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a  b  s  t  r  a  c  t

As  an  alternative  to the  common  template  based  protein  structure  prediction  methods  based  on main-
chain position,  a novel  side-chain  centric  approach  has  been  developed.  Together  with  a  Bayesian  loop
modeling  procedure  and  a  combination  scoring  function,  the  Stone  Soup  algorithm  was  applied  to  the
CASP9  set  of template  based  modeling  targets.  Although  the  method  did  not  generate  as  large  of  per-
turbations  to the template  structures  as  necessary,  the analysis  of  the  results  gives  unique  insights  into
the differences  in  packing  between  the  target  structures  and  their  templates.  Considerable  variation  in
packing  is  found  between  target  and  template  structures  even  when  the  structures  are  close,  and  this
emplate-based protein structure
rediction
rotein statistical function

variation  is found  due  to  2 and  3 body  packing  interactions.  Outside  the inherent  restrictions  in packing
representation  of  the PDB,  the  first steps  in  correctly  defining  those  regions  of  variable  packing  have  been
mapped  primarily  to local  interactions,  as  the  packing  at the  secondary  and  tertiary  structure  are  largely
conserved.  Of  the scoring  functions  used,  a loop  scoring  function  based  on water  structure  exhibited
some  promise  for discrimination.  These  results  present  a clear  structural  path  for  further  development
of  a side-chain  centered  approach  to  template  based  modeling.
. Introduction

Template based protein structure prediction methods (TBM)
ave the potential to rapidly ‘solve’ the structures of many gene
equences of unknown structure. The explicit aim of the structural
enomics initiative is to solve the structures of sequences without
bvious homology to known structures, increasing the number of
emplates available for TBM. Despite these efforts, the Protein Data
ank (Berman et al., 2000) has seen virtually no growth in the num-
er of protein folds in the last several years, suggesting that most
oluble, globular protein folds have been discovered. As the Criti-
al Assessment of Protein Structure Prediction (CASP) experiments
ave shown, the ability of predictors to significantly improve these
emplates’ similarity to the target structure remains unimproved
Read and Chavali, 2007; Moult, 2005; Mariani et al., 2011; Cozzetto

t al., 2009; Keedy et al., 2009; Kryshtafovych et al., 2011). In this
ork, we characterize the packing rearrangements that need to be
odeled to move a template closer to the native structure.

∗ Corresponding author. Tel.: +1 209 946 2298; fax: +1 209 946 2607.
E-mail address: jtsai@pacific.edu (J.W. Tsai).

476-9271/$ – see front matter ©  2012 Elsevier Ltd. All rights reserved.
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© 2012 Elsevier Ltd. All rights reserved.

Current template based methods rely on variations of backbone
based chain assembly methods (Eswar et al., 2006; Joo et al., 2007;
Zhang et al., 2005; Zhang, 2008; Krieger et al., 2009). In the con-
straint based approach (Eswar et al., 2006; Joo et al., 2007), template
structures are used to define short and long range distances that
act as constraints on atom positions. A simulated annealing pro-
cedure is then used to generate backbone models, which can be
scored or clustered and scored, before rebuilding and packing the
side-chains. In the fragment-based approaches (Zhang et al., 2005;
Zhang, 2008; Krieger et al., 2009), a threading procedure is used to
identify template structure, and these templates are then used to
identify short peptide fragments. These fragments are sampled and
reassembled to search the backbone conformational space. What is
common between these methods and the majority of protein struc-
ture prediction approaches is the sampling of conformational space
based solely on the protein backbone and without direct influence
of the amino acid side-chains (Moult, 2005; Fiser, 2010; Qu et al.,
2009). Information about the location of the side-chain centers of

mass is retained indirectly in the backbone fragments, but the move
space is fundamentally defined by the backbone fragments. This
approach seems at odds with the basic idea behind template based
structure modeling: because the proteins share the same fold, it

dx.doi.org/10.1016/j.compbiolchem.2012.10.008
http://www.sciencedirect.com/science/journal/14769271
http://www.elsevier.com/locate/compbiolchem
mailto:jtsai@pacific.edu
dx.doi.org/10.1016/j.compbiolchem.2012.10.008
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Fig. 1. Stone Soup flowchart. Individual step

s the changes in sequence and therefore the contributions from
mino acid side-chains that determines the differences between
emplate and native protein structures. Sampling protein confor-

ational space of packing using backbone move sets may  account
or the current lack of progress in template-based modeling.

