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1 Notation

Notation

• X - random variable or vector

• E [X] - expected value of random variable X.

• Var (X) - Variance of random variable X.

• Pr [A] - Probability of the event A.

• ‖ · ‖2, ‖ · ‖1 - Euclidean norm, Absolute sum norm.

2 Introduction

Abstract: This talk presents applications of concentration of measure phenomena in the emerging field of
Compressive Sensing (CS). CS builds on the premise that a signal having a sparse representation in some
basis can be recovered from a small number of linear measurements of that signal. Many of the most
effective constructions for the linear measurement operator involve random matrices, and at the heart of
much analysis in CS is a precise statistical characterization of the product of a random matrix with a sparse
signal. Building on a simple concentration of measure inequality, for example, it is possible to generalize
the Johnson-Lindenstrauss lemma and ensure an approximate distance-preserving embedding for an entire
family of sparse signals. This ”Restricted Isometry Property” for the measurement operator has been shown
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in CS to permit stable recovery of sparse signals from small numbers of measurements. We will also discuss
a related problems in Compressive Signal Processing (CSP), in which the goal is not to recover (high-
complexity question) a sparse signal (low-dimensional model) but rather to answer low-complexity questions
about arbitrary high-dimensional signals. We will discuss how concentration of measure inequalities can be
used to give performance guarantees for problems such as compressive detection and estimation.

Much thanks to Justin Romberg for permission to use the indicated figures in this presentation.

2.1 References

This is a gentle introduction to Compressive Sensing that covers some of the same material as in this talk.

E. Candès and M. Wakin, “People hearing without listening: An introduction to compressive
sampling,” IEEE Signal Processing Magazine vol. 25, no. 2, pp. 21-30, 2008.

The following are some of the first papers to articulate the process of Compressive Sensing. The first
paper gives a bound on the number of random measurements necessary for recovery using `1 optimization
that is derived by arguing about the probability of existence of a feasible dual vector. The second paper
shows that Compressive Sensing is nearly optimal - no other linear mapping followed by any decoding method
could yield lower reconstruction error (up to a constant factor) over classes of compressible signals.

E. Candès, J. Romberg, and T. Tau, “Robust uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information,” IEEE Transactions on information theory, vol.
52, no. 2, pp. 489-509, 2006.

D. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4,
pp. 12891306, 2006.

This wonderfully succinct paper gives bounds on recovery error using basis pursuit (`1 regularization) in
both the noise-free and nosy case, under the RIP assumption.

E. Candès, “The restricted isometry property and its implications for compressed sensing,”
Comptes rendus-Mathématique, vol. 346, no. 9-10, pp. 589-592, 2008.

Although this talk will focus on `1 recovery, other methods of recovery also exist. Some other methods
of recovery are discussed in these papers.

J. A. Tropp, “Greed is good: Algorithmic results for sparse approximation,” IEEE Transactions
on Information Theory, vol. 50, no. 10, pp. 2231–2242, 2004.

E. J. Candès, M. B. Wakin and S. P. Boyd, “Enhancing sparsity by reweighted `1 minimization,”
Journal of Fourier Analysis and Applications, vol. 14, no. 5, pp. 877-905, 2008.

Rick Chartrand, “Exact reconstructions of sparse signals via nonconvex minimization,” IEEE
Signal Proc. Lett., vol. 14 no.10 pp. 707-710, 2007.

Hossein Mohimani, Massoud Babaie-Zadeh, Christian Jutten, “Fast Sparse Representation based
on Smoothed L0 norm,” in: proceedings of 7th International Conference on Independent Com-
ponent Analysis and Signal Separation (ICA2007), LNCS 4666, September 2007, London, pp.
389-396.

This paper gives a proof that random measurement matrices can satisfy the RIP property withO(S log(N/S))
using concentration of measure arguments.

R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the restricted isometry
property for random matrices,” Constructive Approximation, vol. 28, no. 3, pp. 253-263, 2008.
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The previous paper uses “Johnson-Lindenstrauss Embedding” to create measurement matrices. The
following is some of the relevant literature concerning the Johnson-Lindenstrauss lemma.

