On Estimating Survival Functions Under Stochastic Order

Juan Gallegos¹, Daisy (Yan) Huang², Thien T. Nguyen³, and Gregory Schrage⁴

¹University of Houston Downtown, ²University of California, ³University of California, San Diego, ⁴Wabash College

Abstract

Let \bar{H} , \bar{G} , and \bar{H} be survival functions satisfying the constraint $\bar{F} \leq \bar{H} \leq \bar{G}$. Lee, Yan, and Shi (1999) had developed an algorithm to estimate the survival function \bar{H} when \bar{F} and \bar{G} are known. However, lacking a closed form of the estimator makes the investigations of the properties of the estimators difficult. In this paper, we propose alternative estimators for \bar{H} in the case where \bar{F} and \bar{G} are known. However, lacking a closed form of the estimator makes the investigations of the properties of the estimator difficult. In this paper we propose alternative estimators for \bar{H} in the case where \bar{F} and \bar{G} are known and in the case where they are unknown. The estimators are proved to be strongly uniformly consistent in both cases: the formulas for the bias and the mean squared error (MSE) are also derived. In the simulations the MSE of our estimators, when \bar{F} and \bar{G} are known, are uniformly better thn that of Lee, Yan, and Shi when the sample size is small (30): when the sample size is large, further investigation is needed.