In contrast to these backbone based-methods, our group has
een actively seeking approaches to capture the side-chain influ-
nces on the protein backbone (Holmes and Tsai, 2005; Dahl
t al., 2008; Day et al., 2010; Lennox et al., 2009, 2010). In par-
icular, we have shown that cliques in the contact graphs of
roteins (i.e. sets of residues where all residues contact all other
esidues) can be geometrically clustered within and between pro-
ein families (Lennox et al., 2009). These clusters represent tertiary
acking motifs that are common to all protein structures. For the
et of structures from the 9th CASP9 experiment (Moult et al.,
011), we combined this side-chain approach with other meth-
ds such as loop modeling and conformational scoring (Joo et al.,
010) developed in the group to make template based struc-
ures predictions. Our approach seeks to make moves directly in
he packing of the templates, and allow the perturbations in the
ide-chain packing to define the position of the backbone. The ter-
iary motifs also allow us to precisely analyze the results of our
rediction method and exactly characterize the side-chain pertur-
ations necessary to move a template towards the native protein
tructure.

. Methods

.1. Stone Soup template based structure prediction procedure
The Stone Soup template based structure prediction procedure
s an agglomeration of a number of novel methods that approach
ifferent parts of the template based structure prediction prob-

em (Fig. 1). The workflow is described generally in the following
etailed in the methods and results sections.

paragraph and more detail to each individual method is given
below. At the start, the sequence provided by the CASP9 organiz-
ers was  compared to all known protein structures using PSI-BLAST
(Altschul et al., 1997). To identify templates, a cutoff of 20%
sequence identity was used with a coverage cutoff of 90%. If mul-
tiple templates were identified, they were aligned to one another
using MUSTANG (Konagurthu et al., 2006). This alignment was then
used in a profile–profile alignment to the target using MUSCLE
(Edgar, 2004). The aligned structures were averaged to produce a
starting template structure, which was then analyzed by our novel
tertiary structure prediction (3SP) method that defined regions for
core refinement and the remaining for loop modeling: essentially
regions with few or no 3SP constraints. For the core of the start-
ing averaged template structure, 3SP was  used to identify cliques
in the templates, find similar cliques from known protein struc-
tures, and statistically model those set of cliques. Side-chain driven
backbone samples were drawn from the 3SP distribution of residue
cliques and substituted into an average template structure. Since
this perturbation of the templates broke the backbone connec-
tivity, all-atom models were generated using Pulchra (Rotkiewicz
and Skolnick, 2008). Models were scored with the high resolution
molecular dynamics (hrMD) derived volume (see below) and tor-
sion angle score for every second structure, and the top scoring
structures were identified to combine with modeled loops. Ran-
ging from 56 to 368, the number of top scoring structures selected
depended primarily on available computational resources since the
number and size of targets as well as their loops varied over the
course of prediction season. For the loops, the new approach of
CorTorgles (Joo et al., 2011) uses template data to model backbone
�,� distributions in unstructured regions of the proteins. Samples

from these distributions were converted to loops in Cartesian coor-
dinates using the SNerf algorithm (Parsons et al., 2005). Loops were
filtered out if their C-terminal stem �-carbons were greater than
2 Å of the template C-terminal stem when the N-terminal stem
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-carbons were aligned (non-closure) or if any loop �-carbon were
ithin 3.76 Å of any protein �-carbons (backbone overlap, class

core). The remaining loops were built onto the best scoring struc-
ures from the core refinement. The loops were further filtered
ccording to the bridging water score WatLoop, a new water path
ased scoring function described below. Because completion of
he WatLoop score did not occur until halfway through the pre-
iction season, this scoring step was only applied to the latter
alf of the targets. Combining the best core and loop structures,
omplete all-atom models were again generated using Pulchra
Rotkiewicz and Skolnick, 2008) and scored using hrMD. Com-
lete structures were built by selecting the best scoring set of

oops for each 3SP structure identified in step 3. All these loops
ere then combined on each 3SP structure. Each 3SP structure was

onsidered independently, so different base structures could have
ifferent sets of best scoring loops. All-atom models of the complete
tructures were once again generated using Pulchra (Rotkiewicz
nd Skolnick, 2008), then steepest descent minimized for 1000
teps using the OPLS force field (Kaminski et al., 2001) in Gro-
acs (Hess et al., 2008) and subjected to a final scoring using

rMD.