P. Frankl and H. Maehara, “The Johnson-Lindenstrauss lemma at the sphericity of some graphs,”
Journal of Combinatorial Theory, Ser. B, vol. 44, no. 3, pp.355-362, 1988

P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing the curse of
dimensionality”, 30th Annual ACM Symposium on Theory of Computing, Dallas, TX, pp. 604-
613, 1998.

S. Dasgupta and A. Gupta, “An elementary proof of the Johnson-Lindenstrauss lemma”, Tech-
nical Report 99-006, UC Berkeley, March 1999.

D. Achlioptas, “Database-friendly random projections: Johnson- Lindenstrauss with binary coins,
Journal of Computer and System Sciences, vol. 66, no. 4, pp. 671687, 2003.

Compressive Sensing is closely related to basis pursuit and lasso.

R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical
Society, Series B, vol. 58, no. 1, pp. 267-288, 1996.

S.S. Chen, D. L. Donoho and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM
review, vol. 43, no. 1, pp. 129-159, 2001.

2.2 Motivation

Signal Processing in the Age of the Data Flood

Year

E
x
a
b
y
te

s

forecast

Information Created
Available Storage

2005 06 07 08 09 10 11

250

500

750

1000

1250

1500

1750

2000

Reference: Economist magazine, Feb 25, 2010.

• Exabyte = 260 bits.

• We have passed the point where all data created can be stored

• LHC generates 40 Tb every second.

• Other bottlenecks

– acquisition

– transmission

– analysis

3



Not all length-N signals are created equal

• What is the class of “typical images”?

• “Typical” signals contain degrees of freedom S less than N

Dimensionality Reduction

• Can we reduce the burden from N to S early and often in the data processing pipeline?

2.3 Signal Representation

Signal Representation: Signal Basis

• A signal basis can be used to define the class of signals of interest

• Example: represent a signal z = as sum of scaled sinusoids

ψ1 =

×x1

ψ2 =

×x2

+

ψ3 =

×x3

+

ψ4 =

×x4

+

ψ5 =

×x5

+

s =

5∑
i=1

xiψi

Lossy Compression: JPEG
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8×8 block

Discrete Cosine Signal Basis ψk

z =

64∑
n=1

xnψn

credit: J. Romberg

• Approximation with quantized coefs: ẑ =

64∑
n=1

x̂nψn;

Multi-Scale Basis: Wavelets

credit: J. Romberg

Wavelet coefficient representationModern Image Representation: 2D Wavelets

• Sparse structure: few large coeffs, many small coeffs

• Basis for JPEG2000 image compression standard

• Wavelet approximations: smooths regions great, edges much sharper

• Fundamentally better than DCT for images with edges
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credit: J. Romberg

• A few large coefficients, but many small coefficients.

How many coefficients are important?Wavelets and Images
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Conclusion

• Many classes of signals have a sparse representation in an appropriate basis

2.4 Measurement Models

Now let’s bring in the measurement

Measurement
Process

High Dimensional
Signal z Sampled Signal ym

Measurement Models

• Many measurement modalities are linear

• Inner product representation:

ym = 〈z, φm〉 = sum of point-wise product

• Sampling
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Coded Acquisition

• Instead of pixels, take linear measurements

y1 = 〈f,φ1〉, y2 = 〈f,φ2〉, . . . , yM = 〈f,φM〉

y = Φf

• Equivalent to transform domain sampling,
{φm} = basis functions

• Example: big pixels

ym = 〈
,

〉
• Tomography

Coded Acquisition

• Instead of pixels, take linear measurements

y1 = 〈f,φ1〉, y2 = 〈f,φ2〉, . . . , yM = 〈f,φM〉

y = Φf

• Equivalent to transform domain sampling,
{φm} = basis functions

• Example: line integrals (tomography)

ym = 〈
,

〉
• MRI

Coded Acquisition

• Instead of pixels, take linear measurements

y1 = 〈f,φ1〉, y2 = 〈f,φ2〉, . . . , yM = 〈f,φM〉

y = Φf

• Equivalent to transform domain sampling,
{φm} = basis functions

• Example: sinusoids (MRI)

ym = 〈
,

〉
credit: J. Romberg

Band-limited Signal Recovery: Signal and Measurement Model

• The signal/measurement model for the (1-D) Nyquist theorem uses

– Signal model basis:
ψn = ejω0nt

– Measurement: Sampling, M samples per period Ts = T0/M .

