Concentration of measure: fundamentals and tools

Tyrone Vincent, Luis Tenorio and Michael Wakin

Colorado School of Mines
1 Introduction
 - Motivation
 - Examples

2 Basic Results
 - Markov and Chebyshev inequalities
 - Chernoff’s bounding method
 - Hoeffding’s Inequality

3 Logarithmic Sobolev inequalities
 - Efron-Stein Inequality
 - Entropy Method - Logarithmic Sobolev Inequality
Concentration of Measure:
What is it?

- Recall: the Weak Law of Large Numbers
 - X_i are independent random variables with common mean μ and uniformly bounded variance.
 - $\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$.
 - Result:
 \[
 \forall \epsilon > 0 \quad \lim_{n \to \infty} \Pr \left[|\bar{X}_n - \mu| < \epsilon \right] = 1
 \]

- This is a statement about a particular function of independent random variables being concentrated about its mean
 \[
 \bar{X}_n = f (X_1, X_2, \cdots, X_n)
 \]
Concentration of Measure:
The behavior of functions of independent random variables

- Other functions are of interest, especially the norm of a linear mapping
 \[f(X_1, X_2, \cdots, X_n) = \|\Phi X\|_2 \]

- Possible mappings \(\Phi \)
 - Projection Operator
 - Convolution Operator
 - Dictionary

- Concentration probabilities for finite \(n \) are useful
- Rates of decay can be important (want tight bounds)
Example 1: Stable Embeddings

- Map set of N data points into lower dimensional space while preserving pair-wise distances.
 - Possible applications: search for nearest neighbors, compact data representations, clustering
- Questions:
 - For a given N and n, what is the required m to meet a specific distortion bound? (Johnson and Lindenstrauss)
 - How do we find the mapping ψ?
Example 2: Signal Recovery

- Basic signal processing question: How many measurements needed to represent a signal?

![Diagram]

- High Dimensional Signal z
- Measurement Process
- Sampled Signal y_m
Example 2: Signal Recovery:
Spectral Recovery

- Answer depends on signal model \((s \in S)\) and measurement model \((y_m = \phi_m(s))\).
- Signal model: Signal has spectral representation (in Fourier basis)
 \[s(t) = \sum_k \alpha_k e^{j\omega_0 kt} \]
- Measurement model: Sampling
 \[y_m = s(m\Delta t) \]
- Nyquist theorem: Original signal \(s\) can be recovered from samples \(y_m\) (over one period) if the sampling rate is twice the signal bandwidth.
Example 2: Signal Recovery: Compressive Sensing

- Compressive Sensing has different signal and measurement models.
- Signal model: Signal has sparse representation on some basis s.

\[\Phi \]

- Measurement model: Linear mapping

Questions (Answered next lecture):
- What are the conditions on the measurement process that guarantee that all signals s of given sparsity can be recovered?
- How can we design a good measurement process?
Example 3: Trace Estimate of a Matrix

- In large scale problems, the matrix multiplication Mx may be feasible, but $\text{tr}(M)$ may not be.
 - M may not fit in memory, and may be defined via other operations
- Estimate of trace for symmetric $M \in \mathbb{R}^{n \times n}$:
 - Select $x \sim \mathcal{N}(0, I)$.
 - Calculate $r = x'(Mx)$.
- $\mathbb{E}[r] = \text{tr}M$.
- Does this estimate concentrate around its mean? How does the concentration probability depend on the properties of M?
The Statement of Markov’s Inequality

Theorem (Markov’s Inequality)

For any nonnegative random variable X with finite mean and $t > 0$,

$$\Pr [X \geq t] \leq \frac{E[X]}{t}$$
Proof of Markov’s Inequality

\[E[X] \geq t \Pr [X \geq t] \]
Theorem (Chebyshev's Inequality)

For random variable X with finite variance σ^2,

$$\Pr [|X - \mathbb{E}[X]| \geq t] \leq \frac{\sigma^2}{t^2} \quad \forall t > 0$$
Proof of Chebyshev’s Inequality

- Note that \(\Pr \left[|X - \mathbb{E}[X]| \geq t \right] = \Pr \left[|X - \mathbb{E}[X]|^2 \geq t^2 \right] \)

