Stat 310 Homework 9 Key

Chapter 10, problem 16. Chapter 11, problems 1, 13 (see 12), 15, 18, 19, 23, 24, 34, 37.
Due 12/7/99.

10.16 Suppose that F'is N(0,1) and G is N(1,1). Sketch a @ — @ plot. Repeat for G
being N (1,4).

11.1 A computer was used to generate four random numbers from a normal distribution
with a set mean and variance: 1.1650, 0.6268, 0.0751, 0.3516. Five more random normal
numbers with the same variance but perhaps a different mean were then generated (the
mean may or may not actually be different): 0.3035, 2.6961, 1.0591, 2.7971, 1.2641.

a) What do you think the means of the random number generators were? What do you
think the difference of means was? Well, our best guesses here will simply be the sample
means and the difference of sample means. using X for the first sample and Y for the
second, our guesses are:

fix = =0.5546,
fy = 7= 1.6240,
px —py = Z—1y=—1.0694.

b) What do you think the variance of the random number generator was? In this case, we
know that the variance was the same for both samples, and consequently we can combine
the information about the variance across samples to get a better estimate than either one
alone; this is the pooled variance estimate. The pooled estimate is

o _ =Dk +m-1s
P n+m-—2
21 4(1.1
_ 3(0 63)—;— ( 795):0.7667.

c) What is the estimated standard error of your estimate of the difference of the means?
Well, since we are using means we get to reduce the pooled variance by terms related to
the sample size:

1 1 1
est. std. err = s,/ —+ — =V0.7667 + 5 = (0.5874.
n o m

ﬁ

d) Form a 90% confidence interval for the difference of means of the random number gen-
erators. Well, a 90% confidence interval for the true mean difference is given by

1 1
T—7)+tpeme -4 —
(z —9) +m—2,0.955p - + -

which, upon plugging in the numbers that we’ve found, gives

—1.0694 + 1.895 % 0.5874 = (—2.1824,0.0437).



e) In this situation is it more appropriate to use a one-sided test or a two-sided test of the
equality of the means? Here, a two-sided test is more appropriate since we only know that
the means may be different; we don’t have any a priori knowledge of which direction the
difference is likely to be in.

f) What is the p-value of a two-sided test that the means were the same? Well, the test
statistic is o
z—7 1.0694

/T + L © 05874

and the null distribution is ¢7. Using table 4, we see that 1.82 is between t g9 and ¢ g5 for
this distribution, so the p-value is somewhere between 0.1 and 0.2. Using matlab, the exact
p-value is 2 * tedf (—1.8206,7) = 0.1115.

—1.8206,

g) Would the hypothesis that the means were the same versus a two-sided alternative be
rejected at the significance level & = 0.17 No. We can note this two ways - first, the p-value
is the smallest value of a for which the null will be rejected. As the p-value is greater
than 0.1, we will not reject. Second, the 90% confidence interval that we constructed in d)
contains the value zero, and given the duality between confidence intervals and hypothesis
tests, we would not reject any hypothesized value of the mean lying in this interval.

h) Suppose you know that the variance of the normal distribution was 0% = 1. How would
your answers to the preceding questions change? Well, in this case we know the variance
exactly so we can use a z-test instead of a t-test. Our best guesses as to the values of the
means and the value of the mean difference (part a) do not change at all; these are not
affected by the variance. Our answer to part b) is now 1; perfect knowledge has now been
vouchsafed to us. The standard error associated with the difference in means (part c) is
now 1 x sqrt(1/4 + 1/5) = 0.6708, and this is exact given the sample sizes, as we don’t
need to estimate anything. The 90% confidence interval is now —1.0694 4 1.645 * 0.6708 =
(—2.1728,0.0341), slightly narrower than what we had before as the increase in variance is
offset by the smaller critical values needed for the normal distribution as opposed to the ¢
distribution. It is still more appropriate to use a two-sided interval (part e) as the variance
does not affect our lack of initial knowledge as to the direction of the deviation. As to the
p-value (part f), our test statistic is now —1.0694/0.6708 = —1.5942, and this is from a
standard normal distribution; from table 2 we see that the chance of a normal distrbution
being less than this is 1 — 0.9441 = 0.0559 and the p-value is twice this, or 0.1118. Finally,
our answer to part g) remains the same, we would not reject, and the reasons for this are
exactly as given above.

