Stat 310 Homework 6 Key

Chapter 5, problems 16, 18. Chapter 7, problems 3, 4, 12 (explain your answers!), 26, 33.
Chapter 8, problems 2, 6, 11. Due 11/4/99.

5.16 Suppose that Xy,..., Xog are independent random variables with density functions

Let S = X1+ ...4 Xg0. Use the Central Limit Theorem to approximate P(S < 10).

Ok, as we add a bunch of independent and identically distributed random variables together,
the distribution of the sum becomes increasingly bell-shaped (a la the CLT). Thus, to make
probabilistic statements about the sum, we need to find the parameters of the approximate
Normal distribution, namely ps and o2. That is, according to the CLT,

S~ N(N57 Ug‘)
Now, as the X; are independent,

E(S) = E(_Xi)=)>_ E(X;)=nE(X),

Here,
1 2
E(X) = 20%dr = =,
0 3
1 2
E(X?Y = 22%dr = =
0 4
2 4 1
/(X)) = F(XH)-F(X)?=>--=—,
V(X) (X)) -BEX) =7-5= 13

Thus, S ~ N(20%2/3,20 1/18) = N(13.33,1.11). Putting it all together,

S—13.33 _ 10— 13.33
P(S <10) = < < )
(5210 Vil S Vi
~ P(Z < —3.16) = 0.0008,

5.18 Suppose that a company ships packages that are variable in weight, with an average
weight of 15lb and a standard deviation of 10lb. Assuming that the packages come from
a large number of different customers so that it is reasonable to model their weights as
independent random variables, find the probability that 100 packages will have a total
weight exceeding 17001b.

This is, not too surprisingly, another exercise in the use of the CLT. In this case, we
are implicitly assuming that there is an underlying distribution of package weights, even
though we don’t specify the shape of that distribution. Even without the shape, we have



the center and the spread which will be enough to characterize the shape of the sum of a
large number of terms from this distribution. Letting X; denote the ith package weight,
and S = X7 4 ...+ X0, we are trying to find P(S < 1700). From the CLT, we know
that the distribution of S is approximately normal with mean nux and variance no%, so
S ~ N (100 15,100% 10%) = N (1500, 10000) (note that they gave us the standard deviation
above; variances add, so we need to square this). Finally,

S — 1500 1700 — 1500
P(S < 1700) = P< )

<
V10000 — /10000
~ P(Z<2)=09772.

7.3. Which of the following is a random variable?
a) The population mean.

This is not a random variable. The mean of the distribution is a number. With respect
to sampling, the value of the population mean does not change from sample to sample.

b) The population size, N.

Again, this is not a random variable. Numbers that define the underlying population are
treated as fixed, Numbers that vary from sample to sample are treated as random variables.

c) The sample size, n.

This one is actually a bit tricky. Normally, the answer is that this is not a random
variable; in characterizing a sampling distribution we normally speak of the distribution for
samples of size n. Thus, this is a number related to the sample that does not change from
sample to sample.

d) The sample mean.
Easy. This is a random variable. The value of X will change from sample to sample.
e) The variance of the sample mean.

The variance of the sample mean is given by 6 /n, where o2 is the population variance,
and hence fixed. Thus, the variance of the sample mean is actually not a random variable
(but see part h).

f) The largest value in the sample.

This is a random variable; the value can change from one sample to the next.
g) The population variance.

This is not a random variable; a2 is a number.
h) The estimated variance of the sample mean.

2

This value, s*, is a random variable, as its value can change from one sample to the

next.



7.4. Two populations are surveyed with simple random samples. A survey of size ny is used
for population I, which has a population standard deviation oq; a sample of size ny = 2ny
is used for population 71, which has a population standard deviation of 03 = 20;. Ignoring
finite population corrections, in which of the two samples would you expect the estimate of
the population mean to be more accurate?

This question addresses a point raised in class, namely how much larger one has to make a
sample to get a confidence interval to shrink by a given factor. In both cases here we will
be using the sample mean to estimate the corresponding population mean. Consider:

V(j(l) = U%/nh
V(X2) = o3/n
= (201)%/(2n1) = 20} /n4.

Thus, we would expect the estimate of the population mean would be more accurate in the
first sample. Remember - if you want to cut the standard deviation (proportional to the
width of a confidence interval) in half, you need 2? = 4 times as much data!

