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Introduction Motivation

Concentration of Measure:
What is it?

o Recall: the Weak Law of Large Numbers

e X, are independent random variables with common mean y and
uniformly bounded variance.
o X, = %Z?:l X;.
o Result:
Ve >0 limPrH)_(n—u’<e]:1
n—oo

@ This is a statement about a particular function of independent
random variables being concentrated about its mean

X’n:f(XlaXQ?”' 7Xn)
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Concentration of Measure:

The behavior of functions of independent random variables

@ Other functions are of interest, especially the norm of a linear
mapping
F(X, Xa, o0, Xn) = [ 2X])2
@ Possible mappings ®

e Projection Operator
o Convolution Operator
e Dictionary

Concentration probabilities for finite n are useful

Rates of decay can be important (want tight bounds)
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Introduction [SETNIES

Example 1: Stable Embeddings

RTL

@ Map set of NV data points into lower dimensional space while
preserving pair-wise distances.
e Possible applications: search for nearest neighbors, compact data
representations, clustering
@ Questions:
e For a given N and n, what is the required m to meet a specific
distortion bound? (Johnson and Lindenstrauss)
e How do we find the mapping ¥?
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Example 2: Signal Recovery

@ Basic signal processing question: How many measurements needed to
represent a signal?

High Dimensional

Signal z Sampled Signal y.,

Measurement
Process
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Example 2: Signal Recovery:

Spectral Recovery

Answer depends on signal model (s € S) and measurement model
(ym = ¢m(5))

Signal model: Signal has spectral representation (in Fourier basis)

s(t) = Zozkejwokt
k

@ Measurement model: Sampling

Ym = s(mAL)

Nyquist theorem: Original signal s can be recovered from samples ¥,,
(over one period) if the sampling rate is twice the signal bandwidth.
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Introduction [SETNIES

Example 2: Signal Recovery:

Compressive Sensing

@ Compressive Sensing has different signal and measurement models.
@ Signal model: Signal has sparse representation on some basis
x

COITTTTTITTITTITIT )™

@ Measurement model: Linear mapping
@ Questions (Answered next lecture):

e What are the conditions on the measurement process that guarantee
that all signals s of given sparsity can be recovered?
e How can we design a good measurement process?
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Example 3: Trace Estimate of a Matrix

@ In large scale problems, the matrix multiplication Mz may be
feasible, but tr(M) may not be.
e M may not fit in memory, and may be defined via other operations
o Estimate of trace for symmetric M € R™*":
o Select  ~ N(0,1).
o Calculate r = 2/(Mz).
o E[r] =trM.
@ Does this estimate concentrate around its mean? How does the
concentration probability depend on the properties of M7
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The Statement of Markov's Inequality

Theorem (Markov's Inequality)

For any nonnegative random variable X with finite mean and t > 0,

Pr[th]gE[t]
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Proof of Markov's Inequality

rpx () tpx (z)

v

B[ t tE[lxx]
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Application of Markov's Inequality: Chebyshev's Inequality

Theorem (Chebyshev’s Inequality)

For random variable X with finite variance o2,
o2
PriX —E[X]| >t < ) VYt >0
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Proof of Chebyshev's Inequality

o Note that Pr[|X — E[X]| > #] = Pr [|X “E[X]? > t2]
o Apply Markov's Inequality to the random variable
¢ =X —E[X]P.
o E[¢] = Var (X)
E [¢]

Pro>#] < =5

Var (X)

Pr [yX—E[X]\Q > tﬂ <

Pri|X —E[X]| > 1] <~
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Basic Results Markov and Chebyshev inequalities

Application of Chebyshev's Inequality: The Weak Law of
Large Numbers

@ X; are independent random variables with common mean y and
uniform variance bound o2

. sup
° X = %Z?:IXZ"
E[%.] =y
_ 1 &
Var (Xn) = 2 Z\/ar (X3)
i=1
o2
< —sup Var (X;) =: —2
i n
@ Chebyshev's Inequality
Pr[| X > €] < Taup
(%] = < 7
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How Tight is Chebyshev's Inequality?

Chebyshev bound

J2

Pr[|X, —p| >e < =22

[ p 2 < 22

Suppose X; are Gaussian, X; ~ N (u,0?)