11.13 Let Xy,..., X35 be i.i.d. N(.3,1). Consider testing the null hypothesis Hy : p = 0
versus Hy4 : > 0 at significance level & = 0.05. Compare the power of the sign test and
the power of the test based on normal theory assuming that ¢ is known.

Well, first off, the sign test is a nonparametric test which does not invoke any knowledge of
the underlying distribution. Thus, it sacrifices information, and here, where that informa-
tion is available, we might expect that to cost us. In short, we expect going into this problem
that the power of the sign test will be less than the power of the normal theory test. Let’s
look at the sign test first. Under the null hypothesis, the center of the distribution is at zero.



Thus, the chance of any given X falling on either side of zero is precisely 1/2, and this change
is the same for all of the X; and the outcomes are independent. Thus, letting Y denote
the number of X;’s that are greater than zero, the distribution of Y is Binomial(25,0.5).
As the alternative is one-sided, we will reject only if YV is too large. Checking table 1, we
see that rejecting when Y > 17 corresponds to &« = 0.054, which might be close enough;
rejecting when Y > 18 corresponds to aw = 0.022. In this case, we’d probably take the first
option. Now, given the true distribution (a specific setting of the alternative) the chance
of any given X; exceeding zero is again the same and independent for each, but the chance
of “success” is now P(X; > 0) = P(Z > —0.3) = 0.6179. Looking at table 1 again, we see
values for p = 0.6, which is reasonably close; the power is 1 — 0.726 = 0.274 for the first
option and 1 — .846 = 0.154 for the second option. Using matlab, the power using the first
option is 1 — binocdf(16,25,0.6179) = 0.3378 and 1 — binocdf(17,25,0.6179) = 0.2007 using
the second. Now, using normal theory we know that X ~ N(0,1/25) under the null, so we
would reject if X exceeded 1.645x(1/5) = 0.3290. Under the alternative, X ~ N(0.3,1/25),
and P(X > 0.3290) = P(Z > 0.0290/5) = P(Z > 0.0058) = 0.4977. The z-test is quite
a bit more powerful than the sign test! The sign test actually tosses away a lot of other
information that the signed rank test, for example, makes use of - the rough magnitudes of
the sizes of deviations above and below zero, for example. On the other hand, the sign test
is very easy to use, and versions of it can be developed for any quantile whatsoever.

11.15 Suppose that » measurements are to be taken under a treatment condition and
another n measurements are to be taken independently under a control condition. It is
thought that the standard deviation of a single observation is about 10 under both condi-
tions. How large should n be so that a 95% confidence interval for px — gy has a width of
27 Use the normal distribution rather than the ¢ distribution, since n will turn out to be
rather large.

Well, in testing for the true mean difference our test statistic is X — Y, which has a normal
distribution with parameters N (ux — py, (% +0%)/n). A 95% confidence interval for the
true difference will thus be of the form

2
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the width of which is simply

[o2 2 100 100 2
2+ zo.975 U—X—I- v =2(1.96)y/ — + — = 39.24/—.
n n n n n

Setting this equal to 2, we get

Vn = 39.2/sqri2 = 27.7186,
= 768.32 = 768,

since n must be an integer.

11.18 Two independent samples are to be compared to see if there is a difference in the
population means. If a total of m subjects are available for the experiment, how should this



total be allocated between the two samples in order to (a) provide the shortest confidence
interval for ux — py and (b) make the test of Hy : ux = py as powerful as possible?
Assume that the observations in the two samples are normally distributed with the same
variance.

