method

Application: Stable Embedding:
Proof of J-L theorem, step 1

For fixed x consider y = Ax.

By properties of Gaussian variables, yi ∼ N
(

0,
‖x‖22
m

)
, independent.

E
[
‖Ax‖22

]
= E

[
‖y‖22

]
= E

[∑m
i=1 y

2
i

]
= ‖x‖22

By “Norm of a Random Vector” result, for 0 < ε < 0.5,

Pr
[
(1− ε)‖x‖22 ≥ ‖Ax‖22 ≥ (1 + ε)‖x‖22

]
≤ 2e−

ε2m
6
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Basic Results Chernoff’s bounding method

Application: Stable Embedding:
Proof of J-L theorem, step 2

Now consider
(
N
2

)
vectors x.

Using union bound P (A ∪B) < P (A) + P (B),

Pr
[
(1− ε)‖x‖22 ≥ ‖Ax‖22 ≥ (1 + ε)‖x‖22

]
≤ 2

(
N

2

)
e−

ε2m
6

≤ 2 (eN/2)2 e−
ε2m
6

=
1

2
e2e−

ε2m
6

+2 logN

Probability of not achieving JL-embedding small if

m > O
(

logN
min(ε,0.5)2

)
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Basic Results Chernoff’s bounding method

Application: Stable Embedding:
Proof of J-L theorem, step 3

Once the probability of failure drops below 1, a mapping exists.

A linear mapping that is generated randomly will work with high

probability for m > m0 = O
(
logN
ε2

)
.

Probability of success depends exponentially on m.
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Basic Results Chernoff’s bounding method

Application: Trace Estimate:
Problem Statement

Estimate of trace for symmetric M ∈ Rn×n:

Select x ∼ N (0, I).
Calculate r = x′(Mx).

E [r] = trM .

Using eigenvalue/eigenvector decomposition of M = UDU ′,

r = x′UDU ′x = z′Dz =

n∑
i=1

λiz
2
i

where zi ∼ N (0, I), λi: eigenvalues of M .
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Basic Results Chernoff’s bounding method

Application: Trace Estimate:
Apply Chernoff Bound

Chernoff bound (0 < ε < 1):

Pr [r ≤ (1− ε)trM ]] ≤ es(1−ε)trME
[
e−s

∑
λiz

2
i

]
We found

E
[
e−sλiz

2
i

]
=

1√
1 + 2sλi

Thus

Pr [r ≤ (1− ε)trM ]] ≤ es(1−ε)trM∏
i

√
1 + 2sλi

≤ e−εs(trM)es
2
∑
i λ

2
i
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Basic Results Chernoff’s bounding method

Application: Trace Estimate:
Result

Bound so far

Pr [r ≤ (1− ε)trM ]] ≤ e−εs(trM)es
2
∑
i λ

2
i

Optimal s = ε(trM)
2
∑
i λ

2
i

Pr [r ≤ (1− ε)trM ]] ≤ e−ε2/4γ(M)

where γ(M) =
∑
i λ

2
i

trM2 =
∑
i λ

2
i

(
∑
i λi)

2

γ(M) is related to the “spread” of eigenvalues

M orthonormal, γ(M) = 1
n .
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Basic Results Hoeffding’s Inequality

The Statement of Hoeffding’s Inequality

Problem: the moment generating function is not always easy to find,
(any may not exist.)

Theorem (Hoeffding’s Inequality)

Let X be a bounded random variable with mean 0 and a ≤ X ≤ b. Then
for s > 0

E
[
esX
]
≤ es2(b−a)2/8

Proof: Use convexity of the exponential function: for s ∈ [a, b],

esx ≤ x− a
b− a

esb +
b− x
b− a

esa
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Basic Results Hoeffding’s Inequality

Hoeffding’s Tail Inequality

Plugging into Chernoff’s bound:

Theorem

Let Xi be independent bounded random variables and ai ≤ Xi ≤ bi. Let
Sn =

∑n
i=1Xi. Then for all ε > 0

Pr [Sn ≥ E [Sn] + ε] ≤ exp

(
−2t2∑n

i=1(bi − ai)2

)
Pr [Sn ≤ E [Sn]− ε] ≤ exp

(
−2t2∑n

i=1(bi − ai)2

)
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Basic Results Hoeffding’s Inequality

Application: Inner-Product of Sequence with Rademacher
Distribution

Suppose X is a length n random vector with elements drawn
independently from {−, 1, 1} with equal probability
Let w be a length n vector with deterministic entries
Consider inner product

Sn = 〈w,X〉 =

n∑
i=1

wiXi

Note that wiXi is a random variable bounded between −wi and wi,
and E [Sn] = 0.
Using Hoeffding’s Tail Inequality:

Pr [|Sn| ≥ ε] ≤ exp

(
−2t2∑n
i=1(2wi)

2

)
Pr [|Sn| ≥ ε] ≤ exp

(
−t2

2‖w‖22

)
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Logarithmic Sobolev inequalities

What comes next?

