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1 Notation

Notation

2

e X - random variable or vector
e E[X] - expected value of random variable X.
e Var (X) - Variance of random variable X.

e Pr[A] - Probability of the event A.

Il ll2, || - l1 - Euclidean norm, Absolute sum norm.

Introduction

Abstract: This talk presents applications of concentration of measure phenomena in the emerging field of
Compressive Sensing (CS). CS builds on the premise that a signal having a sparse representation in some
basis can be recovered from a small number of linear measurements of that signal. Many of the most
effective constructions for the linear measurement operator involve random matrices, and at the heart of
much analysis in CS is a precise statistical characterization of the product of a random matrix with a sparse
signal. Building on a simple concentration of measure inequality, for example, it is possible to generalize
the Johnson-Lindenstrauss lemma and ensure an approximate distance-preserving embedding for an entire
family of sparse signals. This ”Restricted Isometry Property” for the measurement operator has been shown



in CS to permit stable recovery of sparse signals from small numbers of measurements. We will also discuss
a related problems in Compressive Signal Processing (CSP), in which the goal is not to recover (high-
complexity question) a sparse signal (low-dimensional model) but rather to answer low-complexity questions
about arbitrary high-dimensional signals. We will discuss how concentration of measure inequalities can be
used to give performance guarantees for problems such as compressive detection and estimation.

Much thanks to Justin Romberg for permission to use the indicated figures in this presentation.
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The previous paper uses “Johnson-Lindenstrauss Embedding” to create measurement matrices. The
following is some of the relevant literature concerning the Johnson-Lindenstrauss lemma.

P. Frankl and H. Maehara, “The Johnson-Lindenstrauss lemma at the sphericity of some graphs,”
Journal of Combinatorial Theory, Ser. B, vol. 44, no. 3, pp.355-362, 1988

P. Indyk and R. Motwani, “Approximate nearest neighbors: towards removing the curse of
dimensionality”, 30th Annual ACM Symposium on Theory of Computing, Dallas, TX, pp. 604-
613, 1998.

S. Dasgupta and A. Gupta, “An elementary proof of the Johnson-Lindenstrauss lemma”, Tech-
nical Report 99-006, UC Berkeley, March 1999.

D. Achlioptas, “Database-friendly random projections: Johnson- Lindenstrauss with binary coins,
Journal of Computer and System Sciences, vol. 66, no. 4, pp. 671687, 2003.

Compressive Sensing is closely related to basis pursuit and lasso.

R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical
Society, Series B, vol. 58, no. 1, pp. 267-288, 1996.

S.S. Chen, D. L. Donoho and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM
review, vol. 43, no. 1, pp. 129-159, 2001.

2.2 Motivation
Signal Processing in the Age of the Data Flood
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Exabyte = 260 bits.

We have passed the point where all data created can be stored

LHC generates 40 Tb every second.

Other bottlenecks

— acquisition
— transmission

— analysis



Not all length-N signals are created equal

e What is the class of “typical images”?

e “Typical” signals contain degrees of freedom S less than N

Dimensionality Reduction

e Can we reduce the burden from N to S early and often in the data processing pipeline?
2.3 Signal Representation
Signal Representation: Signal Basis

e A signal basis can be used to define the class of signals of interest

e Example: represent a signal z = WWWWNWWW as sum of scaled sinusoids

P =

Lossy Compression: JPEG



Discrete Cosine Signal Basis 1y
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e Approximation with quantized coefs: zZ = Z Tpn;

n=1

Multi-Scale Basis: Wavelets

credit: J. Romberg

Wavelet coefficient representation




credit: J. Romberg

e A few large coeflicients, but many small coefficients.

How many coefficients are important?

wavelet coeffs (sorted)
o -
4
1 megapixel image ™
zoom in (log,, sorted)

Conclusion

e Many classes of signals have a sparse representation in an appropriate basis

2.4 Measurement Models

Now let’s bring in the measurement

High Dimensional

Signal z Measurement Sampled Signal y,

Process

Measurement Models

e Many measurement modalities are linear

e Inner product representation:
Ym = (2, Om) = sum of point-wise product

e Sampling



e Tomography

e MRI

credit: J. Romberg

Band-limited Signal Recovery: Signal and Measurement Model

e The signal/measurement model for the (1-D) Nyquist theorem uses

— Signal model basis:
’l/Jn _ ejwont

— Measurement: Sampling, M samples per period T = Ty /M.
d)m - 6(t - Tem)
1

Sampling frequency is fs = 7= = % = Muwy.