φm = δ(t− Tsm)

Sampling frequency is fs = 1
Ts

= M
T0

= Mω0.

– a priori information: Band-limited signal, i.e. coefficients zero for |n| ≥ Nb. Bandwidth: ωb =
Nbω0

Band-limited Signal Recovery: Set of Linear Equations
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• Using this model,

ym =

〈
Nb∑

n=−Nb

xnψn, φm

〉

ym =
[

a′m

]

x−Nb

x1−Nb

...
xNb−1
xNb


where ak =

[
〈ψ−Nb

, φm〉 · · · 〈ψNb
, φm〉

]
Band-limited Signal Recovery: Row Independence

ak =
[
〈ψ−Nb

, φm〉 · · · 〈ψNb
, φm〉

]
=
[
ejω0Tsm(−Nb) ejω0Tsm(−Nb+1) · · · ejω0Tsm(Nb)

]
• ak looks like ejω̂n with ω̂ = ω0Tsm = 2π

M

• Orthogonality property of complex exponentials: ai and aj are orthogonal (and thus independent) for
0 < i 6= j ≤M .

Band-limited Signal Recovery: Nyquist Recovery

y A x

=

ym

a′m2Nb + 1

M

• Since rows are independent, need M ≥ 2Nb + 1 to recover x.

• Implies fs ≥ (2Nb + 1)ω0: sampling frequency needs to be greater than two times bandwidth.

So what is the problem?

• Signals often have high bandwidth, but lower complexity content

c
r
e
d
it
:

J
.
R
o
m

b
e
r
g

Time (s)

M
a
g
n
it
u
d
e

0 2 4 6 8 10
0

1

2

3

4

5

6

7

• What if we change the signal model: not bandlimited, but sparse in some basis.
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Current Solution: Measure Then Compress

Measurement Compression

High

Dimensional

Signal z

High Rate

Sampled

Signal y Low Rate

Compressed

Signal x

• Measurement costs $. Compression costs $.

• Can we combine the measurement and compression steps? (Compressive Sensing)

2.5 Sparse Signal Models

Sparse Signal Recovery: Compressive Measurement Model

• Model: signal x ∈ RN , with S-sparse support, measurement, y ∈ RM .

– Ψ - signal basis (columns are ψn)

– Φ - measurement matrix (rows are φm)

y = ΦΨ︸︷︷︸
A

x

y A x

=

Geometry of Signal Models

x1

xN

x2

x

Linear Subspace, dim Nb
Bandlimited Signals

x1

xN

x2

x

Union of dim S Subspaces
Sparse Signals

Sparse Signal Recovery: Recovery via regularization

• Given y, can we recover x?

• A is short and fat: non-trival null space means many solutions to y = Ax.

• Idea: regularized recovery
x̂ = arg min

x
||x||∗ s.t. y = Ax
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Sparse Signal Recovery: `2 recovery

• `2-recovery (Euclidian distance) doesn’t work

x̂ = arg min
x
||x||2 s.t. y = Ax

• Minimum is almost never sparse

x

x̂ = (A′A)−1A′y

Sparse Signal Recovery: `2 recovery geometry

RN

{x:Ax=y}

x∗
x̂

{x:‖x‖2≤‖x̂‖2}

Incorrect Recovery

Sparse Signal Recovery: Sparcity preserving norms

• `0-recovery: ‖x‖0 = # of non-zero elements of x.

x̂ = arg min
x
||x||0 s.t. y = Ax

– Works generically if M = S + 1. However, computationally demanding.