.1.1. 3SP: side-chain driven backbone refinement
The underlying concept of 3SP is to drive backbone perturba-

ions based on the interactions of side-chains. This is accomplished
y creating a move-set library that relates side-chain packing vari-
tions in Cartesian space to the �,� torsion angle space of the
ackbone main-chain. This library is generated by clustering the
aximal contact cliques (Bron and Kerbosch, 1973) computed

rom the 95% sequence unique ASTRAL (Chandonia et al., 2004)
et of known protein structures (hereafter referred to as move-
et cliques) based on the relative positions of their C� atoms and
ide-chain centers of mass (centroids) (Day et al., 2010). These
ove-set cliques represent the maximally self-interacting clusters

f residues (all residues in the set are in contact with all other
esidues in the set). For these clustered packing cliques, the distri-
utions of C� and centroids at each residue position are modeled
sing a kernel density estimation approach (Day et al., 2010). The
istribution of a given centroid position for a packing clique is a
ixture of trivariate normal distributions centered on the centroid

ocations of known cliques. The model also permits straightforward
onditional sampling, allowing perturbations at a single clique
osition to be propagated to other positions. To properly model
he residue cliques, this statistical modeling is applied in 2 steps:
rst the side-chain centroid positions are modeled with respect
o each other and then individual side-chain centroid positions
re modeled to their respective residue’s C� position as well as
ackbone �,� torsion angles.

To select a specific set of 3SP moves for a particular target,
he residues for core refinement need to be identified. From the
veraged template structure, maximal contact cliques (Bron and
erbosch, 1973) are first computed. These template cliques are
ompared to pre-calculated library of clustered move-set cliques.
he move-set cliques that are within 1.2 Å RMSD of the template
liques are pulled for modeling and are further filtered according
o the distances between the C� atoms and centroid for individual
esidues to ensure that the modeled positions are consistent with
he target sequence. For each selected move-set clique, the modeled
SP distribution of 1000 side-chain positions to the backbone C�
osition and torsion angles constitutes the sampling of core repack-

ng. The set of these distributions represents the overall set of
oves from which draws are taken during the template-based

odeling. A 3SP move consists of making draws first from the cen-

roid distributions, and then obtaining the respective C� position
onditioned on the centroid draws. In this way, the selected side-
hain positions inform changes in the backbone structure. These
 and Chemistry 42 (2013) 40– 48

positions were used to build up the model structure as described
above.

During the template based modeling, a model’s clique is selected
at random and the positions of its �-carbon and centroid atoms
are changed to those of a randomly selected draw from the 3SP
distribution for that clique. The move is accepted if it results in
C�–C� distances less than 4.4 Å for consecutive residues (the max-
imum distance observed in the PDB) and if there are no overlaps
between centroid atoms (as determined by the minimum observed
distance between pairs of centroids of the 20 amino acid types in
the PDB). For the next move, a new clique that shares at least two
residues with the previously moved clique is selected and moved
as described. If no overlapping cliques that were not moved in the
previous two  steps are found, a new starting clique is chosen at
random and moved as described. A single run consisted of 5000
steps.

2.1.2. CorTorgles: correlated torsion angle loop modeling
Contiguous segments of two  or more residues with no modeled

cliques were modeled with our loop modeling algorithm CorTorgles
(Joo et al., 2011), which applies a statistical estimation of continu-
ous backbone �,� distributions (Lennox et al., 2010). The �,� angles
for the loop region to be modeled plus two  flanking residues on each
side are calculated from all the templates (total residues = n + 4). As
described in detail (Lennox et al., 2010; Joo et al., 2011), these are
used to fit the parameters of a Dirichlet process mixture of bivari-
ate von Mises distributions centered on a hidden Markov model
that describes a continuous distribution in �,� space. This unique
centering distribution allowed us to develop informative template
based conformation distributions even at alignment positions with
little or no observed data, which allowed us to cope with sparse
data and effectively extend a homology modeling approach to loop
regions. Samples from this distribution are converted into Cartesian
coordinates by building from the template backbone N, C�, and car-
boxyl C atom positions of the first residue in the modeled segment
(N-terminal stem) (Parsons et al., 2005). The resulting positions of
the C� atoms of the last two  residues in the segment (C-terminal
stem) are then compared to their positions in the template. If the
average of these distances is greater than 2 Å, loop closure is not
satisfied and the loop is rejected. Accepted loops are built onto low
scoring 3SP structures by aligning the four stem residues. Loops
with backbone clashes are eliminated by requiring at least 3.76 Å
between non-sequential C� atoms.