— a priori information: Band-limited signal, i.e. coefficients zero for |n| > N;. Bandwidth: w, =
Npwo

Band-limited Signal Recovery: Set of Linear Equations



e Using this model,

Ny
Ym :< Z xnwna¢m>

’I’L:*Nb

TN,
T1—Ny

Ym = [ a’m ]
TNy—1
TN,

where aj, = [<w7Nba¢m> <wa7¢m>}

Band-limited Signal Recovery: Row Independence

ai = [<¢—Nb7¢m> T <wa7¢m>]

— [ejonsm(—Nb) edwoTsm(=Np+1) . ejonsm(Nb)}

e ay looks like €/%" with & = woTsm = QW”

o Orthogonality property of complex exponentials: a; and a; are orthogonal (and thus independent) for

0<i#j<M.
X

2N, + 1 a

Band-limited Signal Recovery: Nyquist Recovery

A

Ym —

COITTTTITTITT T D)<=

e Since rows are independent, need M > 2N, + 1 to recover x.

e Implies fs > (2N + 1)wp: sampling frequency needs to be greater than two times bandwidth.

So what is the problem?

e Signals often have high bandwidth, but lower complexity content

Magnitude

© = N w & o o N

credit: J. Romberg

Time (s)

e What if we change the signal model: not bandlimited, but sparse in some basis.



Current Solution: Measure Then Compress

High Rate
Sampled
High Signal ¥ Low Rate
Dimensional ——3 Measurement Compression ——— Compressed
Signal 2 Signal T

e Measurement costs $. Compression costs $.

e Can we combine the measurement and compression steps? (Compressive Sensing)

2.5 Sparse Signal Models

Sparse Signal Recovery: Compressive Measurement Model
e Model: signal z € RY, with S-sparse support, measurement, y € RM.
— U - signal basis (columns are )
— @ - measurement matrix (rows are ¢,;,)
y=oU z

~—
A

A

8

Geometry of Signal Models

TN
4
°
) To
Linear Subspace, dim N, Union of dim S Subspaces
Bandlimited Signals Sparse Signals

Sparse Signal Recovery: Recovery via regularization
e Given y, can we recover x?
e A is short and fat: non-trival null space means many solutions to y = Ax.

e Idea: regularized recovery
& =argmin||z||. st.y=Ax
x



Sparse Signal Recovery: {5 recovery
e /5-recovery (Euclidian distance) doesn’t work

& =argmin||z|lz s.t. y=Ax
x

e Minimum is almost never sparse

T L e A 7= ( A A)_l A/y

Sparse Signal Recovery: /; recovery geometry

T
{x:Az_y}/

RN

A

{z:l|zll2<l|2]l2}

Incorrect Recovery

Sparse Signal Recovery: Sparcity preserving norms
e /y-recovery: ||z|lo = # of non-zero elements of x.

& =argmin||z|lo s.t. y=Ax
x

— Works generically if M =S 4+ 1. However, computationally demanding.

e /y-recovery: ||z|| = > |x;|. Convex! Recovery via LP:

& =argmin||z|; s.t. y=Ax
xT

— Also related to basis pursuit, lasso.

— Works generically if M ~ Slog N!!!

10



Sparse Signal Recovery: /1 recovery geometry

RN
/ Vel z*
{@:Az=y} \
{z:llzll <llz* 11}
Correct Recovery Incorrect Recovery

Other Recovery Methods
e Greedy methods - Orthogonal Matching Pursuit (Tropp, 2004)
e Iterative convex - Reweighted ¢; - (Candes, Wakin and Boyd, 2008)
e Non-convex - smoothed ¢y - (Chartrand, 2007; Mohimani et al., 2007)

Recovery Example
256x256 26000 random
original

projections

credit: J. Romberg

o Wavelets: 6500 largest coefficients
e 26000 random projections: recovery using wavelet basis

e Good approximation with 4x sampling rate over perfect knowledge

Recovery Example

11
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Sparse Signal Detection

e The classic signal detection problem:

— known signal z may or may not have been sent

— measurement y corrupted by noise v
e Define events & and &7 as:

£ &

e Detection algorithm: decide if event & or & occurred.

e Performance metrics are
— false-alarm probability - Ppa = Pr[(£1 chosen when &)]
— detection probability - Pp = Pr[(€; chosen when &)]

Receiver Operation Characteristic: ROC curve

1
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0.6 better performance
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0.4

0.2

0 0.2 0.4 0.6 0.8 1
Pra

e How many measurements are necessary to obtain the desired performance?

