Applications of concentration of measure in signal processing

Tyrone Vincent, Michael Wakin and Luis Tenorio

Colorado School of Mines

April 30, 2010
1 Introduction
 - Motivation
 - Signal Representation
 - Measurement Models
 - Sparse Signal Models

2 Sparse Recovery
 - Sufficient Condition for Recovery: RIP
 - Generating Measurements That Satisfy RIP

3 Structured Compressive Signal Processing
Signal Processing in the Age of the Data Flood

Exabyte = 2^{60} bits.

We have passed the point where all data created can be stored.

LHC generates 40 Tb every second.

Other bottlenecks
- acquisition
- transmission
- analysis

Not all length-N signals are created equal

- What is the class of “typical images”?

- “Typical” signals contain degrees of freedom S less than N
Dimensionality Reduction

- Can we reduce the burden from N to S early and often in the data processing pipeline?
A signal basis can be used to define the class of signals of interest

Example: represent a signal z as sum of scaled sinusoids

\[
\psi_1 = ... \psi_2 = \ldots \psi_3 = \ldots \psi_4 = \ldots \psi_5 = \ldots
\]

\[
s = \sum_{i=1}^{5} x_i \psi_i
\]
Lossy Compression: JPEG

- Approximation with quantized coefs: \(\hat{z} = \sum_{n=1}^{64} \hat{x}_n \psi_n \);
Multi-Scale Basis: Wavelets

credit: J. Romberg
Wavelet coefficient representation

- A few large coefficients, but many small coefficients.
How many coefficients are important?

1 megapixel image

wavelet coeffs
(sorting)

zoom in

(log$_{10}$ sorted)
Conclusion

- Many classes of signals have a *sparse* representation in an appropriate basis
Now let’s bring in the measurement
Measurement Models

- Many measurement modalities are \textit{linear}
- Inner product representation:

\[y_m = \langle z, \phi_m \rangle = \text{sum of point-wise product} \]

- Tomography

\[y_m = \langle \cdot, \cdot \rangle \]

credit: J. Romberg
The signal/measurement model for the (1-D) Nyquist theorem uses
- Signal model basis:
 \[\psi_n = e^{j\omega_0 nt} \]
- Measurement: Sampling, \(M \) samples per period \(T_s = T_0/M \).
 \[\phi_m = \delta(t - T_s m) \]

Sampling frequency is \(f_s = 1/T_s = M/T_0 = M\omega_0 \).

- a priori information: Band-limited signal, i.e. coefficients zero for \(|n| \geq N_b\). Bandwidth: \(\omega_b = N_b\omega_0 \)
Band-limited Signal Recovery:

Set of Linear Equations

- Using this model,

\[y_m = \left\langle \sum_{n=-N_b}^{N_b} x_n \psi_n, \phi_m \right\rangle \]

\[y_m = \begin{bmatrix} a'_m \end{bmatrix} \begin{bmatrix} x - N_b \\ x - 1 - N_b \\ \vdots \\ xN_b - 1 \\ xN_b \end{bmatrix} \]

where \(a_k = \left[\langle \psi_{-N_b}, \phi_m \rangle \cdots \langle \psi_{N_b}, \phi_m \rangle \right] \)
Band-limited Signal Recovery:
Row Independence

\[a_k = \left[\langle \psi_{-N_b}, \phi_m \rangle \cdots \langle \psi_{N_b}, \phi_m \rangle \right] \]
\[= \left[e^{j\omega_0 T_s m(-N_b)} e^{j\omega_0 T_s m(-N_b+1)} \cdots e^{j\omega_0 T_s m(N_b)} \right] \]

- \(a_k \) looks like \(e^{j\hat{\omega}n} \) with \(\hat{\omega} = \omega_0 T_s m = \frac{2\pi}{M} \)
- Orthogonality property of complex exponentials: \(a_i \) and \(a_j \) are orthogonal (and thus independent) for \(0 < i \neq j \leq M \)
Band-limited Signal Recovery: Nyquist Recovery

Since rows are independent, need $M \geq 2N_b + 1$ to recover x.

Implies $f_s \geq (2N_b + 1)\omega_0$: sampling frequency needs to be greater than two times bandwidth.
So what is the problem?