- Apply Markov’s Inequality to the random variable

 \[\phi = |X - \mathbb{E}[X]|^2. \]

- \(\mathbb{E}[\phi] = \text{Var}(X) \)

 \[\Pr [\phi \geq t^2] \leq \frac{\mathbb{E}[\phi]}{t^2} \]

 \[\Pr \left[|X - \mathbb{E}[X]|^2 \geq t^2 \right] \leq \frac{\text{Var}(X)}{t^2} \]

 \[\Pr [|X - \mathbb{E}[X]| \geq t] \leq \frac{\text{Var}(X)}{t^2} \]
Application of Chebyshev’s Inequality: The Weak Law of Large Numbers

- \(X_i \) are independent random variables with common mean \(\mu \) and uniform variance bound \(\sigma_{sup}^2 \)
- \(\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i \).

\[
\mathbb{E} [\bar{X}_n] = \mu
\]

\[
\text{Var} (\bar{X}_n) = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var} (X_i)
\]

\[
\leq \frac{1}{n} \sup_{i} \text{Var} (X_i) =: \frac{\sigma_{sup}^2}{n}
\]

- Chebyshev’s Inequality

\[
\Pr \left[\left| \bar{X}_n - \mu \right| \geq \epsilon \right] \leq \frac{\sigma_{sup}^2}{n\epsilon^2}
\]
How Tight is Chebyshev’s Inequality?

- Chebyshev bound

\[\Pr \left[\left| \bar{X}_n - \mu \right| \geq \epsilon \right] \leq \frac{\sigma^2 \sup_n}{n\epsilon^2} \]

- Suppose \(X_i \) are Gaussian, \(X_i \sim \mathcal{N}(\mu, \sigma^2) \)

- Then \(\bar{X}_n \sim \mathcal{N}(\mu, \sigma^2/n) \) (would approach Gaussian regardless by CLT)

- From tail bound on Gaussian distribution,

\[\Pr \left[\left| \bar{X}_n - \mu \right| \geq \epsilon \right] \leq \frac{\sigma}{\epsilon \sqrt{2\pi n}} e^{-n\epsilon^2/(2\sigma^2)} \]

- Chebyshev’s bound decreases as \(1/n \). The actual probability decreases exponentially in \(n \).
Comparison of bounds

- Exponential dependence implies \textit{critical} \(n \). If probability of failure is small for \(n = n_0 \), it is \textit{really} small for \(n = 10n_0 \).
Idea of Chernoff’s bounding method

- For Chebyshev’s bound, we applied the second moment function $\phi(x) = x^2$ before applying Markov’s inequality.
- Some moments may be better than others.
- Idea: choose
 \[
 \phi(x, s) = e^{sx},
 \]
 (which includes all moments,) then optimize over s.

Process for Chernoff’s bounding method

- Given: random variable X.
- By monotonicity of e^{sx} for $s > 0$,
 \[\Pr [X \geq t] = \Pr [e^{sX} \geq e^{st}] \]
- Apply Markov’s inequality to right hand side
 \[\Pr [X \geq t] \leq \frac{\mathbb{E} [e^{sX}]}{e^{st}} \]
- $\mathbb{E} [e^{sX}]$ is moment generating function for X
Chernoff’s bounding method summary

Theorem (Chernoff’s bounding method)

For any random variable X and $t > 0$,

$$
\Pr [X \geq t] \leq \min_{s > 0} \frac{\mathbb{E} [e^{sX}]}{e^{st}}
$$

$$
\Pr [X \leq t] \leq \min_{s > 0} \frac{\mathbb{E} [e^{-sX}]}{e^{-st}}
$$

when RHS exists.
Application: Norm of a Random Vector

Let

\[X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix} \]

be a Gaussian random vector with mean 0 and covariance matrix \(P \).