12
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Fault Isolation

e Application: System with known fault condition. All signals are discrete time sequences.

v
Nominal
a —{ System —><%)—> y=a*xx1+v
z1
v
Faulty
a —| System Y=ax*Tg+v
Z2

e Subtract expected output: detection problem with z = a * (1 — z2)

e Convolution: z = A(zy — x3), A Toeplitz Matrix.

Compressive Signal Processing

e Experiment model
y=®Vzr+0v

— U - signal basis (columns are v,,)
— @ - measurement matrix (rows are ¢,;,)

— y € RM measurement, x € RN, S-sparse signal, v € RM measurement noise.
e Basic problems

— Compressive recovery of unknown S-sparse signal using M measurements, with S < M < N.

— Detection of a known S-sparse signal using M measurements, with S < M < N.

Compressive Signal Processing: Questions

e What are the conditions that guarantee that all z of a given sparsity can be recovered?
e What are the conditions that guarantee a particular level of performance in detection?

e How can we generate measurement matrices that meet these conditions?

3 Sparse Recovery

3.1 Sufficient Condition for Recovery: RIP
The Restricted Isometry Property (RIP)
e Introduced by Candes and Tao
Definition 1. X satisfies the RIP of order S if there exists a g € (0,1) such that
(1= 0ds) llall; < I Xall3 < (1+0s) [lali3

holds for all S-sparse signals a.

13



RIP as embedding

R

e Difference of two S-sparse signals is 2S5 sparse.

(1= das) lu = vll3 < [[A(u = )[I3 < (1 + das) [lu — v]|3

Recovery Result: Candés (2008)
e Recovery algorithm (basis pursuit de-noising)
& =argmin||z||; st |ly— Az|z <e
xr

Theorem 2. Suppose y is generated by y = Ax* +wv. If A satisfies RIP with 025 < /2 — 1 and ||v|2 < €,

then .
& — 2*)2 < COM

+ Che
where x4 is the S-sparse approximation of x*.

e Implies perfect recovery if z* is S-sparse and no noise.

3.2 Generating Measurements That Satisfy RIP
Checking RIP
e Given A, does it satisfy RIP?
— Check eigenvalues of each M x S submatrix - combinatorial.
e Generate A randomly - satisfies RIP with high probability when M = O(Slog N)!

— iid Gaussian entries
— iid Bernoulli entries (+/- 1)
— random Fourier ensemble

— (Candes, Tao; Donoho; Traub, Wozniakowski; Litvak et al)

e Proofs bound eigenvalues of random matrices, but generally difficult to generalize to ¥ # [.

14



Recall Johnson-Lindenstrauss Embedding

R’n

J-L Embedding
Given € > 0 and set P of P points in RY, find A such that for all u,v € P,

(1= llu—vl* < |A(u—)|* < 1+ e)lu—o|?

Random J-L Embeddings
e Using our results from the last talk, we have the following:

Theorem 3 (Dasgupta and Gupta; Frankl; Achioptas; Indyk and Motwani). Given set P of P points in RY,
choose € >0 and 8> 0. Let A be an M x N matriz with independent elements [A]i; ~ N (0, 1;) where

M > (%) In(P).

min(.5, €
Then with probability greater than 1 — P~?, the following holds: For all u,v € P,
(1= o)llu—o[* < |A(u = 0)|I* < (1 + &) flu— o]
Other Favorable Random Mappings: Sub-Gaussian Distributions
e In the proof, we used
[Alij ~ N <0, 1\14)
e Key step was Chernoff bound using moment generating function

Definition 4. A random variable X is Sub-Gaussian if there exists an a > 0 such that

E[e*] <e™2

and 7, the smallest such a, is called the Gaussian standard of X.

Other Favorable Random Mappings: Properties of Sub-Gaussians
Key Properties

o If X; are iid sub-Gaussian, Y = )" X is sub-Gaussian with standard 7, < )" 7,

e If X is sub-Gaussian with standard 7, E [esxz} < 1

S 1952

15



Other Favorable Random Mappings: Sub-Gaussian Examples

e We can use any zero mean sub-Gaussian iid sequence with variance 1/M.

e Rademacher Sequence

(Al = +ﬁ with probability %
Yo _\/LM with probability %
e “Database-friendly” (Achlioptas)
+4/+; with probability &
[A];; =40 with probability &
—y/+; with probability &