- Signals often have high bandwidth, but lower complexity content

- What if we change the signal model: not bandlimited, but sparse in some basis.
Current Solution: Measure Then Compress

- Measurement costs $\$. Compression costs $\$.
- Can we combine the measurement and compression steps? (Compressive Sensing)
Sparse Signal Recovery:
Compressive Measurement Model

- Model: signal $x \in \mathbb{R}^N$, with S-sparse support, measurement, $y \in \mathbb{R}^M$.
 - Ψ - signal basis (columns are ψ_n)
 - Φ - measurement matrix (rows are ϕ_m)

\[
y = \Phi \Psi A x
\]
Geometry of Signal Models

Linear Subspace, dim N_b
Bandlimited Signals

Union of dim S Subspaces
Sparse Signals
Sparse Signal Recovery:
Recovery via regularization

- Given y, can we recover x?
- A is short and fat: non-trival null space means many solutions to $y = Ax$.
- Idea: regularized recovery

\[
\hat{x} = \arg\min_x \|x\|_* \quad \text{s.t.} \quad y = Ax
\]
Sparse Signal Recovery:

\(\ell_2 \) recovery

- \(\ell_2 \)-recovery (Euclidian distance) doesn’t work

\[
\hat{x} = \arg \min_x ||x||_2 \quad \text{s.t.} \quad y = Ax
\]

- Minimum is almost never sparse

\[
\hat{x} = (A'A)^{-1}A'y
\]
Sparse Signal Recovery:

ℓ_2 recovery geometry

\mathbb{R}^N

Incorrect Recovery

x^*, \hat{x}

$\{x: A x = y\}$

$\{x: \|x\|_2 \leq \|\hat{x}\|_2\}$
Sparse Signal Recovery:
Sparcity preserving norms

- ℓ_0-recovery: $\|x\|_0 = \# \text{ of non-zero elements of } x$.

 $$\hat{x} = \arg\min_x \|x\|_0 \quad \text{s.t. } y = Ax$$

 Works generically if $M = S + 1$. However, computationally demanding.

- ℓ_1-recovery: $\|x\| = \sum |x_i|$. Convex! Recovery via LP:

 $$\hat{x} = \arg\min_x \|x\|_1 \quad \text{s.t. } y = Ax$$

 Also related to basis pursuit, lasso.
 Works generically if $M \approx S \log N$!!!
Sparse Signal Recovery:
\(\ell_1 \) recovery geometry

Correct Recovery

Incorrect Recovery
Other Recovery Methods

- Greedy methods - Orthogonal Matching Pursuit (Tropp, 2004)
- Iterative convex - Reweighted ℓ_1 - (Candès, Wakin and Boyd, 2008)
- Non-convex - smoothed ℓ_0 - (Chartrand, 2007; Mohimani et al., 2007)
Recovery Example

- Wavelets: 6500 largest coefficients
- 26000 random projections: recovery using wavelet basis
- Good approximation with 4x sampling rate over perfect knowledge

credit: J. Romberg
Recovery Example

Signal length $N = 128, \ S = 10$

Pr [Perfect Recovery] vs. # Measurements M
Sparse Signal Detection

- The classic signal detection problem:
 - known signal z may or may not have been sent
 - measurement y corrupted by noise v

- Define events \mathcal{E}_0 and \mathcal{E}_1 as:

$$ \mathcal{E}_0 \triangleq y = v $$
$$ \mathcal{E}_1 \triangleq y = z + v $$

- Detection algorithm: decide if event \mathcal{E}_0 or \mathcal{E}_1 occurred.
- Performance metrics are
 - false-alarm probability - $P_{FA} = \Pr[(\mathcal{E}_1 \text{ chosen when } \mathcal{E}_0)]$
 - detection probability - $P_D = \Pr[(\mathcal{E}_1 \text{ chosen when } \mathcal{E}_1)]$
Receiver Operation Characteristic: ROC curve

- How many measurements are necessary to obtain the desired performance?
Fault Isolation

- Application: System with known fault condition. All signals are discrete time sequences.

\begin{align*}
\text{Nominal System:} & \quad x_1 + a v = a * x_1 + v \\
\text{Faulty System:} & \quad x_2 + a v = a * x_2 + v
\end{align*}

- Subtract expected output: detection problem with $z = a \ast (x_1 - x_2)$
- Convolution: $z = A(x_1 - x_2)$, A Toeplitz Matrix.
Compressive Signal Processing

- Experiment model
 \[y = \Phi \Psi x + v \]

 - \(\Psi \) - signal basis (columns are \(\psi_n \))
 - \(\Phi \) - measurement matrix (rows are \(\phi_m \))
 - \(y \in \mathbb{R}^M \), measurement, \(x \in \mathbb{R}^N \), \(S \)-sparse signal, \(v \in \mathbb{R}^M \) measurement noise.