7.12. True or false?
a) The center of a 95% confidence interval for the population mean is a random variable.

True. The center and spread of a confidence interval will change from sample to sample.
For the cases we’re looking at right now, these confidence intervals for the population mean
are of the form X + ks/\/n, where k is some constant that we choose to achieve a given
level of coverage and s is the sample standard deviation. Here, the center is X, which is a
random variable.

b) A 95% confidence interval for y contains the sample mean with probability .95.

False. A 95% confidence interval for u is typically centered on the sample mean, that
being our single best guess as to the value of the population mean. Hence, a 95% c.i. for
1 will contain the sample mean with probability 1.

c) A 95% confidence interval contains 95% of the population.

False. The 95% refers to the fraction of times that intervals constructed from samples
using this procedure will contain a specific parameter of the population. It need not contain
a set fraction of the population.

d) Out of one hundred 95% confidence intervals for g, 95 will contain pu.

False. More accurately, this is not necessarily true. Whether a given confidence interval
contains g or not depends on the sample that is drawn; this is a random quantity. In
particular, this random quantity is one whose distribution we can specify! The chance
that a randomly drawn sample will yield a 95% confidence interval containing p is 0.95, so
the number of intervals out of 100 that will contain p is a binomial random variable with
n =100, p = 0.95.



7.26. Referring again to Example D in Section 7.3.3, suppose that a survey is done of
another condominium project of 12,000 units. The sample size is 200, and the proportion
planning to sell in this sample is .18.

a) What is the standard error of this estimate? Give a 90% confidence interval.

This part is an exercise in following the book’s template for constructing a confidence
interval for a proportion. Here, an unbiased estimator of the variance of a proportion is

given by
2 p(1—p) ( ")
‘£ — 1-—.
% n—1 N
The standard error is simply the square root of the sample variance, so in this case
A8(1 —.18) <1 200 ) 0.097
Ss — _— — — . .
P 200 -1 12,000

A 90% confidence interval for the true proportion is given by

P4 1.645% 55 = .18 £+ 0.0444 = (.1356,.2244).

b) Suppose we use the notation p; = .12 and pz = .18 to refer to the proportions in the
two samples. Let d = p1 — po be an estimate of the difference, d, of the two population
proportions p; and py. Using the fact that p; and ps are independent random variables,
find expressions for the variance and standard error of d.

As the two quantities are independent,
V(d) = V(p = p2) = V(B1) + (=1)*V(b2) = V(1) + V (o).

Note that even though we are working with an estimate of the difference of two quantities,
the variances add, not subtract. Thus,

2 — p1(1—p1) (1_71_1)_1_]32(1—]32) (1_ n2)’
d ny — 1 N1 g — 1 ]VQ
(1 — 7 o (1— 5
s; = Pl —pr) <1 _ ﬂ) n p2(1 — p2) (1 B n2) .
ny — 1 N1 Ny — 1 17V2
Numerically,
9 A2(1-.12) ( 100 ) A8(1 —.18) ( 200 )
st = 1- + 1- —
d 100 — 1 8000 200 -1 12000
= 0.001053 4 0.000729 = 0.001783
s; = 0.04222.

¢) Since py and py are approximately normally distributed, so is d. Use this fact to construct
99%, 95%, and 90% confidence intervals for d. Is there clear evidence that p; is really
different than py?

Well, the form of the confidence intervals is given by

d + (const) 5;
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where the constants are chosen so that in the case of a normal random variable we would
achieve the specified level of coverage. For the cases under consideration, these constants are
2.575, 1.96, and 1.645 for the 99%, 95% and 90% c.i.’s, respectively. To get these, consider
the first one - this corresponds to zg.g95, meaning that 99.5% of the normal distribution is
below this value, and by using this to define our upper bound we are excluding the 0.5%
of the distribution above it. Similarly, with the lower bound we are excluding the bottom
0.5%. For the data at hand, d=.12-.18= —.06, so the intervals are given by

—.06 4 2.575 x (0.0422) = (—0.1687, 0.0487),
—.06 4 1.960 x (0.0422) = (—0.1427, 0.0227),
—.06 4 1.645  (0.0422) = (—0.1294, 0.0094).

Is there strong evidence that the population proportions are different? If they are not
different, then d = 0. This value is included in all of the confidence intervals that we
constructed for d just now, meaning that 0 is a plausible value for d and hence no, there is
not strong evidence that the population proportions are different.