Well, we showed in class that the form of the most powerful test of px = py rejected when
(X —Y)? was too large. To decide what constitutes “too large”, we need to consider the
distribution of X — Y. Assuming that the two samples are normally distributed with the
same variance, we have

— — 0'2 0'2
X—Y~N(ux—uy,—+—)
nx

m—nx

so for an « level confidence interval we would use

o [1 1
(X —Y) % 2,500/ — + ——.
ny m-—mny

Now, the only effect of changing the allocation of sample units between X and Y is on the
width of the confidence interval - it does not affect the center, and the shape of the interval
is symmetric. Thus, making the confidence interval smaller corresponds to shrinking the
width, thus increasing the size of the rejection region and consequently increasing the power
of the test. Thus, the value of nx that provides the shortest c.i. also makes the test as
powerful as possible. To achieve this minimum, we want to choose nx to minimize
1 1
— +

nx m-—ny
differentiating with respect to nx gives

1 1 2

ny m-—nx

and setting this equal to zero gives nx = m/2, so we want to divide the sample as evenly
as possible. A quick check shows that the second derivative is uniformly positive so that
this is indeed a minimum. Note that this even splitting would not be optimal if we knew
0% ando?, and the two were different. In that case, the optimal allocation would be the
root of

11.19 A study was done to comapre the performances of engine bearings made of different
compounds (McCool 1979). Ten bearings of each type were tested. The following table
gives the times until failure (in units of millions of cycles):

Typel [3.03 553 5.60 9.30 9.92 1251 1295 1521 16.04 16.84
Type Il | 319 4.26 4.47 453 4.67 4.60 1278 6.79 9.37 1275




a) Use normal theory to test the hypothesis that there is no difference between the two
types of bearings. Here, we would use a two-sample t-test. Letting X refer to type I and

Y to type II,
-1 10.69 — 6.75 3.94

s2 2 1325 , 1208
Va4 JERL R VI8
Comparing this with a ¢-distribution with n + m — 2 = 18 df, we see that this is between

tos = 1.734 and tg75 = 2.101, so the p-value is somewhere between 0.1 and 0.05. Using
matlab, we find the exact p-value to be 2 x (1 — tedf(2.071,18)) = 0.053.

= 2.071.

b) Test the same hypothesis using a nonparametric method. Well, the obvious nonpara-
metric method for comparing two independent samples is the Wilcoxon-Mann-Whitney
rank-sum test. Note: there are no ties in the data. The ranks for the observations are

Typel |1 8 9 11 13 14 17 18 19 20
Typell [2 3 4 5 6 7 16 10 12 15

and the sum of ranks for Type I is 130, and the sum for Type II is 80. Checking table 8,
we see (using the smaller sum) that a value of 82 would correspond to & = 0.1 and a value
of 78 would correspond to a = 0.05, so the p-value based on the Wilcoxon-Mann-Whitney
test is between 0.1 and 0.05 as before. Using the normal approximation to the rank-sum
distribution, we get

ny

n1+n2+1:|:z ning(ny + ng + 1)
2 a/? 12

as a level a confidence interval - plugging in the numbers this gives
105+ 1.96 % sqrt175 = 105 + 25.92 ~ (79, 131).

Our results are near the bounds, but not outside them.

¢) Which of the methods — that of part (a) or that of part (b) — do you think is better
in this case? Well, the normal theory test relies upon the underlying assumption that the
data from both samples is normally distributed. So, the latter test is better if we have
reason to question these assumptions. We could test this visually by looking at Q-Q plots
comparing X and Y to the normal distribution. The X sample looks pretty straight, and
there is no reason to doubt normality there. The Y sample exhibits a bit of a dip below
the ideal straight line, but whether it is big enough to be troublesome is a judgement call
— I wouldn’t be worried about it, but I’d go ahead and do both tests to see how different
the results were. Doing that here shows that the results are not all that different, and both
tests lead to the same conclusions.

d) Estimate m, the probability that a type | bearing will outlast a type Il bearing. The
easiest way to do this is simply to look at the proportion of the ny x ny paired comparisons
of X; with Y; where X; > Y;. We can get this number from the sum of the ranks of the X;
fairly readily. If there were no Y; present, then the ranks of the X; would go from 1 to n4,
and the sum of the ranks would be nq(nq +1)/2. If we now add a single Y; to the system,
the total set of ranks now goes from 1 to n; 4+ 1, and if the sum of the X/s goes up from
ni(ny 4+ 1)/2, it goes up by the number of X;’s that exceed that particular Y;. Continuing
this process, we see that the total number of (X;,Y;) pairings in which X exceeds Y is
given by the sum of the X ranks less nq(ny 4+ 1)/2. Here, that means that X; exceeds Y;



in 130 — 10« 11/2 = 75 of the paired comparisons; as there are nyny = 100 total paired
comparisons, this means that our best estimate of 7 is pi = 75/100 = 0.75.