Does \(\|X\|_2^2 \) concentrate around its mean?
Application: Norm of a Random Vector

Step 1: Moment Generating Function

- **Moment Generating Function for $\|X\|^2_2$:**

 \[
 \mathbb{E} \left[e^{\pm s \|X\|^2_2} \right] = \frac{1}{\sqrt{\det (I \pm 2sP)}}
 \]

- **Proof: Completion of squares**

- **Special case:** $P = I$ ($\|X\|^2_2 \sim \chi^2_n$)

 \[
 \mathbb{E} \left[e^{s \|X\|^2_2} \right] = (1 - 2s)^{-\frac{n}{2}}
 \]
Application: Norm of a Random Vector

Step 2: Use Chernoff’s Method

- Concentration of norm of $X \sim \mathcal{N}(0, \sigma^2 I)$ around mean.
- Expected Norm

$$\mathbb{E} \left[\|X\|_2^2 \right] = \sum_{i=1}^{n} \mathbb{E} \left[X_i^2 \right] = n \text{Var} (X_1) = n\sigma^2$$

- Chernoff’s bound, $\epsilon > 0$:

$$\Pr \left[\|X\|_2^2 \geq (1 + \epsilon) \mathbb{E} \left[\|X\|_2^2 \right] \right] \leq \min_{s>0} \left(1 - 2s\sigma^2 \right)^{-\frac{n}{2}} e^{-s(1+\epsilon)n\sigma^2}$$
Application: Norm of a Random Vector

Step 3: Optimize over s

\[
\Pr \left[\|X\|_2^2 \geq (1 + \epsilon) \mathbb{E} \left[\|X\|_2^2 \right] \right] \leq \min_{s > 0} \left(1 - 2s\sigma^2 \right)^{-\frac{n}{2}} e^{-s(1+\epsilon)n\sigma^2}
\]

optimal $s = \frac{\epsilon}{2(1+\epsilon)\sigma^2}$

\[
\Pr \left[\|X\|_2^2 \geq (1 + \epsilon) \mathbb{E} \left[\|X\|_2^2 \right] \right] \leq \left(1 + \epsilon e^{-\epsilon} \right)^{\frac{n}{2}}
\]

\[
\Pr \left[\|X\|_2^2 \geq (1 + \epsilon) \mathbb{E} \left[\|X\|_2^2 \right] \right] \leq e^{-\epsilon^2 n/6} \quad 0 < \epsilon < 1/2
\]
Application: Norm of a Random Vector:

Result

\[
\Pr \left[\|X\|^2_2 \geq (1 + \epsilon) \mathbb{E} \left[\|X\|^2_2 \right] \right] \leq e^{-\epsilon^2 n/6}
\]
\[
\Pr \left[\|X\|^2_2 \leq (1 - \epsilon) \mathbb{E} \left[\|X\|^2_2 \right] \right] \leq e^{-\epsilon^2 n/4}
\]

- In high dimensions, \(X \sim \mathcal{N}(0, \frac{1}{n} I) \) is concentrated near the unit sphere
Application: Stable Embedding

Theorem (Johnson-Lindenstrauss)

Given \(\epsilon > 0 \) and integer \(N \), let \(m \) be a positive integer such that

\[
m \geq m_0 = O \left(\frac{\log N}{\epsilon^2} \right).
\]

For every set \(\mathbb{P} \) of \(N \) points in \(\mathbb{R}^n \), there exists \(\psi : \mathbb{R}^n \to \mathbb{R}^m \) such that for all \(u, v \in \mathbb{P} \),

\[
(1 - \epsilon) \| u - v \|^2 \leq \| \psi(u) - \psi(v) \|^2 \leq (1 + \epsilon) \| u - v \|^2
\]
Application: Stable Embedding

- Original proof utilized geometric approximation theory
- Simplified and *tightened* by Frankl and Maehara, Indyk and Motwani, Dasgupta and Gupta, using random mappings/concentration of measure
Application: Stable Embedding:
Proof of J-L theorem

- Choose mapping
 \[\psi(x) := \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{n2} & \cdots & a_{mn} \end{bmatrix} x = Ax \]

 where \(a_{ij} \sim \mathcal{N}(0, \frac{1}{m}) \), independent.