Then X,, ~ N(u, 0% /n) (would approach Gaussian regardless by CLT)

From tail bound on Gaussian distribution,

Pr HXn — > e] < 0 et/ (20%)

eV2mn

Chebyshev's bound decreases as 1/n. The actual probability
decreases exponentially in n.
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Comparison of bounds

107°
o
c
510—10
10—15
—— Chebyshev bound
— Gaussian Tail Bound
10720 :
10t 102

103 10%

@ Exponential dependence implies critical n. If probability of failure is
small for n = ny, it is really small for n = 10ny.
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|dea of Chernoff's bounding method

@ For Chebyshev's bound, we applied the second moment function
¢(x) = 2% before applying Markov's inequality.

@ Some moments may be better than others.

@ ldea: choose

¢($7 8) = esx7

(which includes all moments,) then optimize over s.
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Process for Chernoff’s bounding method

@ Given: random variable X.

@ By monotonicity of e** for s > 0,
Pr(X >t] = Pr[e*¥ > e*]
@ Apply Markov's inequality to right hand side

E [GSX]

PriX >t < ”

68

o E [e*X] is moment generating function for X
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Basic Results Chernoff's bounding method

Chernoff's bounding method summary

Theorem (Chernoff's bounding method)
For any random variable X and t > 0,

E [GSX]
Pr[X >t] <min
>0 est

. E [e_sx]
Pr(X <t] <min ———
>0 e—st

when RHS exists.

TLV (CSM) Concentration of Measure

21 / 59



Application: Norm of a Random Vector

o Let

be a Gaussian random vector with mean 0 and covariance matrix P.

@ Does || X |3 concentrate around its mean?
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Basic Results Chernoff's bounding method

Application: Norm of a Random Vector
Step 1: Moment Generating Function

@ Moment Generating Function for || X||3:

4 [eisuxné] _ !
det (I F2sP)

@ Proof: Completion of squares
@ Special case: P =1 (|| X3~ x2)

E [esuxng} = (1-2s)"2
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Basic Results Chernoff's bounding method

Application: Norm of a Random Vector
Step 2: Use Chernoff’'s Method

e Concentration of norm of X ~ N(0,02I) around mean.

@ Expected Norm
E [||lXx3] ZE ?] = nVar (X;) = no?

@ Chernoff’'s bound, € > 0:

5 _—s(1+€)no?

Pr[[|IX]5 > (1 + e [|[X}3]] < min (1-250%) e
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Basic Results Chernoff's bounding method

Application: Norm of a Random Vector

Step 3: Optimize over s

X 1+e X2 <m1n 1 —2s0 2\~ 2 6*8(1+6)n02
Pr[[IX |3 > (1 + €)E [ X][3]] ( %)

o Optlma| s = m

Pr{X[3 = 1+ QE [IX|3]] < (1 +e)e)?

Pr[|X[3> (1 +eE[[X[3]] <e ™™ 0<e<1/2
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Basic Results Chernoff's bounding method

Application: Norm of a Random Vector:
Result

Pr[| X3 > (1+QE [|IX[3]] < e /0
Pr[|X|3 < (1 - E [|IX[3]] < e~/

@ In high dimensions, X ~ N (0, %I) is concentrated near the unit

sphere
2 2
1
R2: R™: o
1
23 0 2 25 0 2
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Basic Results Chernoff's bounding method

Application: Stable Embedding

R’I’L

Theorem (Johnson-Lindenstrauss)

Given € > 0 and integer N, let m be a positive integer such that

log N)

€2

mZmon(

For every set P of N points in R™, there exists ¢ : R™ — R™ such that for all
u,v € P,
(L= ollu—v[* < [ (u) = p@)[* < 1+ €)llu—vff?
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Application: Stable Embedding

@ Original proof utilized geometric approximation theory

@ Simplified and tightened by Frankl and Maehara, Indyk and Motwani,
Dasgupta and Gupta, using random mappings/concentration of
measure
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Application: Stable Embedding:

Proof of J-L theorem

@ Choose mapping

a1l a2 -+ Gln
G21 Q2 - Q2n

P(x) = ] ] _ |z = Az
am1l An2 - Qmn

where a;; ~ N (0, %) indepdenent.

N

@ Given set P of IV points, there are (2

)vectors:z::u—v, u,v € P.
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Application: Stable Embedding:

Proof of J-L theorem, step 1

@ For fixed x consider y = Ax.