2.1.3. hrMD: high resolution MD scoring function
The hrMD scoring functions is based on an extensive set of

molecular dynamics (MD) simulations or dynameome of confor-
mations around the native state ensemble (Joo et al., 2010) and
compares main-chain torsion angles, side-chain volume, and side-
chain torsion angles of individual residues to values observed in the
aforementioned molecular dynamics simulations. Volumes were
calculated using Voronoi polyhedra (Tsai and Gerstein, 2002). In
order to obtain the volumes of surface residues, the protein was
inserted in an equilibrated water box in 10 randomly selected ori-
entations and the resulting residue volumes were averaged. The
hrMD score is a unified probabilistic scoring function incorporat-
ing (a) distribution of exposed polar groups (eSA), (b) backbone
dependent residue volumes (v) and (c) backbone dependent �1
angles (abbreviated as � below). These were calculated from the
native state dynameome described above. The unified score Su is
proportional to how plausible each candidate structure (denoted by

� ) given the sequence information. With the assumptions of inde-
pendence between individual amino acids (denoted by aai), and the
nature of research question that we are comparing the candidate
structures for the same sequence, the scoring function is reduced
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Fig. 2. 3SP scores and final scoring results. The C�RMSD of the starting template to
native is always plotted along the x-axis, while the C�RMSD to native of the compar-
ison  set is plotted on the y-axis. The unity line is shown in grey across the diagonal
and  represents a border for good versus sets. Simply, anything below the line indi-
cate structures closer to the native structure than the template. The best template is
plotted with open diamonds. For each target, the selected model’s C�RMSD to native
is  shown by a filled circle, while the distribution of models is shown by the whiskers
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o the following form:

n∏

i=1

p(�i,  i, eSAi, �i, vi, aai)

=
n∏

i=1

p(vi|�i,  i, aai)p(�i|�i,  i, aai)p(eSAi|aai) (1)

The proposed unified score Su is in the log scale of this estimated
robability due to the sparsity of the knowledge space,

u =
n∑

i=1

[log p(vi|�i,  i, a) + log p(�i|�i,  i, aai) + log p(eSAi|aai)]

(2)

One issue that does bear consideration is the computation time
nvolved in calculating the volume portion of the hrMD score. The
alculation of Voronoi polyhedra is a much faster algorithm than
ther volume calculation algorithms, but the overall calculation is
till quite slow, especially since a small solvation shell is added to
he protein. The computational expense of this calculation could
e minimized by introducing a clustering scheme and only scoring
luster centers or by only using the hrMD score in the later stages
f prediction.

.1.4. WatLoop: water path estimation of solvation score
The population density of the distances between polar groups

onnected through hydrogen bonded water network on the loop
egion obtained from the dynameome data was used as reference
ata (Joo et al., 2010). The 0.1 Å bin was used for distances ran-
ing from 1.7 to 12.0 Å to give total 104 bins. For each distance
in, the path was counted as one if it connected from loop to loop,
nd as a half if it connected loop to helix or sheet. The frequen-
ies were normalized, transformed so the highest peak has 1.0 and
owest valley has −1.0 as score. The candidates are put in the water
ox obtained from an MD  simulation, and then the waters within
.4 Å from protein surface are removed. Hydrogen bonded water
aths between two polar groups in the loop region are searched and
ounted. Water paths connected through up to six waters are con-
idered to be consistent with the reference data. This polar group
istribution was compared with the dynameome data and scored.
ince the water structure around the protein is not equilibrated, we
otated the candidate structures three times along each x, y, and z
xes and searched the water paths for each rotation. The ten scores
re averaged and this averaged score was used to select the good
oop structures on the protein after adding the loop to the protein
ore structures.

.2. Packing analysis of results

Analysis of differences in packing between templates and the
ative target structure was performed using the contact order
efined packing cliques as described previously (Day et al., 2010).
or each template structure, a sequence/structural alignment was
erformed using MUSTANG (Konagurthu et al., 2006). At the
implest level, the number of residues in packing cliques were com-
ared for equivalent positions. Then, the packing clique class based
n the contact order classification system was compared between
quivalent sites for the template and native target structure. For
xample, a template packing clique of 3 + 1 (3 local residues packed

gainst a non-local residue) would not be the same as a native
acking clique of 2 + 2 (2 local residues packed against 2 non-local
esidues), and this would be considered a change. Lastly, cliques
ere compared based on position of residues in space in a similar
from the filled circles. The fitted line of the structures built using the best packing
cliques (PCs) is shown by the dotted line. The fitted line for the models selected by
the  hrMD scoring function is shown by the long dashed line.

fashion to what was  done with 3SP to define the move set using a
4.4 Å RMSD cutoff between C� atoms.