- Given set \(\mathcal{P} \) of \(N \) points, there are \(\binom{N}{2} \) vectors \(x = u - v \), \(u, v \in \mathcal{P} \).
Application: Stable Embedding:
Proof of J-L theorem, step 1

- For fixed x consider $y = Ax$.
- By properties of Gaussian variables, $y_i \sim \mathcal{N}(0, \frac{\|x\|_2^2}{m})$, independent.
- $\mathbb{E}[\|Ax\|_2^2] = \mathbb{E}[\|y\|_2^2] = \mathbb{E} [\sum_{i=1}^{m} y_i^2] = \|x\|_2^2$
- By “Norm of a Random Vector” result, for $0 < \epsilon < 0.5$,

$$\Pr [(1 - \epsilon)\|x\|_2^2 \geq \|Ax\|_2^2 \geq (1 + \epsilon)\|x\|_2^2] \leq 2e^{-\frac{\epsilon^2 m}{6}}$$
Application: Stable Embedding:
Proof of J-L theorem, step 2

- Now consider \(\binom{N}{2} \) vectors \(x \).
- Using union bound \(P(A \cup B) < P(A) + P(B) \),

\[
\Pr \left[(1 - \epsilon)\|x\|_2^2 \geq \|Ax\|_2^2 \geq (1 + \epsilon)\|x\|_2^2 \right] \leq 2 \binom{N}{2} e^{-\frac{\epsilon^2 m}{6}} \\
\leq 2 \left(\frac{eN}{2} \right)^2 e^{-\frac{\epsilon^2 m}{6}} \\
= \frac{1}{2} e^2 e^{-\frac{\epsilon^2 m}{6}} + 2 \log N
\]

- Probability of not achieving JL-embedding small if

\[
m > O \left(\frac{\log N}{\min(\epsilon, 0.5)^2} \right)
\]
Application: Stable Embedding:
Proof of J-L theorem, step 3

- Once the probability of failure drops below 1, a mapping exists.
- A *linear* mapping that is generated *randomly* will work with high probability for \(m > m_0 = O \left(\frac{\log N}{\epsilon^2} \right) \).
- Probability of success depends exponentially on \(m \).
Application: Trace Estimate:

Problem Statement

- Estimate of trace for symmetric $M \in \mathbb{R}^{n \times n}$:
 - Select $x \sim \mathcal{N}(0, I)$.
 - Calculate $r = x'(Mx)$.
- $\mathbb{E}[r] = \text{tr}M$.
- Using eigenvalue/eigenvector decomposition of $M = UDU'$,

\[
 r = x'UDU'x = z'Dz = \sum_{i=1}^{n} \lambda_i z_i^2
\]

where $z_i \sim \mathcal{N}(0, I)$, λ_i: eigenvalues of M.
Application: Trace Estimate:

Apply Chernoff Bound

- Chernoff bound \((0 < \epsilon < 1)\):

\[
\Pr [r \leq (1 - \epsilon)\text{tr}M] \leq e^{s(1-\epsilon)\text{tr}M} \mathbb{E} \left[e^{-s \sum \lambda_i z_i^2} \right]
\]

- We found

\[
\mathbb{E} \left[e^{-s \lambda_i z_i^2} \right] = \frac{1}{\sqrt{1 + 2s \lambda_i}}
\]

- Thus

\[
\Pr [r \leq (1 - \epsilon)\text{tr}M] \leq \frac{e^{s(1-\epsilon)\text{tr}M}}{\prod_i \sqrt{1 + 2s \lambda_i}} \leq e^{-\epsilon s (\text{tr}M)} e^{s^2 \sum_i \lambda_i^2}
\]
Application: Trace Estimate:

Result

- Bound so far

\[\text{Pr} \left[r \leq (1 - \epsilon)\text{tr}M \right] \leq e^{-\epsilon s(\text{tr}M)} e^{s^2 \sum_i \lambda_i^2} \]

- Optimal \(s = \frac{\epsilon (\text{tr}M)}{2 \sum_i \lambda_i^2} \)

\[\text{Pr} \left[r \leq (1 - \epsilon)\text{tr}M \right] \leq e^{-\epsilon^2 / 4 \gamma(M)} \]

where \(\gamma(M) = \frac{\sum_i \lambda_i^2}{\text{tr}M^2} = \frac{\sum_i \lambda_i^2}{(\sum_i \lambda_i)^2} \)

- \(\gamma(M) \) is related to the “spread” of eigenvalues
 - \(M \) orthonormal, \(\gamma(M) = \frac{1}{n} \).
The Statement of Hoeffding’s Inequality

- Problem: the moment generating function is not always easy to find, (any may not exist.)