e) Use the bootstrap to estimate the sampling distribution of pi and its standard error.
Ok, to do this, we need to estimate how the number of paired comparison outcomes would
change under repeated sampling. So, we repeatedly sample. Here, though, we don’t have
the underlying distributions to work with, so we sample (with replacement!) from the data
values that we have at hand. We come up with a new sample for X by choosing n; (10)
values from the ones listed for X, and we come up with a new sample for Y by choosing
ng (10) values from the ones listed for Y. We then compute the rank sums and estimated
proportions as before, and we’re off. As there are no ties between the X and Y values to
begin with, there will also be none when we resample from these values, so any tied ranks
will be wholly amongst the Xs or the Ys; if we have two tied X values at ranks 4 and 5
then it doesn’t matter as far as the sum is concerned if we replace them both with 4.5 or
not. Minor observation; it simplifies the coding somewat to be able to ignore ties. The
code follows:

x = [3.03 5.53 5.60 9.30 9.92 12.51 12.95 15.21 16.04 16.84];
y = [3.19 4.26 4.47 4.53 4.67 4.69 12.78 6.79 9.37 12.75];
B = 1000;

nil = length(x);

n2 = length(y);
thetavec = zeros(B,1);
basesum = ni*x(ni1+1)/2;
for(i = 1:B)

xnew = x(ceil(ni*rand(ni,1)));

ynew = y(ceil(n2#rand(n2,1)));
[a, b] = sort([xnew, ynew]);
[c, d] = sort(b); ¥ These two lines generate the ranks for x and y

rankx = d(1:10);
thetavec(i) = sum(rankx) - basesum;
end

varest = var(thetavec)/(100%100);

on running this, we get an estimated variance of 0.0140 and an estimated standard deviation
of 0.1184. A plot of the pi* values looks roughly normal.

f) Use the bootstrap to find an approximate 90% confidence interval for 7. Well, using the
normal approximation and our answer to (g), we get

# + zgsse = 0.75 + 1.645(0.1184) = (0.5552, 0.9448)

which is fairly broad. We can’t make very precise statements here without more data. If
we use the hybrid method, sorting the pi* values we get

*

(2pi — Pifgrs), 2pi — Pi(z5)) = (0.57,0.95);



about the same thing.

11.23 Referring to Example A in Section 11.2.1, (a) if the smallest observation for method
B (79.94) is made arbitrarily small, will the -test still reject? (b) If the largest observation
for method B (80.03) is made arbitrarily large, will the ¢-test still reject? (c) Answer the
same questions for the Mann-Whitney test.

a) To answer this, we consider what happens as the smallest value is made arbitrarily small.
First off, the mean decreases, which increases the separation z — 7, so this would appear to
make it more likely that the ¢t-test will still reject. Up to a point this is so, but decreasing
the smallest value also increases the variance of the results from method B. Eventually, the
effect of this variance increase outstrips the effect of the mean decrease; while the means
of the two samples are different, they are not different enough according to the standard
deviation measure. Empirically, the value of the ¢-statistic is about 3.5 to begin with (there
is a significant difference) but it drops to 1.65 if we replace 79.94 with 78.94 and continues
to drop from there.

b) If we increase the largest observation for method B, the same logic as for part A tells us
that we will not reject for arbitrarily large values, but here we have recourse to the simpler
observation that increasing the largest observation increases the mean, and by increasing it
enough we can make z —y go to zero. Hence, it will not reject for arbitrarily large increases.
The t-test can be sensitive to a single extreme value, or outlier.