• `1-recovery: ‖x‖ =
∑ |xi|. Convex! Recovery via LP:

x̂ = arg min
x
||x||1 s.t. y = Ax

– Also related to basis pursuit, lasso.

– Works generically if M ≈ S logN !!!
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Sparse Signal Recovery: `1 recovery geometry

RN

{x:‖x‖1≤‖x∗‖1}

{x:Ax=y}

x∗

Correct Recovery

RN

{x:Ax=y}

{x:‖x‖1≤‖x∗‖1}

x∗

x̂

Incorrect Recovery

Other Recovery Methods

• Greedy methods - Orthogonal Matching Pursuit (Tropp, 2004)

• Iterative convex - Reweighted `1 - (Candès, Wakin and Boyd, 2008)

• Non-convex - smoothed `0 - (Chartrand, 2007; Mohimani et al., 2007)

Recovery Example

256x256 
original 6500 wavelets 

26000 random 
projections 

c
r
e
d
it
:

J
.
R
o
m

b
e
r
g

• Wavelets: 6500 largest coefficients

• 26000 random projections: recovery using wavelet basis

• Good approximation with 4x sampling rate over perfect knowledge

Recovery Example
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Signal length N = 128, S = 10
# Measurements M

P
r

[P
er

fe
ct

R
ec

ov
er

y
]

Sparse Signal Detection

• The classic signal detection problem:

– known signal z may or may not have been sent

– measurement y corrupted by noise v

• Define events E0 and E1 as:

E0 , y = v

E1 , y = z + v

• Detection algorithm: decide if event E0 or E1 occurred.

• Performance metrics are

– false-alarm probability - PFA = Pr [(E1 chosen when E0)]

– detection probability - PD = Pr [(E1 chosen when E1)]

Receiver Operation Characteristic: ROC curve

PFA

P
D

better performance

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

• How many measurements are necessary to obtain the desired performance?
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Fault Isolation

• Application: System with known fault condition. All signals are discrete time sequences.

Nominal
System
x1

+a

v

y = a ∗ x1 + v

Faulty
System
x2

+a

v

y = a ∗ x2 + v

• Subtract expected output: detection problem with z = a ∗ (x1 − x2)

• Convolution: z = A(x1 − x2), A Toeplitz Matrix.

Compressive Signal Processing

• Experiment model
y = ΦΨx+ v

– Ψ - signal basis (columns are ψn)

– Φ - measurement matrix (rows are φm)

– y ∈ RM , measurement, x ∈ RN , S-sparse signal, v ∈ RM measurement noise.

• Basic problems

– Compressive recovery of unknown S-sparse signal using M measurements, with S < M � N .

– Detection of a known S-sparse signal using M measurements, with S < M � N .

Compressive Signal Processing: Questions

• What are the conditions that guarantee that all x of a given sparsity can be recovered?

• What are the conditions that guarantee a particular level of performance in detection?

• How can we generate measurement matrices that meet these conditions?

3 Sparse Recovery

3.1 Sufficient Condition for Recovery: RIP

The Restricted Isometry Property (RIP)

• Introduced by Candès and Tao

Definition 1. X satisfies the RIP of order S if there exists a δS ∈ (0, 1) such that

(1− δS) ‖a‖22 ≤ ‖Xa‖22 ≤ (1 + δS) ‖a‖22
holds for all S-sparse signals a.
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RIP as embedding

Ax−→

• Difference of two S-sparse signals is 2S sparse.

(1− δ2S) ‖u− v‖22 ≤ ‖A(u− v)‖22 ≤ (1 + δ2S) ‖u− v‖22

Recovery Result: Candès (2008)

• Recovery algorithm (basis pursuit de-noising)

x̂ = arg min
x
||x||1 s.t. ‖y −Ax‖2 ≤ ε

Theorem 2. Suppose y is generated by y = Ax∗ + v. If A satisfies RIP with δ2S <
√

2 − 1 and ‖v‖2 < ε,
then

‖x̂− x∗‖2 ≤ C0
‖x∗ − xs‖√

s
+ C1ε

where xs is the S-sparse approximation of x∗.

