Stat 310 Homework 1 Key

Chapter 1, problems 2, 18, 20, 22, 24, 48, 64, 72, 73, 75. Due 9/9/99.

1.2. Two six-sided dice are thrown sequentially, and the face values that come up are

recorded.

a) List the sample space. Well, noting the outcomes as (first die, second die), the 36

elements of the sample space are:

11
21
31
41
51
61

b) List the elements that make up the following events:

is at least 5

41
51
61

12
22
32
42
52
62

13
23
33
43
53
63

23
33
43
53
63

14
24
34
44
54
64

14
24
34
44
54
64

15
25
35
45
55
65

15
25
35
45
55
65

16
26
36
46
56
66

(1) A = the sum of the two values

16
26
36
46
56
66

(2) B = the value of the first die is higher than the value of the second

21
31
41
51
61

32
42
52
62

(3) C' = the value of the first die is 4.

41

c) List the elements of the following events: (1) ANC

41
(2) BUC

21
31
41
51
61

32
42
52
62

43
53 54
63 64 65

42 43

43
53
63

42 43 44 45 46.

44 45 46.

44 45 46

54
64 65



(3) AN(BUC)

32
41 42 43 44 45 46
51 52 53 54
61 62 63 64 65

1.18. A lot of n items contains &k defectives, and m are selected randomly and inspected.
How should the value of m be chosen so that the probability that at least one defective
item turns up is .907 Apply your answer to

a) n = 1000, £ = 10. First off, we convert the problem so that instead of trying to compute
the probability of one or more defects, we are trying to find 1 minus the probability of zero
defects. This is given by

n—ky\ rk

( m )(O)

()
which we can interpret as choosing m of the n — k good items and none of the k& bad ones.
This can also be viewed as B
(") (@)

n

()
which we can interpret as identifying & of the n — m nonchosen items as bad and none of
the m chosen items as bad. Mathematically,
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so the values are equivalent. Now, neither of these formulations is extremely well-suited to
numerical evaluation, but they do suggest useful approximations. Suppose that we start
drawing items from the bin. Then the chance that we will get no defectives is

n—k n—-k—1 n—-k—-2 n—k—m+1
n n—1 n—2 n—m-+1

If we assume that n and is sufficiently large that these ratios do not change over the m

n—k\™
This is the “infinite population” assumption and it gets better and better as n and &
increase as long as k/n is held fixed. For this problem, this approximation suggests

terms, we can write this as

P(1 or more defects) > 0.9
1 — P(no defects
P(no defects

)
log(0.1)

N 8l 999,
" log(990,/1000)

) 2
)

0.1

IA



This gives a coarse approximation, as the ratio does not stay that constant over such a
large fraction of the total extent m/n = .2291. Using the other approach, we get an
approximation of Now suppose that we start identifying defective items both drawn from
and remaining in the bin. Then the chance that we drew no defectives is

n—-—-m n—m-1 n—m-—2 n—k—m++1
n n—1 n—2 n—k+4+1

This may not appear to be the same as what we got using the other approach, so consider
the case of n = 1000, £ = 3, m = 5. The chance of no defectives is

997 . 996 . 995 . 994 . 993 995 . 994 . 993
1000 999 998 997 996 1000 999 998

so we see that when cancellation is included the two expressions are equal. Now, as to the
approximation suggested by the second approach, If we assume that n is sufficiently large
that these ratios do not change over the k£ terms, we can write this as

(=)
- :
In this case, we know that & = 10. Since the validity of the approximations relies on the

ratios remaining approximately constant, the better approzimation is the one involving the
smaller number of terms. This approximation suggests

P(no defects) < 0.1

(" - m)k < 01
n
10log <102870_0m) < log(0.1)
log(1000 —m) < log(1000) + 0.1 log(0.1)
m & 1000 — exp [log(1000) + 0.1 log(0.1)]
m =  205.67.