2
o By properties of Gaussian variables, y; ~ N (O, ”f&), independent.

o E[l|Az|3] =E[llyl3] = E[XZ, 4] = ll=l3
@ By “Norm of a Random Vector” result, for 0 < e < 0.5,

62m

Pr[(1—¢)llz]3 > [[Az[5 > (1 + €)l|l=[3] < 2e77
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Application: Stable Embedding:

Proof of J-L theorem, step 2

e Now consider (g’) vectors z.
@ Using union bound P(AU B) < P(A) + P(B),

N _2
Pﬂu—wmﬁﬂmﬁzu+awasz()e6

52m
<2(eN/2)%e™ 5

]. 7e2m
— *626 5 - t+2log N

2

@ Probability of not achieving JL-embedding small if

m> 0 ()
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Basic Results Chernoff's bounding method

Application: Stable Embedding:

Proof of J-L theorem, step 3

@ Once the probability of failure drops below 1, a mapping exists.
@ A linear mapping that is generated randomly will work with high
probability for m > mg = O <1°§2N>.

@ Probability of success depends exponentially on m.
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Application: Trace Estimate:

Problem Statement

o Estimate of trace for symmetric M € R™*":
o Select z ~ N(0,1).
o Calculate r = z/(Muz).

o E[r] =triM.

e Using eigenvalue/eigenvector decomposition of M = UDU’,
n
r=2'UDU'x = 2Dz = Z N\iz?
i=1

where z; ~ N(0,1), \;: eigenvalues of M.
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Basic Results Chernoff's bounding method

Application: Trace Estimate:
Apply Chernoff Bound

@ Chernoff bound (0 < € < 1):

Prir <(1-etrM] < eSI= M [estAizf}

e We found 1
E *3)\1'2,-2 —
[e ] VIt 25N
@ Thus

es(l—e)trM

< -
o Hi\/1+28)‘i

< e—es(trM) 652 > A2

Prr < (1 —e)trM]]
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Basic Results Chernoff's bounding method

Application: Trace Estimate:
Result

@ Bound so far
Prir < (1 —e)trM]) < p—es(trM) 52 30, N2

e(trM)

() Optlma| S = m

Pr(r < (1 - e)trM]] < e=</41(M)

DY A2
where v(M) = %}wg = (%;/\;)2

@ (M) is related to the “spread” of eigenvalues
o M orthonormal, y(M) = 1.

n
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Basic Results Hoeffding’s Inequality

The Statement of Hoeffding's Inequality

@ Problem: the moment generating function is not always easy to find,
(any may not exist.)

Theorem (Hoeffding's Inequality)

Let X be a bounded random variable with mean 0 and a < X <b. Then
for s >0

E [esX] < 652(b—a)2/8

@ Proof: Use convexity of the exponential function: for s € [a, b],

sx<a:—a & b—x
“b—a b—a

e sa
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Hoeffding's Tail Inequality

@ Plugging into Chernoff's bound:

Theorem

Let X; be independent bounded random variables and a; < X; < b;. Let
Sp =11 X;. Then for all e >0

942
Pr[S, > E[Sy] + €] <exp <2"1(b2t—a)2>

042
Pr[Sy <E[Sh] - ¢ < exp (z:_1<b2t—a>2>
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Basic Results Hoeffding’s Inequality

Application: Inner-Product of Sequence with Rademacher
Distribution

@ Suppose X is a length n random vector with elements drawn
independently from {—, 1,1} with equal probability

Let w be a length n vector with deterministic entries
Consider inner product

Sn = <w,X) = Zn:wiXi
i=1

Note that w;X; is a random variable bounded between —w; and w;,
and E[S,] = 0.
Using Hoeffding's Tail Inequality:

o942
Pr(|S,| > ¢ < exp (Zn_j;w)g>

—¢2
Pr(|S,] > ] < exp ()
! 2|wll3
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Logarithmic Sobolev inequalities

What comes next?