- Basic problems
 - Compressive recovery of unknown \(S \)-sparse signal using \(M \) measurements, with \(S < M \ll N \).
 - Detection of a known \(S \)-sparse signal using \(M \) measurements, with \(S < M \ll N \).
Compressive Signal Processing:

Questions

- What are the conditions that guarantee that all x of a given sparsity can be recovered?
- What are the conditions that guarantee a particular level of performance in detection?
- How can we generate measurement matrices that meet these conditions?
The Restricted Isometry Property (RIP)

- Introduced by Candèes and Tao

Definition

X satisfies the RIP of order S if there exists a $\delta_S \in (0, 1)$ such that

$$(1 - \delta_S) \|a\|_2^2 \leq \|Xa\|_2^2 \leq (1 + \delta_S) \|a\|_2^2$$

holds for all S-sparse signals a.
RIP as embedding

- Difference of two S-sparse signals is $2S$ sparse.

\[(1 - \delta_{2S}) \|u - v\|_2^2 \leq \|A(u - v)\|_2^2 \leq (1 + \delta_{2S}) \|u - v\|_2^2\]
Recovery Result:
Candès (2008)

- Recovery algorithm (basis pursuit de-noising)

\[\hat{x} = \text{arg min}_{x} \|x\|_1 \quad \text{s.t.} \quad \|y - Ax\|_2 \leq \epsilon \]

Theorem

Suppose \(y \) is generated by \(y = Ax^ + v \). If \(A \) satisfies RIP with \(\delta_{2S} < \sqrt{2} - 1 \) and \(\|v\|_2 < \epsilon \), then*

\[\|\hat{x} - x^*\|_2 \leq C_0 \|x^* - x_s\| \frac{1}{\sqrt{s}} + C_1 \epsilon \]

where \(x_s \) is the \(S \)-sparse approximation of \(x^ \).*

- Implies perfect recovery if \(x^* \) is \(S \)-sparse and no noise.
Checking RIP

- **Given** A, does it satisfy RIP?
 - Check eigenvalues of each $M \times S$ submatrix - combinatorial.
- **Generate** A *randomly* - satisfies RIP with high probability when $M = O(S \log N)$!
 - iid Gaussian entries
 - iid Bernoulli entries (+/- 1)
 - random Fourier ensemble
 - (Candes, Tao; Donoho; Traub, Wozniakowski; Litvak et al)
- **Proofs** bound eigenvalues of random matrices, but generally difficult to generalize to $\Psi \neq I$.

Sparse Recovery
Generating Measurements That Satisfy RIP
Recall Johnson-Lindenstrauss Embedding

Given $\epsilon > 0$ and set P of P points in \mathbb{R}^N, find A such that for all $u, v \in P$,

$$(1 - \epsilon)\|u - v\|^2 \leq \|A(u - v)\|^2 \leq (1 + \epsilon)\|u - v\|^2$$
Random J-L Embeddings

- Using our results from the last talk, we have the following:

Theorem (Dasgupta and Gupta; Frankl; Achioptas; Indyk and Motwani)

*Given set \(\mathbb{P} \) of \(P \) points in \(\mathbb{R}^N \), choose \(\epsilon > 0 \) and \(\beta > 0 \). Let \(A \) be an \(M \times N \) matrix with independent elements \([A]_{ij} \sim \mathcal{N}(0, \frac{1}{M}) \) where

\[
M \geq \left(\frac{7 + 6\beta}{\min(.5, \epsilon)^2} \right) \ln(P).
\]

Then with probability greater than \(1 - P^{-\beta} \), the following holds: For all \(u, v \in \mathbb{P} \),

\[
(1 - \epsilon)\|u - v\|^2 \leq \|A(u - v)\|^2 \leq (1 + \epsilon)\|u - v\|^2
\]
Other Favorable Random Mappings: Sub-Gaussian Distributions

- In the proof, we used

\[[A]_{ij} \sim \mathcal{N} \left(0, \frac{1}{M} \right) \]