So far, we have looked at inequalities for the 2-norm and inner
products (which is still sums of random variables)

In what follows, we will look at some inequalities that are useful for
general functions of independent (but not necessarily identically
distributed) random variables, which are not necessarily bounded

Z := g(X1, · · · , Xn)
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Logarithmic Sobolev inequalities Efron-Stein Inequality

Prediction

Prediction plays an important role in signal processing

Basic problem: Given measurement of Y , estimate X.

Y : radar return, X: airplane location
Y : reflectance measurement, X film thickness
· · ·

Theorem (Minimum Mean Square Estimate)

Given random variables X and Y , the (measureable) function g(Y ) that
minimizes

E
[
(X − g(Y ))2

]
is the conditional mean

ĝ(Y ) = E [X|Y ]
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Logarithmic Sobolev inequalities Efron-Stein Inequality

Efron-Stein Inequality, conditional mean version

Definition

Given (independent) random variables X1, · · · , Xn and measurable
function Z = g(X1, · · · , Xn), define

E [Z|X−i] := E [Z|X1, · · · , Xi−1, Xi+1, · · · , Xn]

Theorem (Efron-Stein Inequality, conditional mean version)

Var (Z) ≤
n∑
i=1

E
[
(Z − E [Z|X−i])2

]

Proof: See, e.g. Lugosi. Uses simple properties of conditional
expectation.

Note: If Z is sum of Xi, then E
[
(Z − E [Z|X−i])2

]
= Var (Xi) and

equality is achieved.
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Logarithmic Sobolev inequalities Efron-Stein Inequality

Efron-Stein Inequality:
Modification of conditional mean

Definition

Given random variables X1, · · · , Xn and measurable function
Z = g(X1, · · · , Xn), let X̃i be independent and identically distributed as
Xi and define

Zi := g(X1, · · · , Xi−1, X̃i, Xi+1, · · · , Xn)

For any iid random variables X, Y

Var (X) =
1

2
E
[
(X − Y )2

]
= E

[
(X − Y )2IX>Y

]
Note that Zi and E [Z|X−i] are iid, conditioned on X−i.
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Logarithmic Sobolev inequalities Efron-Stein Inequality

Efron-Stein Inequality:
Theorem Statement

Theorem (Efron-Stein Inequality)

Var (Z) ≤ 1

2

n∑
i

E
[
(Z − Zi)2

]
=

n∑
i

E
[
(Z − Zi)2 IZ>Zi

]

Can be used with Chebyshev inequality, but doesn’t give exponential
bounds.
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Logarithmic Sobolev inequalities Efron-Stein Inequality

Application: Largest Eigenvalue of a Random Matrix:
Problem Statement

Let A ∈ Rn×n be a symmetric real matrix with elements [A]ij ,
1 ≤ i ≤ j ≤ n independent random variables with magnitude
bounded by 1.

Let λi be the (real) eigenvalues of A, and define

Z = max
i
λi

is Z concentrated around its mean?
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Logarithmic Sobolev inequalities Efron-Stein Inequality

Application: Largest Eigenvalue of a Random Matrix:
Characterization of Max Eigenvalue

Max gain property of largest eigenvalue of a symmetric matrix.

Z = max
‖u‖=1

u′Au

The unit eigenvector v associated with the max eigenvalue attains the
max gain.
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Logarithmic Sobolev inequalities Efron-Stein Inequality

Application: Largest Eigenvalue of a Random Matrix:
Find Bound on Perturbed Value

Let Ã be matrix obtained by replacing [A]ij with an iid copy, and Zij
be the max eigenvalue of this matrix. Then

(Z − Zij)IZ>Zij ≤ (v′Av − v′Ãv)IZ>Zij
≤
(
vi([A]ij − [Ã]ij)vj

)
+

Since [A]ij and −[Ã]ij are bounded by 1,

(Z − Zij)IZ>Zij ≤ 2|vivj |
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Logarithmic Sobolev inequalities Efron-Stein Inequality

Application: Largest Eigenvalue of a Random Matrix:
Result

Result:
Var (Z) ≤

∑
1≤i≤j≤n

4|vivj |2 ≤ 4‖v‖2 = 4

Using Chebyshev’s Inequality,

Pr [|Z − E [Z]| ≥ ε] ≤ 4

ε2
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Logarithmic Sobolev inequalities Entropy Method - Logarithmic Sobolev Inequality

Towards Exponential Bounds:
Preliminaries

Let M(s) = E
[
esZ
]

be the moment generating function of Z.
If it exists,

E [Z] = M ′(s)
∣∣
s=0

=
M ′(s)

M(s)

∣∣∣∣
s=0

Suppose there exists C > 0 such that the following bound holds:

F ′(s) < C

Then clearly for s > 0, F (s) < F (0) + sC.
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Logarithmic Sobolev inequalities Entropy Method - Logarithmic Sobolev Inequality

Towards Exponential Bounds:
What if...