@ So far, we have looked at inequalities for the 2-norm and inner
products (which is still sums of random variables)

@ In what follows, we will look at some inequalities that are useful for
general functions of independent (but not necessarily identically
distributed) random variables, which are not necessarily bounded

Z = g(Xla >Xn)
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Prediction

@ Prediction plays an important role in signal processing
@ Basic problem: Given measurement of Y, estimate X.

e Y radar return, X: airplane location
o Y: reflectance measurement, X film thickness
° .-

Theorem (Minimum Mean Square Estimate)

Given random variables X and Y, the (measureable) function g(Y") that
minimizes
E[(X - g(v))’]

is the conditional mean

9(Y) =E[X]Y]
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Logarithmic Sobolev inequalities Efron-Stein Inequality

Efron-Stein Inequality, conditional mean version

Definition

Given (independent) random variables X7, --- , X,, and measurable
function Z = g(X1, -+, X,,), define

]E[Z|X—Z] = E[Z‘Xla : 7Xi—l7Xi+17"' 7XTL]

Theorem (Efron-Stein Inequality, conditional mean version)

Var(2) <> E [(Z —-E [Z|X—i])2}
=1

@ Proof: See, e.g. Lugosi. Uses simple properties of conditional
expectation.

e Note: If Z is sum of X;, then E [(Z -E [Z\X_i])z} = Var (X;) and
equality is achieved.
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Efron-Stein Inequality:

Modification of conditional mean

Definition

Given random variables X1, --- , X,, and measurable function

Z =g(X1,---,X,), let X; be independent and identically distributed as
X; and define

Zi=g(X1, -, Xim1, Xi, Xig1, -+, Xn)

@ For any iid random variables X, Y
1
Var (X) = 51@ (X -Y)?] =E[(X - Y)’Ix>y]

e Note that Z; and E [Z|X_;] are iid, conditioned on X_;.
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Efron-Stein Inequality:

Theorem Statement

Theorem (Efron-Stein Inequality)

Var (Z ZE[Z Z] ZE[Z Z)]IZ>Z]

@ Can be used with Chebyshev inequality, but doesn’t give exponential
bounds.

TLV (CSM) Concentration of Measure 44 / 59



Application: Largest Eigenvalue of a Random Matrix:

Problem Statement

o Let A € R"™™ be a symmetric real matrix with elements [A];;,
1 <1t < j < n independent random variables with magnitude
bounded by 1.

o Let \; be the (real) eigenvalues of A, and define

Z =max \;
7

@ is Z concentrated around its mean?
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Application: Largest Eigenvalue of a Random Matrix:

Characterization of Max Eigenvalue

@ Max gain property of largest eigenvalue of a symmetric matrix.

7 = max u Au
[lull=1

@ The unit eigenvector v associated with the max eigenvalue attains the
max gain.

TLV (CSM) Concentration of Measure 46 / 59



Logarithmic Sobolev inequalities Efron-Stein Inequality

Application: Largest Eigenvalue of a Random Matrix:
Find Bound on Perturbed Value

o Let A be matrix obtained by replacing [A];; with an iid copy, and Z;;
be the max eigenvalue of this matrix. Then

(Z = Zij)izsz,; < (v Av — U’flv)]lz>zij
< (w4l — [Aly)y) |

@ Since [A];; and —[A];; are bounded by 1,

(Z = Zij)lz>z,; < 2|vvjl
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Logarithmic Sobolev inequalities Efron-Stein Inequality

Application: Largest Eigenvalue of a Random Matrix:
Result

@ Result:
Var(Z) < Y Alvs* < 4ol =4

1<i<j<n

@ Using Chebyshev's Inequality,

Pr[|Z —E[Z]| > € Sé
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Logarithmic Sobolev inequalities Entropy Method - Logarithmic Sobolev Inequality

Towards Exponential Bounds:

Preliminaries

o Let M(s) =E [e*] be the moment generating function of Z.

If it exists, )
B2 = MO = S|

@ Suppose there exists C' > 0 such that the following bound holds:

F'(s) < C

Then clearly for s > 0, F(s) < F(0) 4 sC.
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Logarithmic Sobolev inequalities Entropy Method - Logarithmic Sobolev Inequality

Towards Exponential Bounds:

What if...
@ Suppose
M'(s) log M(s)
— <
sM(s) 52 ¢
@ Then with F(s) = %,
F'(s)<C
@ Thus, for s > 0,
log M (s) < lim log M (s) 4 sC
S s—0 S
M'(s)
= + sC
M(s) |,—
=E[Z] +sC

@ Implying ,
M(S) < es]E[Z]—I—s c
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Logarithmic Sobolev inequalities Entropy Method - Logarithmic Sobolev Inequality

Towards Exponential Bounds:
Recap

o Inequality
sM'(s) — M(s)log M(s) < s*CM(s)

implies the bound on moment generating function
M(S) < esE[Z]-l—s?C"
@ This can be used with Chebyshev’s bounding method to show, e.g.