• Implies perfect recovery if x∗ is S-sparse and no noise.

3.2 Generating Measurements That Satisfy RIP

Checking RIP

• Given A, does it satisfy RIP?

– Check eigenvalues of each M × S submatrix - combinatorial.

• Generate A randomly - satisfies RIP with high probability when M = O(S logN)!

– iid Gaussian entries

– iid Bernoulli entries (+/- 1)

– random Fourier ensemble

– (Candes, Tao; Donoho; Traub, Wozniakowski; Litvak et al)

• Proofs bound eigenvalues of random matrices, but generally difficult to generalize to Ψ 6= I.
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Recall Johnson-Lindenstrauss Embedding

Rn

Ax−→

Rm

J-L Embedding
Given ε > 0 and set P of P points in RN , find A such that for all u, v ∈ P,

(1− ε)‖u− v‖2 ≤ ‖A(u− v)‖2 ≤ (1 + ε)‖u− v‖2

Random J-L Embeddings

• Using our results from the last talk, we have the following:

Theorem 3 (Dasgupta and Gupta; Frankl; Achioptas; Indyk and Motwani). Given set P of P points in RN ,
choose ε > 0 and β > 0. Let A be an M ×N matrix with independent elements [A]ij ∼ N

(
0, 1

M

)
where

M ≥
(

7 + 6β

min(.5, ε)2

)
ln(P ).

Then with probability greater than 1− P−β, the following holds: For all u, v ∈ P,

(1− ε)‖u− v‖2 ≤ ‖A(u− v)‖2 ≤ (1 + ε)‖u− v‖2

Other Favorable Random Mappings: Sub-Gaussian Distributions

• In the proof, we used

[A]ij ∼ N
(

0,
1

M

)
• Key step was Chernoff bound using moment generating function

Definition 4. A random variable X is Sub-Gaussian if there exists an a ≥ 0 such that

E
[
esX

]
≤ e a2s2

2

and τ , the smallest such a, is called the Gaussian standard of X.

Other Favorable Random Mappings: Properties of Sub-Gaussians

Key Properties

• If Xi are iid sub-Gaussian, Y =
∑
Xi is sub-Gaussian with standard τy ≤

∑
τxi

• If X is sub-Gaussian with standard τ , E
[
esX

2
]
≤ 1

1−2sτ2
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Other Favorable Random Mappings: Sub-Gaussian Examples

• We can use any zero mean sub-Gaussian iid sequence with variance 1/M .

• Rademacher Sequence

[A]ij =

{
+ 1√

M
with probability 1

2

− 1√
M

with probability 1
2

• “Database-friendly” (Achlioptas)

[A]ij =


+
√

3
M with probability 1

6

0 with probability 1
3

−
√

3
M with probability 1

6

From JL to RIP

• Baraniuk et al. (2008)

• Consider measurement with Ψ = I, Φ random elements from a favorable distribution

y = ΦΨ︸︷︷︸
A

x

• Favorable distribution implies that for given x ∈ RN ,

Pr
[∣∣‖Ax‖22 − ‖x‖22∣∣ ≥ ε‖x‖22] ≤ 2e−Mc0(ε)

• pick ε = δ2S/2

From JL to RIP

• Examine mapping on one of
(
N
S

)
S-planes in sparse model

– Construct (careful) covering of unit sphere using (12/δ2S)S points

– JL: isometry for each point with high probability

– Union bound for all points

– Extend isometry to all x in unit ball (and thus all x in S-plane)

x1

xN

x2

S-plane

Ax−→

x1

xM

S-plane

x

Ax
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A look at the probabilities: Union Bounds

• Probability of error > δ2S
2 when mapping 1 point

≤ 2e−Mc0(δ2S/2)

• Probability of error when (12/δ2S)S points mapped

≤ 2(12/δ2S)Se−Mc0(δ2S/2)

• “Careful” covering implies that for all x in unit ball, ∃q in covering s.t. ‖x− q‖ < δ2S/4.