7.33 Suppose that in a population of NV items, k are defective in some way. For example,
the items might be documents a small proportion of which are fraudulent. How large should
a sample be so that with a specified probability it will contain at least one of the defective
items? For example, if N = 10000, £ = 50, and p = 0.95, what should the sample size be?
Such calculations are useful in planning sample sizes for accepatance sampling.

This problem is very similar to one from way back in homework 1. We attack it by figuring
out the chance of not drawing any defective items in n draws in a recursive fashion:
N—-k N-k-1 N—-k-n+1

P(1 or more defects) =1 — I * N1 % ...k Nonil

Keep increasing n until the answer exceeds 0.95. We suggested two approximations to the
final answer, based on assuming independence results:

<N_k)n < 0.05
N s

log(0.05)/ log((N — k)/N)

N —n\*
0.05
( N ) <

n &~ N —exp[log(N) +log(0.05)/k].

n

2

The better approximation is the one with the smaller power in the exponent. Here, these
give

o log (0.05)/ log((10000 — 50)/10000) = 597.65
iy & 10000 — exp [log(10000) + log(0.05)/50] = 581.55.

X

As k < n using either route, we expect the latter approximation to be the better one. Using
simulation, we can solve for the value exactly, getting (according to your book) n = 581.
This is a useful concept, so I thought I’d hit it one more time.



8.2. The Poisson distribution has been used by traffic engineers as a model for light traffic,
based on the rationale that if the rate is approximately constant and the traffic is light (so
the individual cars move independently of each other), the distribution of counts of cars in
a given time interval or space area should be nearly Poisson (Gerlough and Schuhl 1955).
The following table shows the number of right turns during 300 3-min intervals at a specific
intersection. Fit a Poisson distribution and test goodness of fit using Pearson’s chi-square
statistic. Group the last four cells together for the chi-square test. Comment on the fit. It
is useful to know that the 300 intervals were distributed over various hours of the day and
various days of the week.

n ‘012345678910111213—}—
Freq.‘14 30 36 68 43 43 30 14 10 6 4 1 1 0

Ok, the first step in fitting the Poisson model is simply estimating the Poisson parameter,
A. Using the method of moments, we use

A= X = 1168/300 = 3.893.

This is the number of right turns we would expect to see at this intersection in a 3 minute
period of light traffic. The next step is to compute expected counts according to the Poisson
model to see how well the theoretical model matches reality. To do this, we compute
the Poisson probabilities for each cell and multiply by n = 300. The matlab function
poisspdf(x,lambda) is quite useful for this. I've grouped the last 5 cells together so that
the expected counts add up to a number greater than 5.

n | 0 1 2 3 4 5 6 7 8 9+
O;| 14 30 36 68 43 43 30 14 10 12
E; | 6.11 23.80 46.33 60.13 5853 45.57 29.57 16.44 8.00 5.51

Note that the last expected count was found by subtracting the sum of the previous ones
from 300 so that the total adds up right. Now we compute the contributions of each cell
to the goodness of fit total.

n | 0 1 2 3 4 5 6 7 8 9+
©FE) 1319 1.27 -1.52 1.02 -2.03 -0.38 0.08 -0.60 0.71 2.78

V()

©O—F)” | 1018 1.61 2.30 1.03 4.12 0.5 0.01 0.36 050 7.72
T . . . . . . . . . .

Adding these up we get 27.98 as our goodness of fit value. Now we need to determine
whether this is too large for our model to be considered a good fit to the data. The
distribution of this number should be ng, where the number of degrees of freedom is equal
to the number of cells (here 10) less the number of constraints that we force the expected
counts to observe. One constraint is simply that the total expected counts must add up to
the total observed counts. Beyond that, we are imposing one constraint for every model
parameter that we are estimating from the data. In the case of the Poisson model, there
is just one parameter, A, that we are estimating. Hence, the goodness of fit value should
follow a x%,_, = x2 distribution. Checking the table of useful y? thresholds found in your
book, we see that x§ g95 = 21.96; as our value is greater than this we know that the p-value
associated with our result is less than 0.005, so that assuming the model fits would force
us to conclude that a very rare event had occurred. As we typically don’t want to do this,
we would conclude instead that the model did not fit the data well and try to understand



more about why not. In this case, if we check the actual cell contributions, we can see that
the fit is worst in the tail-end cells. What this suggests in terms of a refined model is more
case-specific and will not be pursued here.