Since this approximation involved only 10 terms, not over 200, we expect it to be better.
Simulation using MATLAB, as below,

n = 1000;

k = 10;

nterms = 300;

zed = zeros(nterms,1);

zed(1) = (n-k)/n;

for(i = 2:nterms)

zed(i) = zed(i-1)*(n-k-i+1)/(n-i+1);
end

plot(zed)

gives zed(204) = 0.1009 and zed(205) = 0.0997 so the exact answer is m = 205.

b) n = 10000, £ = 100. In this case, we have increased n and k but kept the ratio of the
two the same, so the independence approximation (the first one) gets better. The math is



the same as in part a), so let’s take a look at the results:

()

0.1

IA

log(0.1)
10g(9900,/10000)

=229.1,

exactly as before. The second approximation though, gives

n—m k
(=) < os
n

m R n—exp {log(n) + k7t log(O.l)}
m = 10000 — exp [log(10000) 4 0.01 log(0.1)]
log(0.1)
= 227.6278
10g(9900,/10000) ’

so we see that the two answers are now virtually in agreement. Again, as the second ap-
proximation uses only 100 terms, not 200 plus, we expect it to be slightly better. Updating
the values of n and k£ in the MATLAB program given above and trying it again gives
zed(226) = 0.1005 and zed(227) = 0.0995, so the exact answer is m = 227. Note that
if we up n and k by another factor of 100, the first approximation is now better, and the
two approximations are now 229.1 and 230.23 - the exact routine gives zed(229) = 0.1001
and zed(230) = 0.0991. As the population size goes to infinity, the number that we need
to draw to achieve a given level of accuracy goes to a limit!

1.20. A deck of 52 cards is shuffled thoroughly, and n cards are turned up. What is the
probability that the four aces are all next to each other?

We attack this problem by breaking it down into simpler problems. For instance, what is
the probability that the first four cards off the deck are the four aces? This is given by

4 3 2 1
— ok —— ok — * —,
52 51 50 49
The probability that the second through fifth cards are the four aces is given by

48 4 3 2 1

— ok — ok — k — % —

52 51 50 49 48
which reduces to the first probability found when we note that the numerator of the first
term cancels the denominator of the last term. Thus, we can write the probability of the
four aces occurring together as the probability that they will be in positions one through
four, plus the probability that they will be in positions two through five (these two events
are disjoint, so the probabilities add), plus the probability of positions three through six,
and so on through the probability of positions forty-nine through fifty-two. Summing, this
gives

4 3 2 1 49

* * * =
527 51 50 49 ()



the total number of sets of indices corresponding to four sequential positions over the the
total number of all possible sets of indexes correponding to the positions of the four aces.

2.22. A deck of cards is shuffled thoroughly, and n cards are turned up. What is the
probability that a face card turns up? For what value of n is this probability about .57

This is very similar in nature to problem 1.18. We interpret the probability that a face
card turns up to mean that at least one shows up, so we work with the complement and
find the probability that no face cards turn up. There are 12 face cards, so the chance of
no face cards showing up in n cards is

40 39 40—-—n+1
52 51 2—-n—+1

An approximation (see 1.18) suggests n = log(.5)/log(40/52) = 2.6419, so this will not be
too onerous to do by hand. The probabilities are

n | P(no face cards) P(at least one)
1 0.7692 0.2308
2 0.5882 0.4118
3 0.4471 0.5529

so we pick » = 3 so that the chance of at least one face card exceeds one half.

1.24. If n balls are distributed randomly into k£ urns, what is the probability that the last
urn contains j balls?

We attack this problem via the time-honored practice of trying things for small values of
n and trying to generalize. First off, consider the case n = 1. Here, j can only take on the
values 0 and 1, and the probabilities are given by

. k-1
) 1
Pn:l(] = 1) = E

To extend things to the n = 2 case, we view this as one of watching two tosses in a row and
seeing whether or not they hit bin k. There are four possible outcomes here: (miss,miss),
(miss,hit), (hit,miss), and (hit,hit). We can compute the probabilities associated with each
of these from the results for the single toss case given above, as the results of one toss are
independent of the others so the probability product rule applies. Here, j can take on the
values 0, 1 and 2, with probabilities

P,=2(j =0) = (miss, miss)
_(k=1)?
- (%)

P,=2(j=1) = (miss,hit) 4 (hit, miss)

- 2() (5)



P,=2(j =2) = (hit,hit)

- G

Extending this to the n = 3 case, we get

P,=3(j =0) = (miss, miss, miss)
_ (k — 1)3
N k
P,=3(j =1) = (miss, miss, hit) + (miss, hit, miss) + (hit, miss, miss)
(1) ()
P,=3(j =2) = (miss, hit, hit) + (hit, miss, hit) + (hit, hit, miss)

- 2() ()

P,=3(j =3) = (hit, hit, hit)

- @

Generalizing, we see that each case the probability is given by

= ()@Y ()

so that the number of balls in bin & has a binomial distribution with parameters (n, 1/k).

