ESTIMATION OF SURVIVAL CURVES UNDER UNIFORM STOCHASTIC ORDERING CONSTRAINT

Adam Sales, Liliana Martinez & Jon Skowera

Abstract

In this paper we will discuss an estimator of the survival curve for Funder the constraint of uniform stochastic ordering, where F and G are cumulative distribution functions (cdf) and G is fixed and known. As defined in Rojo and Samaneigo's paper, suppose F and G are cumulative distributions functions on $[0,\infty)$, and \overline{F} and \overline{G} are their corresponding survival functions, it follows that F is said to be uniformly stochastically smaller than G, written $F <_{(+)} G$ if and only if the assumption that the corresponding failure rates, h_G and h_F , are ordered is true when both F and G are absolutely continuous. Also, the uniform stochastic ordering implies the ratio $l(x) = \overline{G}(x)/\overline{F}(x)$ is nondecreasing for $x \in$ $[0, \sup\{t: \overline{F}(t) > 0\})$. Research for the survival curve estimation will be considered using estimated hazard rates of the form $\hat{h}(x) = \hat{f}(x)/(1 - \hat{f}(x))/(1 - \hat{f}(x))/$ $\hat{F}(x)$). Using known methods of density estimation, a data-based hazard estimate \hat{h}_{F_n} will be computed, and given that $h_G \leq h_F$ an estimator \hat{h}_F for h_F is given and shown to be a projection of \hat{h}_{F_n} onto the set of hazard rates $\{h : h < h_G\}$. From there, an estimator for \overline{F} will be proposed. We found through heuristic reasoning that this method will not generate accurate results when compared with previously used estimators, such as the empirical survival curve \overline{F} and the Rojo-Samaniego estimator.