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Currently:

* huge amount of molecular data is available

* needs computer simulations in order to be studied

* computer software is needed to perform these simulations



Problem setup:

* Fixed volume V
* N chemical species (S1, Sz, ..., SN)
* M reactions possible (R1, ..., Rm)

* S1+S2—» S1S2

Question:

Given the number of molecules of each species (X1, Xz, ..., XN) at some time to,
what are the counts of these molecules at any later times ?



Solution:

Use mathematics!
Define the ordinary differential equations (ODEs) of the form

dx,
W:fi(XL---/XN)
Assumptions:
* Xi(t) is continuous (acceptable for large numbers of molecules)
* reactions evolve as a continuous rate process
* everything is deterministic

Usually the system of ODEs can only be solved numerically.



Issues with presented solution:

* Atom/molecule counts are integers so Xi(t) is not continuous

* The evolution of the system is not deterministic

Instead, we can:

* Assume the system is homogeneous

* Replace the concept of “reaction rate” by “reaction probability per
unit time”

This brings us to a stochastic simulation algorithm



An exact algorithm for stochastic simulation: Gillespie's algorithm

As a first step, define some useful constants:

Let cube a reaction and temperature specific constant such that

cu dt = average probability that a particular combination of Ru reactant
molecules will interact will react according to Ruin the interval (t, t+dt)

These cuconstants are experimentally determined.

This definition is also regarded as the fundamental hypothesis of the stochastic
formulation of chemical kinetics.



Evolution of the system:

* Can be done using a “master equation”:
In essence, the evolution is equivalent to evaluating a large
probability density function (pdf):
P(X1, ..., XN, 1)

This is rarely solvable.

* Introduce a reaction probability density function:
This should answer the following questions:
* What is the next reaction that will take place?
* When will the reaction occur?



The reaction probability density function:
P(T, u) such that,

P(T, u)dt = given some state at time t, the probability that reaction u will take place in
the infinitesimal interval (t+T, t+T+dt)

How to compute P(T, u) ?

Remember we have:

cu dt = average probability that a particular combination of Rureactant
molecules will interact will react according to Ruin the interval (t, t+dt)

Introduce hu = number of distinct reactant combinations for Ru
Define au = hucu



We have defined:
cu dt = average probability that a particular combination of Ru reactant
molecules will interact will react according to Ruin the interval (t, t+dt)

hu = number of distinct reactant combinations for Ru

S1+4S2 —» ... hu = X1 X2
233 —» .. hu=X3(Xs3-1)/2
au = huCu
This implies:

au dt = probability that Ru will occur in V during the interval (t, t + dt), given some
state at time t



The reaction probability density function can be written as:
P(T ,u)=P,(T)a,dT

where
Po(T) = the probability that no reaction happens in the interval (t, t+T)

The probability that some reaction happens in the interval (t, t + dt):
> a,dt

This implies the probability of no reaction happening is then
1-> a,dt

Notation: ao=§ a,

P,(T+dT)=P,(T)(1-a,dT) which implies P,(T)=exp(-q,T)



Previous derivation of Po gives P(T, u) to be:
P(T ,u)=a,exp(—a,T) when 0<T<x and ue{l,..., M}

P(T,u)=0 otherwise

Sampling P(T, u) gives a way to decide when the next reaction will
occur as well as what that reaction will be.

The only issue that remains is that computers usually have only
uniform samples available.



Sampling strategy:

Definition . Let Py be a distribution on a measure space (£, 5). A sequence X}, X5, ... of
random variables 1s a sampler for Py, if for all 4 € B it holds that

. 1<
Py(A4)= ,!1_1}1? z l,0X, P-almost surely ,
' Y =l
Lif xEA . ,
where 1 ,(x) = Jx is the indicator function for A.
! 0, else



Sampling strategy: sampling by transformation

If we need to sample according to a pdf g(x) and we have uniform samples
Zi, we can transform Zi to Xisuch that Xiis a sampler for g(x):

First, compute the cumulative density function ¢: R — [0,1], which is defined by
o) = [g(u)du,

and its inverse ¢~'(x) [this may be tricky or impossible to do analytically — then, numerical

approximations must be called]. Then obtain a sampler X; from the sampler Z; by

X, =¢"(Z).