Theorem (Hoeffding’s Inequality)

Let X be a bounded random variable with mean 0 and $a \leq X \leq b$. Then for $s > 0$

$$E\left[e^{sX}\right] \leq e^{s^2(b-a)^2/8}$$

- Proof: Use convexity of the exponential function: for $s \in [a, b]$,

$$e^{sx} \leq \frac{x - a}{b - a} e^{sb} + \frac{b - x}{b - a} e^{sa}$$
Hoeffding’s Tail Inequality

- Plugging into Chernoff’s bound:

Theorem

Let X_i be independent bounded random variables and $a_i \leq X_i \leq b_i$. Let $S_n = \sum_{i=1}^{n} X_i$. Then for all $\epsilon > 0$

\[
\Pr [S_n \geq \mathbb{E} [S_n] + \epsilon] \leq \exp \left(\frac{-2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2} \right)
\]

\[
\Pr [S_n \leq \mathbb{E} [S_n] - \epsilon] \leq \exp \left(\frac{-2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2} \right)
\]
Application: Inner-Product of Sequence with Rademacher Distribution

- Suppose X is a length n random vector with elements drawn independently from $\{-1, 1, 1\}$ with equal probability.
- Let w be a length n vector with deterministic entries.
- Consider inner product $S_n = \langle w, X \rangle = \sum_{i=1}^{n} w_i X_i$.

Note that $w_i X_i$ is a random variable bounded between $-w_i$ and w_i, and $\mathbb{E}[S_n] = 0$.

- Using Hoeffding’s Tail Inequality:

$$\Pr \left[|S_n| \geq \epsilon \right] \leq \exp \left(\frac{-2t^2}{\sum_{i=1}^{n} \left(2w_i\right)^2} \right)$$

$$\Pr \left[|S_n| \geq \epsilon \right] \leq \exp \left(\frac{-t^2}{2\|w\|^2} \right)$$
What comes next?

- So far, we have looked at inequalities for the 2-norm and inner products (which is still sums of random variables).
- In what follows, we will look at some inequalities that are useful for general functions of independent (but not necessarily identically distributed) random variables, which are not necessarily bounded.

\[Z := g(X_1, \cdots, X_n) \]
Prediction

- Prediction plays an important role in signal processing
- Basic problem: Given measurement of Y, estimate X.
 - Y: radar return, X: airplane location
 - Y: reflectance measurement, X: film thickness
 - ...

Theorem (Minimum Mean Square Estimate)

Given random variables X and Y, the (measureable) function $g(Y)$ that minimizes

$$
\mathbb{E} \left[(X - g(Y))^2 \right]
$$

is the conditional mean

$$
\hat{g}(Y) = \mathbb{E} [X | Y]
$$
Efron-Stein Inequality, conditional mean version

Definition

Given (independent) random variables X_1, \ldots, X_n and measurable function $Z = g(X_1, \ldots, X_n)$, define

$$
\mathbb{E} [Z|X_{-i}] := \mathbb{E} [Z|X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n]
$$

Theorem (Efron-Stein Inequality, conditional mean version)

$$
\text{Var} (Z) \leq \sum_{i=1}^{n} \mathbb{E} \left[(Z - \mathbb{E} [Z|X_{-i}])^2 \right]
$$

- **Proof:** See, e.g. Lugosi. Uses simple properties of conditional expectation.

- **Note:** If Z is sum of X_i, then $\mathbb{E} \left[(Z - \mathbb{E} [Z|X_{-i}])^2 \right] = \text{Var} (X_i)$ and equality is achieved.
Efron-Stein Inequality:
Modification of conditional mean

Definition
Given random variables X_1, \cdots, X_n and measurable function $Z = g(X_1, \cdots, X_n)$, let \tilde{X}_i be independent and identically distributed as X_i and define

$$Z_i := g(X_1, \cdots, X_{i-1}, \tilde{X}_i, X_{i+1}, \cdots, X_n)$$

- For any iid random variables X, Y

$$\text{Var}(X) = \frac{1}{2} \mathbb{E} [(X - Y)^2] = \mathbb{E} [(X - Y)^2 \mathbb{I}_{X > Y}]$$