- Key step was Chernoff bound using moment generating function

Definition

A random variable \(X \) is **Sub-Gaussian** if there exists an \(\alpha \geq 0 \) such that

\[
\mathbb{E} \left[e^{sX} \right] \leq e^{\frac{\alpha^2 s^2}{2}}
\]

and \(\tau \), the smallest such \(\alpha \), is called the **Gaussian standard** of \(X \).
Other Favorable Random Mappings:
Properties of Sub-Gaussians

Key Properties

- If X_i are iid sub-Gaussian, $Y = \sum X_i$ is sub-Gaussian with standard
 $\tau_y \leq \sum \tau_{x_i}$
- If X is sub-Gaussian with standard τ, $\mathbb{E} \left[e^{sX^2} \right] \leq \frac{1}{1 - 2s\tau^2}$
Other Favorable Random Mappings:

Sub-Gaussian Examples

- We can use any zero mean sub-Gaussian iid sequence with variance $1/M$.
- Rademacher Sequence

$$[A]_{ij} = \begin{cases}
+ \frac{1}{\sqrt{M}} & \text{with probability } \frac{1}{2} \\
- \frac{1}{\sqrt{M}} & \text{with probability } \frac{1}{2}
\end{cases}$$

- “Database-friendly” (Achlioptas)

$$[A]_{ij} = \begin{cases}
+ \sqrt{\frac{3}{M}} & \text{with probability } \frac{1}{6} \\
0 & \text{with probability } \frac{1}{3} \\
- \sqrt{\frac{3}{M}} & \text{with probability } \frac{1}{6}
\end{cases}$$
From JL to RIP

- Baraniuk et al. (2008)
- Consider measurement with $\Psi = I$, Φ random elements from a favorable distribution

$$y = \Phi \Psi x$$

- Favorable distribution implies that for given $x \in \mathbb{R}^N$,

$$\Pr \left[\| Ax \|_2^2 - \| x \|_2^2 \geq \epsilon \| x \|_2^2 \right] \leq 2e^{-Mc_0(\epsilon)}$$

- pick $\epsilon = \delta_{2S}/2$
From JL to RIP

- Examine mapping on one of $\binom{N}{S}$ S-planes in sparse model
 - Construct (careful) covering of unit sphere using $(12/\delta_{2S})^S$ points
 - JL: isometry for each point with high probability
 - Union bound for all points
 - Extend isometry to all x in unit ball (and thus all x in S-plane)

\[x_N \xrightarrow{A} x_M \]

\[x_1 \quad x_2 \]

\[S\text{-plane} \]

\[x_{1} \]

\[S\text{-plane} \]
A look at the probabilities:

Union Bounds

- Probability of error > $\frac{\delta_{2S}}{2}$ when mapping 1 point
 \[\leq 2e^{-Mc_0(\delta_{2S}/2)} \]

- Probability of error when $(12/\delta_{2S})^S$ points mapped
 \[\leq 2(12/\delta_{2S})^Se^{-Mc_0(\delta_{2S}/2)} \]

- “Careful” covering implies that for all x in unit ball, $\exists q$ in covering s.t. $\|x - q\| < \delta_{2S}/4$.

- Probability of error > δ_{2S} when unit ball mapped
 \[\leq 2(12/\delta_{2S})^Se^{-Mc_0(\delta_{2S}/2)} \]
A look at the probabilities, continued

- Probability of error $> \delta_{2S}$ when $\binom{N}{S}$ planes mapped:

$$\leq 2 \binom{N}{S} \left(\frac{12}{\delta_{2S}} \right)^k e^{-M c_0(\delta_{2S}/2)} \leq 2 e^{-c_0(\delta_{2S})M + S[\ln(eN/S) + \ln(12/\delta_{2S})]}$$

Result

If $M > O(S \log(N/S))$, with probability greater than $1 - 2e^{-c_2 M}$, a random matrix with favorable distribution satisfies RIP.