Other methods: rejection, Gibbs, Metropolis



In Gillespie's algorithm:

P(T ,u)=a,exp(—a,T) when 0<T<x and ue{l,..., M}
P(T ,u)=0 otherwise

Assume T, u are independent random variables
P(T,u)=P(T)P(u)
P(T)=a,exp(—a,T)

P(u)za—“

Use sampling by transformation to get the sampler for P(T,u)



Algorithm pseudocode:

1: Read the constants cu and the molecule counts X

2: Compute au and ao for the current molecular population

3: Generate r, s uniform random numbers.
Transform them to a sample (T,u) from P(T,u)

1 1
T=="loq (=~
a, Og(r

)

u-1

u
uelN, such that Y a,<sa,<), q,
u=1 u=1

4: Execute reaction u, increase time by T, adjust the counts X

5: If we want to evolve the system further, go to step 2



Additions to the algorithm:

* Allow the volume V to increase linearly
* Split the evolution into generations.
* Each generation has duration T; V(t) =1 +t/ T
* Before each step of the algorithm, divide the rates cu by V(t)

* Simulation of cell division
* At the end of a generation, reset V to the initial value
* Divide the number of molecules of each species by 2

* Random pools of reactants
* If the number of reactants depends on many factors that are hard to model,
assume the distribution of their counts is Gaussian and use it for Xi
* This makes the algorithm inexact but it performs well in practice



Implementation (version 1.02):

mostly C++ code, some Perl code

command line interface

output optimized for Gnuplot

designed to be run as a background process



Simulation of LacZ and LacY genes expression and enzymatic/transport activities

of LacZ and LacY proteins

Reaction Stochastic rate constant [1/s]2 Meaning

PLac + RNAP — PLacRNAP 0.17 RNA polvmerase bindingl RNAP—RNA polymerase.
PLac—promoter, PLacRNAP closed RNAP/promoter complex

PLacRNAP — Plac + RNAP 10 RNA polymerase dissociation

PLacRNAP — TrLacZl 1 Closed complex isomerization TrLacZ1—open RNAP/promoter
complex

TrLacZl — RbsLacZ 4 Plac 4 TrLacZ2 1 Promoter clearance. RBSLacZ—RBS, TrLacZ2—RNA polymerase
elongating LacZ mRNA

TrLacZ2 — RNAP 0.015 mRNA chain elongation and RNAP release

Ribosome 4 RbsLacZ — RbsRibosome 0.17 Ribosome binding. Ribosome—ribosome molecule,
RbsRibosome—ribosome/RBS complex

RbsRibosome — Ribosome 4+ RbsLacZ 0.45 Ribosome dissociation

RbsRibosome — TrRbsLacZ 4+ RbsLacZ 04 RES clearance. TrRbsLacZ—rnbosome elongating LacZ protein chain

TrRbsLacZ — LacZ 0.015 LacZ protein synthesis

LacZ — dgrLacZ 6.42e—5 Protein degradation dgrLacZ—inactive LacZ protein

RbsLacZ — dgrRbsLacZ 0.3

Functional mRNA degradation. dgrRbsLacZ—inactive mRNA




Simulation of LacZ and LacY genes expression and enzymatic/transport activities

of LacZ and LacY proteins

Quantity

Experimentally

determined valueP

Calculated

value®

Transcription initiation frequency
The speed of protein synthesis

Stationary number of
mRNA molecules

Ribosome spacing

0.3 1/s
20 1/s

62

110 nucleotides

0.26 1/s

22 1/s

61

1 18 nucleotides




Work done since the paper:

* STOCKS2
* Better implementation, well organized source code, cross platform
* Implements “maximal timestep method”
* Puchalka J. and Kierzek A.M. (2004) Bridging the gap between
stochastic and deterministic regimes in the kinetic simulations of
the biochemical reaction networks. Biophys J. 86,1357-1372
* A combination of:

* Gibson, M. A. and J. Bruck. 2000. Efficient exact stochastic
simulation of chemical systems with many species and many
channels. J. Phys. Chem. 104:1876-1889.

* Gillespie, D. T. (2001). Approximate accelerated stochastic
simulation of chemically reacting systems. J. Chem. Phys.
115:1716-1733.
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