1.48. An urn contains three red and two white balls. A ball is drawn, and then it and
another ball of the same color are placed back in the urn. Finally, a second ball is drawn.

a) What is the probability that the second ball drawn is white? Let D; denote the event
that the first ball drawn is white, and Dy the event that the second ball drawn is white.
We want P(D3). To find this, we expand a few things. First,

P(Dy) = P(DyDy) + P(DyD5).

This simply says that something happened on the first draw. Now, the intersection proba-
bilities themselves are not so easy to find, but we can reexpress those using the properties
of conditional probability as

P(Dz) = P(D:|D1) P(D1) + P(D:| DY) P(DY).

At this point we can compute numbers, and we get

b) If the second ball drawn is white, what is the probability that the first ball drawn was
red? Here we're being asked to find P(D5|D;). We can rewrite this using the definition of
conditional probability as

P(DyDY)



Using the expansions found in part a), we write this as

P(Do| DY) P(DY)

P(DY|Dy) = P(Dy| D) P(D1) 4 P(Do| DY) P(DY)
15 1
= 53

1.64. If B is an event, with P(B) > 0, show that the set function Q(A) = P(A|B) satisfies
the axioms of a probability measure. Thus, for example,

P(AUC|B) = P(A|B) + P(C|B) — P(ANC|B).

We take the three axioms given on p.4 of the text.

P =t P@QB) P(B)
Q) = POIB) = e = i =1

(ii) If A C Q, then P(A) > 0.

P(AB)

Q(A) = P(A[B) = PB)

As P(B) > 0, the last term on the right will be > 0 if P(AB) > 0. As A,B € Q, AB € Q,
and hence P(AB) > 0 and Q(A) > 0.

(iii) If Ay and Ay are disjoint, then
P(A; U Ay) = P(Ay) + P(Ay).
Well,

Q(A1UAy) = P(A1UAB)
P((A1U Ay)N B)
P(B)
P[(AyNB)U (A2 N B)]
P(B)
P(A;NB)+ P(A; N B) — P(AyNA;N B)
P(B)
P(A;nB) P(A;NB)
P(B) P(B)
= QA1) +Q(Az).

1.72. Suppose that » components are connected in series. For each unit, there is a backup
unit, and the system fails only if both a unit and its backup fail. Assuming that all of the



units are independent and fail with probability p, what is the probability that the system
works? For n = 10 and p = .05, compare these results with those of Example I in Section
1.6.

Ok, a component works if either the initial unit or its backup works. The component fails
only if both units fail. As the units are independent, the probability that a component fails
is p? by the product rule, and the probability that a component works is 1 — p?. For the
system to work, all » components must work. As these components function independently,
the probability that the system works is (1 — p*)™

When n = 10 and p = .05, the probability that the system works is
[1— (.05)%'0 = 0.9753,

which is considerably higher than the probability of 0.60 found for the system without
backups.

1.73. A system has n independent units, each of which fails with probability p. The system
fails only if k£ or more of the units fail. What is the probability that the system fails?

Well, this can be written as
n

E P(j units fail).
1=k

As p is the probability that a unit fails, p’ is the probability that j specified units fail,
(1 — p) is the probability that a unit succeeds, (1 — p)”~/ is the probability that n — j
specified units fail, and there are (7;) ways of choosing which j out of the n fail, so when

Zn: (Z)pj(l -p)".

i=k

combined this becomes

This is one minus the cdf of a binomial random variable with parameters n and p.

1.75. This problem deals with an elementary aspect of a simple branching process. A
population starts with one member; at time ¢ = 1, it either divides with probability p or
dies with probability 1 — p. If it divides, then both of its children behave independently
with the same two alternatives at time ¢ = 2. What is the probability that there are no
members in the third generation? For what value of p is this probability equal to .57

Let Dy be the event that the first individual dies at time £ = 1, and let D4 be the event
that the population is zero at time ¢ = 2. Then

P(Dz) = P(Dz|D1) P(D1) + P(D2| DY) P(DY).

From the statement of the problem, P(D§) = p and P(D;) = 1 —p. As a population cannot
spontaneously appear, P(D3|D;) = 1. Now, if the first individual divided at time ¢ = 1,
there are two independent individuals presented with the option of dividing or dying at



time ¢ = 2. The chance that both will die (so that the population will be zero) is (1 — p)Z.
Putting it all together,

P(Dg):1*(1—p)+(1—p)2*p:p3—2p2+1.

Solving for the value of p such that this probability is 0.5 is done numerically - I plotted
the function using MATLAB;

zed = [0:0.001:1];
y = zed.”3 - 2*%zed."2 + 1;
plot(zed,y)

and found the root to be p = 0.597.