• Probability of error > δ2S when unit ball mapped

≤ 2(12/δ2S)Se−Mc0(δ2S/2)

A look at the probabilities, continued

• Probability of error > δ2S when
(
N
S

)
planes mapped:

≤ 2

(
N

S

)
(12/δ2S)ke−Mc0(δ2S/2) ≤ 2e−c0(δ2S)M+S[ln(eN/S)+ln(12/δ2S)]

using bound
(
N
S

)
≤ (eN/S)

S
.

Result
If M > O(S log(N/S)), with probability greater than 1 − 2e−c2M , A random matrix with favorable distri-
bution satisfies RIP.

• Bonus: Universality for orthonormal basis Ψ: only changes orientation of planes in model.

4 Structured Compressive Signal Processing

Structured Measurements: A Detection Problem with Convolution

• We are not always free to choose the elements of Φ independently

– Distributed measurements

– Dynamic Systems

System
x

+a

v

y = x ∗ a+ v

Convolution implies Toeplitz measurement matrix

y = a ∗ x

y A x

=

• Cannot choose the elements of A independently

17



Concentration of Measure for Toeplitz matrices

• Suppose a is chosen iid Gaussian xi ∼ N
(
0, 1

M

)
.

• For fixed x, y ∼ N
(
0, 1

M P
)

where

[P ]ij =

n−|i−j|∑
i=1

xixi+|i−j|

• Let ρ(x) = λmax(P )
‖x‖22

and µ(x) =
1
d

∑
λ2
i (P )

‖x‖22
.

Result
For any ε ∈ (0, 0.5)

Pr
[
‖Ax‖22 ≥ ‖x‖22 (1 + ε)

]
≤ e−ε2M/6ρ(a)

Pr
[
‖Ax‖22 ≤ ‖x‖22 (1− ε)

]
≤ e−ε2M/4µ(a)

Sanandaji, Vincent, Wakin - 2010 Conference on Decision and Control

Implications

• Recall result from previous lecture for A unstructured:

Pr
[
‖Ax‖22 ≥ ‖x‖22 (1 + ε)

]
≤ e−ε2M/6

Pr
[
‖Ax‖22 ≤ ‖x‖22 (1− ε)

]
≤ e−ε2M/4

• Concentration bound worsens over i.i.d. entries by factors ρ and µ.

• Bound: µ(a) ≤ ρ(a) ≤ ‖a‖0. However, most a are must less than this bound.

Fault Detection Problem

• System impulse response can be x1 or x2.

• record ỹ = y −Ax1, let δx = x2 − x1
• Define events E0 and E1 as:

E0 , ỹ = v

E1 , ỹ = Aδx+ v

• Detection algorithm: decide if event E0 or E1 occurred.

• Performance metrics are

– false-alarm probability - PFA = Pr [(E1 chosen when E0)]

– detection probability - PD = Pr [(E1 chosen when E1)]
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Neyman-Pearson Test

• The Neyman-Pearson detector maximizes PD for a given limit on failure probability, PFA ≤ α under
Gaussian noise assumption.

ỹ′Ax ≷E1E0 γ

• Performance:

PD = Q

(
Q−1(PFA)− ‖Ax‖2

σ

)
• Since performance depends on ‖Ax‖2, worse performance for signals with large ρ(a), µ(a).

Detection Performance

• y = Ax+ v

• A is 125× 250

• x is block sparse, µ(a) = 33, ρ(a) = 50.

• Two cases:

– A - Unstructured

– A - Toeplitz

– 1000 realizations of A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Unstructured A

α

P
D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1
Toeplitz A

α

P
D

Detection Performance

• Average detection performance for six different x.
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ρ1= 25, µ1= 16.68
ρ2= 50, µ2= 33.34
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Conclusion

• Compressive Sensing - going beyond Nyquist sampling

• Sparse signal model with linear measurement model

• Recovery possible using convex optimization

• Work continues on

– Recovery methods

– Structured measurements

– New applications - development of sparse signal models

– ...

20