- Note that Z_i and $\mathbb{E} [Z|X_{-i}]$ are iid, conditioned on X_{-i}.
Efron-Stein Inequality:
Theorem Statement

Theorem (Efron-Stein Inequality)

\[\text{Var}(Z) \leq \frac{1}{2} \sum_{i} \mathbb{E} \left[(Z - Z_i)^2 \right] = \sum_{i} \mathbb{E} \left[(Z - Z_i)^2 \mathbb{I}_{Z > Z_i} \right] \]

- Can be used with Chebyshev inequality, but doesn’t give exponential bounds.
Application: Largest Eigenvalue of a Random Matrix:

Problem Statement

- Let $A \in \mathbb{R}^{n \times n}$ be a symmetric real matrix with elements $[A]_{ij}$, $1 \leq i \leq j \leq n$ independent random variables with magnitude bounded by 1.
- Let λ_i be the (real) eigenvalues of A, and define

$$Z = \max_i \lambda_i$$

- is Z concentrated around its mean?
Application: Largest Eigenvalue of a Random Matrix:
Characterization of Max Eigenvalue

- Max gain property of largest eigenvalue of a symmetric matrix.

\[Z = \max_{\|u\|=1} u' Au \]

- The unit eigenvector \(v \) associated with the max eigenvalue attains the max gain.
Let \(\tilde{A} \) be matrix obtained by replacing \([A]_{ij}\) with an iid copy, and \(Z_{ij} \) be the max eigenvalue of this matrix. Then

\[
(Z - Z_{ij})I_{Z > Z_{ij}} \leq (v' Av - v' \tilde{A}v)I_{Z > Z_{ij}} \\
\leq \left(v_i ([A]_{ij} - [\tilde{A}]_{ij}) v_j \right)_+
\]

Since \([A]_{ij}\) and \(-[\tilde{A}]_{ij}\) are bounded by 1,

\[
(Z - Z_{ij})I_{Z > Z_{ij}} \leq 2|v_i v_j|
\]
Application: Largest Eigenvalue of a Random Matrix:

Result:

\[\text{Var}(Z) \leq \sum_{1 \leq i \leq j \leq n} 4|v_i v_j|^2 \leq 4\|v\|^2 = 4 \]

Using Chebyshev’s Inequality,

\[\Pr[|Z - \mathbb{E}[Z]| \geq \epsilon] \leq \frac{4}{\epsilon^2} \]
Towards Exponential Bounds:

Preliminaries

- Let $M(s) = \mathbb{E}[e^{sZ}]$ be the moment generating function of Z. If it exists,

$$\mathbb{E}[Z] = M'(s)\bigg|_{s=0} = \frac{M'(s)}{M(s)}\bigg|_{s=0}$$

- Suppose there exists $C > 0$ such that the following bound holds:

$$F'(s) < C$$

Then clearly for $s > 0$, $F(s) < F(0) + sC$.
Towards Exponential Bounds:

What if...

- Suppose

\[\frac{M'(s)}{sM(s)} - \frac{\log M(s)}{s^2} \leq C \]

- Then with \(F(s) = \frac{\log M(s)}{s} \),

\[F'(s) \leq C \]

- Thus, for \(s > 0 \),

\[\frac{\log M(s)}{s} < \lim_{s \to 0} \frac{\log M(s)}{s} + sC \]

\[= \frac{M'(s)}{M(s)} \bigg|_{s=0} + sC \]

\[= \mathbb{E}[Z] + sC \]

- Implying

\[M(s) < e^{s\mathbb{E}[Z]+s^2C} \]
Towards Exponential Bounds:

Recap

- Inequality

\[sM'(s) - M(s) \log M(s) \leq s^2 CM(s) \]

implies the bound on moment generating function

\[M(s) < e^{s\mathbb{E}[Z] + s^2 C}. \]

- This can be used with Chebyshev’s bounding method to show, e.g.

\[\Pr \left[Z - \mathbb{E}[Z] \geq \epsilon \right] \leq e^{-\epsilon^2/4C} \]
Entropy Method

- Note that since
 \[\text{Var} (Z) = \mathbb{E} [Z^2] - (\mathbb{E} [Z])^2 \]
 the conditional mean version of the Efron-Stein Inequality can be re-written as
 \[
 \mathbb{E} [\phi(Z)] - \phi (\mathbb{E} [Z]) \leq \frac{1}{2} \sum_{i=1}^{n} \mathbb{E} [\mathbb{E} [\phi(Z)|X_{-i}] - \phi (\mathbb{E} [Z|X_{-i}])]
 \]
 where \(\phi(z) = z^2 \).