8.6. In an ecological study of the feeding behavior of birds, the number of hops between
flights was counted for several birds. For the following data, (a) fit a geometric distribution,
(b) find an approximate 95% confidence interval for p, and (c) test goodness of fit.

hops‘123456789101112
Freq.‘48 31 20 9 6 5 4 2 1 1 2 1

(a)To fit the geometric distribution, we note that if X has a geometric distribution, then
E(X) = 1/p. Thus, a method of moments estimate of p is simply p = 1/X. Here,
X =363/130 = 2.79 so p = 0.36.

(b) Now, to find an approximate 95% confidence interval for p, we need to have some idea
as to the variance of our estimate of p. If we can construct standard errors for this, then
we can use the CLT to construct approximate confidence intervals. The easiest way to do
this is by using maximum likelihood and getting the estimated variance from the curvature
of the likelihood function. In this case,

L(p) = f[p(l—p)g“_1

() = Yllog(r) + (2 — 1) log(1 — p)]

n

= nlog(p) — nlog(1 —p) +log(1—p) Y z;

=1
1 n
U'(p) = L L N
(#) p 1-p —p;
n 1 zn:
p(l-p) 1-pZ

setting this equal to zero and solving gives p = 1/X, so the method of moments estimator
and the mle agree for the geometric model. As for the variance,

n n

" o 1 - )
B R (e (P i

P P)

L N2 T Y 2 -2

- pQ(l_p)z [ (1 p) +p pr}.
To get the asymptotic standard error of the mle, we evaluate the second derivative at the
mle, where z = 1/p, getting

6) = gy [0 -0+ )
= S 12 -5
T P0-p)



The variance of the mle is given by the negative of the inverse of the curvature, so

p*(1 = p)

V(p) =

and we can form a confidence interval for p as

52(1 — 5
95% C](p) = ]3:|:Z&975 p)
0.362(0.64)
= 0.364+1.964/ ———
130
= (0.31,0.41).

(c) To test goodness of fit we first compute the expected counts as n % p * (1 — p)¥~1 =

130 * 0.36 * (0.64)*~1 getting

hops ‘ 1 2 3 4 5 6 7 8 9 10 11 12+

O; 48 31 20 9 6 5 4 2 1 1 2 1
E; 46.80 29.95 19.17 1227 7.85 5.03 3.22 2.06 1.32 0.84 0.54 0.96

At present, the expected counts in the tails are too small for us to trust the xy? approxima-
tion, so we combine the last 6 cells, getting

hops 1 2 3 4 5 6 7+
O; 48 31 20 9 6 5 11
E; 46.80 29.95 19.17 1227 7.85 5.03 8.93
Oﬂ‘(‘;; 0.18 0.19 0.19 -0.93 -0.66 -0.01 0.69
(O—E)? 0.03 0.04 0.04 0.87 044 0.00 0.48

which, when summed, yields 1.89. For this test, the number of degrees of freedom is 5: 7
(the number of cells), less 1 for the constraint that the expected counts sum to the same
total as the observed counts, and less another 1 for the fact that p was estimated from the
data. Using matlab, 1 - chi2¢cdf(1.89,5) gives the p-value of this result as 0.864, so the
model appears to mimic reality fairly well.

8.11. In example D of Section 8.4, the method of moments estimate was found to be
& = 3X. In this problem you will consider the sampling distribution of &.

(a) Show that /(&) = a — that is, the estimate is unbiased.

This one is fairly straightforward:

E(4) = E(3X)

n

= 307" ) E(X))

=1

= 3n7! Zn:oz/;% =a.
i=1



(b) Show that Var(é&) =

(3 —a?)/n.

E(X?) -

In~V(X) =

(c) Use the central limit theorem to deduce a normal approximation to the sampling dis-

tribution of &. According to the approximation, if n = 25 and o = 0, what is

P(la] > .5)?

As @& is the average of a whole bunch of identically distributed terms (it is a scalar
multiple of X), we can use the CLT to claim that the distribution of & will be approximately
normal, with parameters given by the mean and variance found above:

Thus,

P(la

5)

dNN(a

3—a?
) n .

- P(la] < .5)

1-P(-5<a&<.b)

1 ( -5—-a a—« < DS —a )
V(3 —a?) /n V(B —a?)/ VB —a?)/n

1— P(—1.44 < Z < 1.44) = 0.149.