c) When we are using the Mann-Whitney test, all of our results are based on the ranks
of the data alone, not their values directly. In the case of the smallest value for Method
B, that value is the smallest value in either sample, so it has rank 1. Reducing the value
of the observation does not affect the rank at all; it stays 1, and hence the value of the
Mann-Whitney test (and the conclusion that we draw from it) remains the same. When we
increase the maximum value of the Method B observations, things do change slightly - this
value initially had rank 11.5 (see p.405), and as we keep increasing things it will eventually
attain rank 21. Once there, however, any further increase will have no effect. To begin
with, the rank sum for the Method B results was 51, and this increases to 60.5. The critical
value for a level @ = 0.05 test is 60, so our conclusion may chang if we’re using this level
initially, but not if we started with o = 0.1. Bascially, the amount of influence that a single
observation can have on the outcome of any rank-based test is bounded, but that does not
hold for a test based on means and variances.

11.24 Let X4,..., X, be a sample from an N(0, 1) distribution and let Y7,...,Y,, be an
independent sample from an N(1,1) distribution.

a) Determine the expected rank sum of the X;’s. This problem is an exercise in under-
standing the derivation of the expected rank sum in any given case - we revert back to a
consideration of the paired comparisons. If we pick an X at random, and a Y at random,
what is the chance that X will exceed Y; what is P(X > Y)? To compute this, we proceed
as follows:

P(X>Y) = P(X-Y >0)



(X=-Y)+1 1
= P ( N \/5) = P(Z > 1/V2) = 0.2398,
where we have used the fact that the difference of two normal rv’s is again a normal rv.
Ok, with this in mind, assume that we have n Y observations and just one X observation.
What is the expected rank of the X value? Well, we would expect the X to be larger
than 0.2398 of the Y observations, so the expected rank would be 0.2398n (the number of
Y’s the X value would exceed) plus 1 (the X value itself). Checking to make sure that
this makes sense, we plug in » = 1 and note that the expected rank of X is 1.2398; this
makes sense. The expected rank of YV is 1.7602 so the expected sum is always 3. What
happens if we increase the number of X'’s to 27 Well, the expected number of Y values
that the X’s would exceed would be the same for both, so the expected sum would be
0.2398n 4+ 0.2398n + 1 + 2 = 0.4796n + 3. As we expand the number of X’s until there are
also n of those, the expected rank sum is thus

0.2308n2 + Pt

In general, if we let Z;; = I(X; > Yj), then the rank sum of the X’s is

1
Z Zi; + 771(”; )
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and the expected rank sum is

(Xn:ZZquZ)—mnE )‘|‘w
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b) Determine the variance of the rank sum of the X;’s. Having done the setup in a), this
follows fairly directly.

(ZZZZ] —I_Z ) (ZEZ"J) :Z EZCOU(ZUZICZ)-
i=1j=1 i=1j=1 i=1j=1k=1I=1

As in class, there are four cases to consider here: If i = k, j = [, then F(Z;;Z;;) = E(Z;;) =
0.2398, so Cov(Z;;) = 0.2398 — 0.2398% = 0.1823. If ¢ # k ,j # I, then E(Z;Zy) =
E(Z”)E(ZM) and Cov(Z;;, Zy) = 0. The remaining two cases are a bit more tricky.
Consider first the case where i = k, j # [. In this case, Z;;Z;; = 1 if and only if X; > Y; and
X; > Y. The difficulty lies with the fact that the outcomes of these two paired comparisons
are not independent. We can see this by redefining the problem in terms of U;; = X; - Y;
and Uy = X; —Y;. Both U;; and U;; have normal distributions with mean —1 and variance
2, and their joint distribution is bivariate normal, but the two are not uncorrelated! Since
the U’s share a contributing X term which contributes half of the variability of the U, the
correlation between the two is p = 0.5. The chance that the X will be the smallest value
of the three is thus

1 ((u1—|—1)2 _9 (ur + 1 (u2 +1) + (u2—|—1)2)] duidus.

o0 o 1
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This integral is unfortunately difficult to solve in closed form, so we resort to simulation:



x = randn(10000,3);

x(:,2:3) = x(:,2:3) + 1;

y = (x(:,1) > x(:,2)) & (x(:,1) > x(:,2));
propest = sum(y)/10000;

running this gives us a value for F/(Z;;Z;) of 0.1139. The associated covariance is 0.1139 —
0.23982 = 0.0563. Note that this answer is not perfect as we are estimating a proportion
of successes; the variance of a proportion is approximately p(1 — p)/n = 0.1139 % (1 —
.1139) /10000 = 1.0093e — 05 and the associated standard deviation is 0.0032 so a 95%
confidence interval for the true value would be 0.1139 4+ 1.96 % 0.0032 = (0.1077,0.1201).
Still, this gives us a way of attacking the problem. Numerical integration would also work.