- Bonus: Universality for orthonormal basis Ψ: only changes orientation of planes in model.
Structured Measurements:
A Detection Problem with Convolution

- We are not always free to choose the elements of Φ independently
 - Distributed measurements
 - Dynamic Systems

![Diagram](image_url)

$$y = x \ast a + v$$
Convolution implies Toeplitz measurement matrix

\[y = a \ast x \]

- Cannot choose the elements of \(A \) independently.
Concentration of Measure for Toeplitz matrices

- Suppose a is chosen iid Gaussian $x_i \sim \mathcal{N}(0, \frac{1}{M})$.
- For fixed $x, y \sim \mathcal{N}(0, \frac{1}{M} P)$ where

$$[P]_{ij} = \sum_{i=1}^{n-|i-j|} x_i x_{i+|i-j|}$$

- Let $\rho(x) = \frac{\lambda_{\max}(P)}{\|x\|^2_2}$ and $\mu(x) = \frac{1}{d} \sum \lambda_i^2(P) \frac{\|x\|^2_2}{\|x\|^2_2}$.

Result

For any $\epsilon \in (0, 0.5)$

$$\Pr \left[\|Ax\|_2^2 \geq \|x\|_2^2 (1 + \epsilon) \right] \leq e^{-\epsilon^2 M/6 \rho(a)}$$

$$\Pr \left[\|Ax\|_2^2 \leq \|x\|_2^2 (1 - \epsilon) \right] \leq e^{-\epsilon^2 M/4 \mu(a)}$$
Implications

- Result for A Toeplitz:

\[
\begin{align*}
\Pr \left[\|Ax\|_2^2 \geq \|x\|_2^2 (1 + \epsilon) \right] & \leq e^{-\epsilon^2 M/6 \rho(a)} \\
\Pr \left[\|Ax\|_2^2 \leq \|x\|_2^2 (1 - \epsilon) \right] & \leq e^{-\epsilon^2 M/4 \mu(a)}
\end{align*}
\]

- Recall result from previous lecture for A unstructured:

\[
\begin{align*}
\Pr \left[\|Ax\|_2^2 \geq \|x\|_2^2 (1 + \epsilon) \right] & \leq e^{-\epsilon^2 M/6} \\
\Pr \left[\|Ax\|_2^2 \leq \|x\|_2^2 (1 - \epsilon) \right] & \leq e^{-\epsilon^2 M/4}
\end{align*}
\]

- Concentration bound worsens over i.i.d. entries by factors ρ and μ.

- Bound: $\mu(a) \leq \rho(a) \leq \|a\|_0$. However, most a are must less than this bound.
Fault Detection Problem

- System impulse response can be x_1 or x_2.
- record $\tilde{y} = y - Ax_1$, let $\delta x = x_2 - x_1$
- Define events \mathcal{E}_0 and \mathcal{E}_1 as:

\[\mathcal{E}_0 \triangleq \tilde{y} = v \]
\[\mathcal{E}_1 \triangleq \tilde{y} = A\delta x + v \]

- Detection algorithm: decide if event \mathcal{E}_0 or \mathcal{E}_1 occurred.
- Performance metrics are
 - false-alarm probability - $P_{FA} = \Pr[(\mathcal{E}_1 \text{ chosen when } \mathcal{E}_0)]$
 - detection probability - $P_D = \Pr[(\mathcal{E}_1 \text{ chosen when } \mathcal{E}_1)]$
Neyman-Pearson Test

- The Neyman-Pearson detector maximizes P_D for a given limit on failure probability, $P_{FA} \leq \alpha$ under Gaussian noise assumption.

$$\tilde{y}' Ax \geq_{\mathbb{E}_0} \mathbb{E}_1 \gamma$$

- Performance:

$$P_D = Q \left(Q^{-1}(P_{FA}) - \frac{\|Ax\|_2}{\sigma} \right)$$

- Since performance depends on $\|Ax\|_2$, worse performance for signals with large $\rho(a)$, $\mu(a)$.
Detection Performance

- \(y = Ax + v \)
- \(A \) is \(125 \times 250 \)
- \(x \) is block sparse,
 \(\mu(a) = 33, \rho(a) = 50 \).
- Two cases:
 - \(A \) - Unstructured
 - \(A \) - Toeplitz
 - 1000 realizations of \(A \)
Detection Performance

- Average detection performance for six different α.
Conclusion

- Compressive Sensing - going beyond Nyquist sampling
- Sparse signal model with linear measurement model
- Recovery possible using convex optimization
- Work continues on
 - Recovery methods
 - Structured measurements
 - New applications - development of sparse signal models
 - ...

TLV (CSM) Concentration of Measure April 30, 2010 59 / 59