Suppose
M ′(s)

sM(s)
− logM(s)

s2
≤ C

Then with F (s) = logM(s)
s ,

F ′(s) ≤ C
Thus, for s > 0,

logM(s)

s
< lim

s→0

logM(s)

s
+ sC

=
M ′(s)

M(s)

∣∣∣∣
s=0

+ sC

= E [Z] + sC

Implying
M(s) < esE[Z]+s

2C
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Logarithmic Sobolev inequalities Entropy Method - Logarithmic Sobolev Inequality

Towards Exponential Bounds:
Recap

Inequality
sM ′(s)−M(s) logM(s) ≤ s2CM(s)

implies the bound on moment generating function

M(s) < esE[Z]+s
2C .

This can be used with Chebyshev’s bounding method to show, e.g.

Pr [Z − E [Z] ≥ ε] ≤ e−ε2/4C
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Logarithmic Sobolev inequalities Entropy Method - Logarithmic Sobolev Inequality

Entropy Method

Note that since
Var (Z) = E

[
Z2
]
− (E [Z])2

the conditional mean version of the Efron-Stein Inequality can be
re-written as

E [φ(Z)]− φ (E [Z]) ≤ 1

2

n∑
i=1

E [E [φ(Z)|X−i]− φ (E [Z|X−i])]

where φ(z) = z2.

Idea: Prove this is true with for φ(z) = z log(z), and use Z ← esZ ,
since in this case

E [φ(Z)] = sM ′(s), φ (E [Z]) = M(s) logM(s)
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Logarithmic Sobolev inequalities Entropy Method - Logarithmic Sobolev Inequality

Why is this called Entropy Method?

Definition

Given two probability distributions P and Q with densities p(x) and q(x),
define the relative entropy (or Kullback-Leibler divergence) of P from Q to
be

D(P ||Q) =

∫
p(x) log

p(x)

q(x)
dx

Given an optimal coding of Q, the relative entropy is the expected
extra number of bits needed to transmit samples from P using this
code.
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Logarithmic Sobolev inequalities Entropy Method - Logarithmic Sobolev Inequality

Entropy interpretation

Given distribution P of Xi with density p(x), Let Q be the
distribution with density q(X) = g(X)p(X).

Interpretation: Let E [Z] = 1. Then

E [φ(Z)]− φ (E [Z]) = E [Z log(Z)]− E [Z] log(E [Z])

= E [Z log(Z)]

=

∫
g(x) log(g(x))p(x)dx

=

∫
q(x) log

q(x)

p(x)
dx

= D(P ||Q)
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Logarithmic Sobolev inequalities Entropy Method - Logarithmic Sobolev Inequality

Tensorization inequality of the entropy

Theorem

Let φ(x) = x log(x) for x > 0. Let X1, · · · , Xn be independent random
variables, and let g be a positive-valued function of these variables, with
Z = g(X1, · · · , Xn). Then for φ(z) = z log(z),

E [φ(Z)]− φ (E [Z]) ≤ 1

2

n∑
i

E [E [φ(Z)|X−i]− φ (E [Z|X−i])]

Proof: Lugosi, Ledoux.
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A Logarithmic Sobolev Inequality...

Theorem

Suppose there exists a positive constant C such that (a.s.)

n∑
i=1

(Z − Zi)2IZ>Zi ≤ C.

Let M(s) = E
[
esZ
]

be the moment generating function of Z. Then

sM ′(s)−M(s) logM(s) ≤ s2CM(s)

This is exactly the kind of bound we are looking for!

Proof sketch: bound right hand side using

E
[
φ(esZ)|X−i

]
− φ

(
E
[
esZ |X−i

])
≤ E

[
s2esZ(Z − Zi)2IZ>Zi |X−i

]
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... Gives a Concentration of Measure Inequality

Corollary

Suppose there exists a positive constant C such that

n∑
i=1

(Z − Zi)2IZ>Zi ≤ C.

Then for all t > 0,

Pr [Z − E [Z] ≥ ε] ≤ e−ε2/4C
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Application: Largest Eigenvalue of a Random Matrix, again

Theorem

Let A ∈ Rn×n be a symmetric real matrix with elements [A]ij ,
1 ≤ i ≤ j ≤ n independent random variables with magnitude bounded by
1. Let Z be the max eigenvalue of A. Then

Pr [Z − E [Z] ≥ ε] ≤ e−ε2/16
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Conclusion

Everything starts with Markov’s inequality

For exponential bounds, we needed

Chernoff’s bounding method
Logarithmic Sobolev Inequality

Next lecture: Concentration of Measure applied to Compressive
Sensing
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