From JL to RIP
e Baraniuk et al. (2008)

e Consider measurement with ¥ = I, & random elements from a favorable distribution

y= oV x
~—
A

o Favorable distribution implies that for given 2 € RY,
Pr (|| Az — 3] > ellz]|3] < 2e~Meo©
e pick € = dag/2
From JL to RIP

e Examine mapping on one of (%) S-planes in sparse model

— Construct (careful) covering of unit sphere using (12/d25)° points
— JL: isometry for each point with high probability
— Union bound for all points

— Extend isometry to all « in unit ball (and thus all  in S-plane)

N Ax
—

S-plane

16



A look at the probabilities: Union Bounds
e Probability of error > 5275 when mapping 1 point

< 9e—Meco(d25/2)

e Probability of error when (12/d25)° points mapped
< 2(12/895) S e Meo(925/2)
e “Careful” covering implies that for all = in unit ball, 3¢ in covering s.t. ||z — ¢|| < d25/4.
e Probability of error > do5 when unit ball mapped
< 2(12/855) e Meold25/2)
A look at the probabilities, continued

e Probability of error > da5 when (g) planes mapped:

S 2 ({Z) (12/525)ke—MCO(525/2) S Qe—co(625)M+S[1n(eN/S)+ln(12/525)]

using bound (g) < (eN/S)S.

Result
If M > O(Slog(N/S)), with probability greater than 1 — 2e~2M A random matrix with favorable distri-
bution satisfies RIP.

e Bonus: Universality for orthonormal basis W: only changes orientation of planes in model.

4 Structured Compressive Signal Processing

Structured Measurements: A Detection Problem with Convolution
e We are not always free to choose the elements of ® independently

— Distributed measurements
— Dynamic Systems

v

a — System ﬂé—w;zm*a—l—v

Convolution implies Toeplitz measurement matrix

Yy=axx

<

e Cannot choose the elements of A independently

17



Concentration of Measure for Toeplitz matrices
e Suppose a is chosen iid Gaussian z; ~ N (O, ﬁ)
e For fixed z, y ~ N (0, 77 P) where

n—|i—jl

[Plij= > @iy
=1

[EH [EH

Result
For any € € (0,0.5)

Pr [||Az||3 > |l2|3 (1 + €)] < e~ M/60(@)
Pr[[|Az|3 < ||lz]l3 (1 —¢)] < oM /4p(a)

Sanandaji, Vincent, Wakin - 2010 Conference on Decision and Control

Implications
e Recall result from previous lecture for A unstructured:
Pr [ Azll3 > [l2]l3 (1 + )] < emM/°

762
Pr [[|Az]l} < |23 (1 — )] < e M/

e Concentration bound worsens over i.i.d. entries by factors p and pu.

e Bound: u(a) < p(a) < |lallo- However, most a are must less than this bound.

Fault Detection Problem

System impulse response can be x; or xs.

record § = y — Axq, let dx = xo — 1

e Define events & and &7 as:

(>

<
I

go v

&

(1>

7= Adx+v

Detection algorithm: decide if event &, or £ occurred.

Performance metrics are

— false-alarm probability - Ppa = Pr[(£1 chosen when &)]
— detection probability - Pp = Pr[(€; chosen when &)]

18



Neyman-Pearson Test

e The Neyman-Pearson detector maximizes Pp for a given limit on failure probability, Pr4 < a under
Gaussian noise assumption.
- £
¥ Ax 2y

e Performance:

Pp=Q(Q '(Pra)— @

e Since performance depends on ||Az||2, worse performance for signals with large p(a), u(a).

Detection Performance
e y=Ax+v
o Ais 125 x 250
e z is block sparse, u(a) = 33, p(a) = 50.
e Two cases:

— A - Unstructured
— A - Toeplitz
— 1000 realizations of A

Unstructured A

0 L L L L L L
0 01 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1

o
Toeplitz A

0 01 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1

Detection Performance

e Average detection performance for six different z.

N Unstructured A Toeplitz A

0.9

0.8

0.7

&
0.6
0.5
3= T5, 3 . 3= T5, i3 .

0.4 pa= 100, 4= 66.67 pa= 100, 4= 66.67
- = = ps= 150, j15=100.00 03 = = = ps= 150, j15= 100.00
—— po= 200, p1g= 133.48 —— po= 200, pig= 133.48

0.2
0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
a a
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Conclusion
e Compressive Sensing - going beyond Nyquist sampling
e Sparse signal model with linear measurement model
e Recovery possible using convex optimization
e Work continues on

— Recovery methods
— Structured measurements

— New applications - development of sparse signal models
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