A similar problem arises when we consider the case ¢ # k, 7 = [; In this case we are asking
for the chance that X; > Y; and X > Y;. Jumping straight to simulating,

x = randn(10000,3);

x(:,3) = x(:,3) + 1;

y = (x(:,1) > x(:,3)) & (x(:,2) > x(:,3));
propest = sum(y)/10000;

this is actually the same as the integral that we just approximated above! In the first case,
we were asking for the chance that one value from a small distribution would exceed two
values from a large distribution, and here we are asking for the chance that two values
from a small distribution exceed one value from a large distribution. As the shapes of the
distributions are the same, so are the chances. Actually, at this point I got a bit frustrated at
not knowing things too well, so I generated one million samples of size 3 to get the standard
deviation down by a factor of 10 from the results using just 10000 samples. The point
estimate is now 0.1133 and the standard error is [.1133(1 — .1133)/1000000]°.5 = 0.00032,
so we know the first 3 significant figures. The Covariance is thus 0.1133 — 0.23982 = 0.0558.

At the end of the day, then, the variance of the rank sum of the X;’s is

0.1823 % n® + 0.0558 ¥ n*(n — 1) + 0.0558 * n*(n — 1) = n*(0.1823 + (2 * 0.0558) (n — 1)).

11.34 Lin, Sutton, and Qurashi (1979) compared microbiological and hydroxlamine meth-
ods for the analysis of ampicillin dosages. In one series of experiments, pairs of tablest
were analyzed by the two methods. The data in the following table give the percentages of
claimed amount of ampicillin found by the two methods in several pairs of tablets. What
are X —Y and sy _y? If the pairing had been erroneously ignored and it had been assumed
that the two samples were independent, what would have been the estimate of the standard
deviation of X —Y? Analyze the data to see if there is a systematic difference between the
two methods.



Microbiological Method Hydroxylamine Method  Difference

97.2 97.2 0.0
105.8 97.8 8.0
99.5 96.2 3.3
100.0 101.8 -1.8
93.8 88.0 5.8
79.2 74.0 5.2
72.0 75.0 -3.0
72.0 67.5 4.5
69.5 65.8 3.7
20.5 21.2 -0.7
95.2 94.8 0.4
90.8 95.8 -5.0
96.2 98.0 -1.8
96.2 99.0 -2.8
91.0 100.2 9.2
T = 85.26 y = 84.82 d=0.44
s% = 449.28 s3 = 464.57 sH =21.44

In this example, the standard deviation of the difference in means, using the pairings, is

sx_y = \/sh/n=1/21.44/15 = 1.1955.
Using the data to test for a difference, our test statistic would be
d 044
/3%/71 1.1955

we can check this against a t-distribution with 14 degrees of freedom, but there is no
indication of a significant difference between the two methods.

= 0.3680;

If we ignored the fact that the data were paired, then our estimate of the standard deviation
of the difference in means would be

(nX—l)Sg(—l— ny—l \/449 .28 + 464. 57 2
o — — = 7.8053.
SX-v \/ nx +ny — 2 TLA 15

Clearly, the standard deviation is much higher when we ignore the pairing! Pairing let us
focus in on the effect of interest much more precisely. Using the data to test for a difference,
our test statistic ignoring pairing would be

gy 0.44
s/ + L 78053

n

= 0.0564;

we can check this against a t¢-distribution with 28 degrees of freedom, but there is no
indication of a significant difference between the two methods based upon this test. Of
course, the variance in the sizes of the tablets used means that the difference would have
had to be quite large for us to detect it using a two-sample ¢-test!