- Idea: Prove this is true with for \(\phi(z) = z \log(z) \), and use \(Z \leftarrow e^{sZ} \), since in this case
 \[
 \mathbb{E} [\phi(Z)] = sM'(s), \quad \phi (\mathbb{E} [Z]) = M(s) \log M(s)
 \]
Why is this called Entropy Method?

Definition

Given two probability distributions P and Q with densities $p(x)$ and $q(x)$, define the relative entropy (or Kullback-Leibler divergence) of P from Q to be

$$D(P||Q) = \int p(x) \log \frac{p(x)}{q(x)} \, dx$$

- Given an optimal coding of Q, the relative entropy is the expected extra number of bits needed to transmit samples from P using this code.
Entropy interpretation

- Given distribution P of X_i with density $p(x)$, Let Q be the distribution with density $q(X) = g(X)p(X)$.

- Interpretation: Let $\mathbb{E}[Z] = 1$. Then

\[
\mathbb{E}[\phi(Z)] - \phi(\mathbb{E}[Z]) = \mathbb{E}[Z \log(Z)] - \mathbb{E}[Z] \log(\mathbb{E}[Z]) \\
= \mathbb{E}[Z \log(Z)] \\
= \int g(x) \log(g(x))p(x)dx \\
= \int q(x) \log \frac{q(x)}{p(x)}dx \\
= D(P||Q)
\]
Tensorization inequality of the entropy

Theorem

Let \(\phi(x) = x \log(x) \) for \(x > 0 \). Let \(X_1, \cdots, X_n \) be independent random variables, and let \(g \) be a positive-valued function of these variables, with \(Z = g(X_1, \cdots, X_n) \). Then for \(\phi(z) = z \log(z) \),

\[
\mathbb{E} [\phi(Z)] - \phi (\mathbb{E} [Z]) \leq \frac{1}{2} \sum_{i} \mathbb{E} [\mathbb{E} [\phi(Z)|X_{-i}] - \phi (\mathbb{E} [Z|X_{-i}])]
\]

- **Proof:** Lugosi, Ledoux.
Theorem

Suppose there exists a positive constant C such that (a.s.)

$$\sum_{i=1}^{n} (Z - Z_i)^2 \mathbb{I}_{Z > Z_i} \leq C.$$

Let $M(s) = \mathbb{E} [e^{sZ}]$ be the moment generating function of Z. Then

$$sM'(s) - M(s) \log M(s) \leq s^2 CM(s)$$

- This is exactly the kind of bound we are looking for!
- Proof sketch: bound right hand side using

$$\mathbb{E} [\phi(e^{sZ})|X_{-i}] - \phi (\mathbb{E} [e^{sZ}|X_{-i}]) \leq \mathbb{E} [s^2 e^{sZ} (Z - Z_i)^2 \mathbb{I}_{Z > Z_i}|X_{-i}]$$
... Gives a Concentration of Measure Inequality

Corollary

Suppose there exists a positive constant C such that

$$
\sum_{i=1}^{n} (Z - Z_i)^2 \mathbb{1}_{Z > Z_i} \leq C.
$$

Then for all $t > 0$,

$$
\Pr \left[Z - \mathbb{E} [Z] \geq \epsilon \right] \leq e^{-\epsilon^2 / 4C}.
$$
Application: Largest Eigenvalue of a Random Matrix, again

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric real matrix with elements $[A]_{ij}$, $1 \leq i \leq j \leq n$ independent random variables with magnitude bounded by 1. Let Z be the max eigenvalue of A. Then

$$ \Pr [Z - \mathbb{E}[Z] \geq \epsilon] \leq e^{-\epsilon^2/16} $$
Conclusion

- Everything starts with Markov’s inequality
- For exponential bounds, we needed
 - Chernoff’s bounding method
 - Logarithmic Sobolev Inequality
- Next lecture: Concentration of Measure applied to Compressive Sensing