Pr[Z —E[Z] > e < e /4
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Logarithmic Sobolev inequalities Entropy Method - Logarithmic Sobolev Inequality

Entropy Method

@ Note that since
Var (2) = E [2%] - (E[Z])°

the conditional mean version of the Efron-Stein Inequality can be
re-written as

E[¢(2)] - ZE 2)|Xi] = ¢ (E[Z]Xi))]

where ¢(z) = 22,

o Idea: Prove this is true with for ¢(z) = zlog(z), and use Z + e*Z,

since in this case

E[¢(2)] = sM'(s), ¢ (E[Z]) = M(s)log M(s)
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Entropy Method - Logarithmic Sobolev Inequality

Logarithmic Sobolev inequalities

Why is this called Entropy Method?

Definition
Given two probability distributions P and @ with densities p(x) and ¢(z),

define the relative entropy (or Kullback-Leibler divergence) of P from @ to
be

D(PIIQ) = | pla) o g’gidx

@ Given an optimal coding of (), the relative entropy is the expected
extra number of bits needed to transmit samples from P using this

code.
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Logarithmic Sobolev inequalities Entropy Method - Logarithmic Sobolev Inequality

Entropy interpretation

e Given distribution P of X; with density p(x), Let @ be the
distribution with density ¢(X) = g(X)p(X).

o Interpretation: Let E[Z] = 1. Then

E[p(2)] — ¢ (E[2]) = E[Z1og(Z)] — E [Z]log(E [Z])
= E[Zlog(Z)]

- /g(m) log(g(x))p(x)dx

q()
/q(a:) log mdw

D(P||Q)
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Logarithmic Sobolev inequalities

Entropy Method - Logarithmic Sobolev Inequality

Tensorization inequality of the entropy

Theorem

Let ¢(z) = xlog(x) for x > 0. Let X1,--- ,X,, be independent random
variables, and let g be a positive-valued function of these variables, with
Z =g(X1, -+ ,Xyn). Then for ¢(z) = zlog(z),

E[¢(2)] - Z Z2)|X-i] = ¢ (E[Z]Xi))]

I/\
N | =

@ Proof: Lugosi, Ledoux.
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Logarithmic Sobolev inequalities Entropy Method - Logarithmic Sobolev Inequality

A Logarithmic Sobolev Inequality...

Theorem

Suppose there exists a positive constant C' such that (a.s.)

n

D (Z = 2Z)Ngsz, < C.
=1

Let M(s) =E [e*#] be the moment generating function of Z. Then

sM'(s) — M(s)log M(s) < s>CM(s)

@ This is exactly the kind of bound we are looking for!

@ Proof sketch: bound right hand side using

E [¢(e")|X_;] — ¢ (E [e%]X_;]) < E [s%e*(Z — Z)* 1552, X ]
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Logarithmic Sobolev inequalities Entropy Method - Logarithmic Sobolev Inequality

... Gives a Concentration of Measure Inequality

Corollary

Suppose there exists a positive constant C such that

n

> (Z—2)1z52, < C.
=1

Then for all t > 0,

Pr[Z —E[Z] > € < e /A€
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Logarithmic Sobolev inequalities

Entropy Method - Logarithmic Sobolev Inequality

Application: Largest Eigenvalue of a Random Matrix, again

Theorem

Let A € R"*™ be a symmetric real matrix with elements [A];;,

1 <¢ <35 < n independent random variables with magnitude bounded by

1. Let Z be the max eigenvalue of A. Then

Pr[Z —E[Z] > € < e /16
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Logarithmic Sobolev inequalities Entropy Method - Logarithmic Sobolev Inequality

Conclusion

o Everything starts with Markov's inequality
@ For exponential bounds, we needed

e Chernoff’s bounding method
e Logarithmic Sobolev Inequality

@ Next lecture: Concentration of Measure applied to Compressive
Sensing
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