10



11.37 An experiment was done to test a method for reducing faults on telephone lines
(Welch 1987). Fourteen matched pairs of areas were used. The following table shows the
fault rates for the control areas and for the test areas:

Test Control Difference Signed Rank
676 88 588 11
206 570 -364 -6
230 605 -375 -8
256 617 -361 -5
280 653 -373 -7
433 2913 -2480 -14
337 924 -587 -10
466 286 180 4
497 1098 -601 -12
512 982 -470 -9
794 2346 -1552 -13
428 321 107 2
452 615 -163 -3
512 519 -7 -1
T = 434.21 y = 895.5 d = —461.29 Wy =17

sk =2.8007e+ 04 s} =6.2495¢+ 05 s% =5.7427e 4 05

a) Plot the differences versus the control rate and summarize what you see. When the
differences are plotted versus the control rate, the data exhibit an almost linear pattern,
with a slope near —1. What’s going on is that the test method has not only reduced the
number of errors on average, it has greatly increased stability by reducing the variance.
The control observations are so widely variable that this variance gets carried over into the
differences. If we plot Test, Control and Difference all versus index on the same plot, it
is apparent that while the Test regions may have error occurrences that follow a normal
distribution, the results in the control regions are quite variable and skewed; there is a long
upper tail. Given results like this, a normal theory test (such as the paired t-test) will have
problems; a nonparametric test such as the Wilcoxon signed-rank test should fare much
better.

b) Calculate the mean difference, its standard deviation, and a confidence interval. Looking
at the table above, the mean difference is d = —461.29, its standard deviation is \/55/n =
\/5.74276 + 05/14 = 202.53, and a 95% confidence interval for the true difference is

d+ ty30.0m51/5% /n = —461.29 & 2.16 % 202.53 = (—898.83, —23.75).

Here, the difference was sufficiently dramatic that it was picked up even though there were
large outliers. The ¢ statistic is —461.29/202.53 = —2.2776, for which the one-sided p-value
is 0.0201 (Remember that we are looking for an improvement so the one-sided test is the
appropriate one).

c) Calculate the median difference and a confidence interval and compare to the previous
result. If we sort the differences, the median is taken to be the average of the two middle
differences as the number of observations is even - here, the sorted differences are

—2480, —1552, —601, —587, —470, —375, —373, —364, —361, —163, —7, 107, 180, 588
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the two middle values are —373 and —364, and the median is —368.5. To form a confi-
dence interval for the median, we use the sorted values; our interval will be of the form
(X(k)s X(n-k+1)) (see Ch.10.4.2). The bounds are chosen based on a binomial distribution
- each time we take a measurement, the chance that we will be less than the median is
1/2, by definition. Hence, the number of observations falling below the median value is a
binomial random variable with parameters (n,p = 0.5). The lower limit for the confidence
interval is thus the sorted value X ;) such that

15y
Yy ( ) < 05/2.

In our case, with n = 14, choosing k£ = 4 yields a = 0.0574, which is pretty close to 0.05.
So, an approximate confidence interval is (X4, X(11)) = (=587, =7). The lower limit is a
good deal closer to zero here than it was in the case of the t-test; the skewness of the data
affects this test a bit less.

d) Do you think it is more appropriate to use a ¢ test or a nonparametric method to test
whether the apparent difference between test and control could be due to chance? Why?
Carry out both tests and compare. Well, as discussed above, the skewness in the data,
both in the Control values and subsequently in the Difference values (seen in a) strongly
suggest that we should use a nonparametric method rather than a ¢ test. We performed a
t-test above (implicitly, by computing the confidence interval in b; we also found the test
stat and p-value there though it was not asked for there). So, what remains is to perform
the corresponding nonparametric test; the Wilcoxon signed-rank test. In this case, we
have listed the signed ranks in the table above. There are many more negative terms than
positive ones, so we elect to work with the sum of the positive ranks, which in this case is
W, = 17. Checking table 9 for n = 14, we see that a value of 21 corresponds to an « of
0.025 for a one-sided test, and a value of 16 corresponds to an « of 0.01. Consequently, the
one-sided p-value is between these two values, and a good deal closer to the latter. There
does appear to be a significant improvement after the new method is implemented.

12