3. Results/discussion

3.1. Stone Soup performance

The Stone Soup template based structure prediction algorithm
was used on 59 CASP9 targets, of which native structures were
released for 45. A breakdown of the Stone Soup results is shown
in Table 1. Predicted targets ranged in amino acid length from 79
to 611 residues. These targets had from 1 to 67 templates in the
PDB. These templates had between 61% and 100% coverage by our
packing cliques. With 100% coverage, there were targets with no
loops, but there were also targets with up to 21 loops. Template
C�RMSD ranged from 1.74 to 19.32 Å, while final C�RMSD values
from the closest of the 5 Stone Soup predictions is from 2.13 to
19.32 Å. As shown by the open diamonds in Fig. 2, the averaged
template structure in general moved the starting template struc-
ture away from the native structure. While this was  a major source
of error and affected overall performance, it did not significantly
impact the sampling and selection capabilities of our approach.
Therefore, the discussion will focus on the particular results from
the 3SP and CorTorgles components.

3.1.1. 3SP core packing
For each target 56–368 minimized models with all loops

were generated, depending on the number of processors available

(Table 1). Yet, the diversity of structures generated in 3SP was gen-
erally low. The short vertical bars around the unity line in Fig. 2
indicate that 3SP sampled conformational space only around the
starting template structure. The skew in the distributions above
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Table  1
CASP9 target summary.

Target Length Class templates nLoops nProc Score coverage template start final pdbid

T0520 189 H 14 3 352 hrMD 1.00 3.60 3.75 3.92 3mr7
T0547 611 H 7 16 368 hrMD 0.76 8.29 2.68 8.89 3nzp
T0549 84 H + S 20 1 368 hrMD 1.00 7.14 7.13 7.26 2kzv
T0563 279 H + S 3 11 176 hrMD 0.99 5.87 5.63 5.86 3on7
T0565 326 H + S 2 15 184 hrMD 0.95 8.22 8.15 8.61 3npf
T0570  258 H + S 11 6 120 hrMD 0.96 3.74 3.37 4.04 3no3
T0573 311 H + S 4 15 120 hrMD 0.99 5.09 5.34 5.38 3oox
T0584 352 H 8 7 72 hrMD 0.99 4.28 5.47 5.23 3nf2
T0585 234 H + S 1 8 72 hrMD 0.76 4.85 4.85 4.88 3ne8
T0586 125 H 11 3 80 hrMD 0.73 1.94 4.16 4.43 3neu
T0589 465 H + S 11 8 96 hrMD 0.98 4.40 6.44 6.33 3net
T0591 406 H + S 57 3 88 hrMD 1.00 3.61 4.27 4.36 3nra
T0592 144 H 14 5 88 hrMD 0.98 4.13 8.74 7.91 3nhv
T0593 208 H + S 1 12 96 hrMD 0.81 8.50 8.50 8.43 3ngw
T0594 140 H 1 8 96 hrMD 0.94 2.55 2.55 3.07 3ni8
T0597 429 H + S 16 8 88 hrMD 0.90 3.37 8.74 8.47 3nie
T0599 399 H + S 12 10 88 hrMD 0.99 2.46 4.48 4.19 3os6
T0602 123 H 2 4 88 hrMD 0.93 7.94 7.93 7.90 3nkz
T0603  305 H + S 1 16 88 hrMD 0.89 13.49 13.49 12.62 3nkd
T0607 471 H + S 6 21 88 hrMD 0.98 4.47 4.37 4.50 3pfe
T0609  340 H + S 17 14 56 D + Wat  1.00 4.77 6.11 6.10 3os7
T0611 227 H + S 30 2 56 D + Wat  0.99 4.29 5.81 5.75 3nnr
T0613 287 H + S 11 8 56 D + Wat  0.99 1.99 2.64 2.98 3obi
T0615 179 H + S 1 12 56 D + Wat  0.97 15.89 15.89 15.82 3nqw
T0617 148 H + S 39 0 56 D + Wat  0.99 4.81 5.64 5.79 3nrv
T0620  312 H + S 3 19 56 D + Wat  0.98 5.56 5.61 5.92 3nr8
T0623 220 H + S 3 8 56 D + Wat  0.82 3.98 4.80 4.90 3nkh
T0625 233 H 1 17 56 D + Wat  0.98 13.15 13.15 13.04 3oru
T0626 283 H + S 17 6 56 D + Wat  1.00 2.13 3.00 3.16 3o1l
T0632 168 H + S 27 8 56 D + Wat  1.00 2.05 13.05 13.07 3nwz
T0636 336 H + S 67 0 56 D + Wat  1.00 3.27 3.86 3.89 3p1t
T0638 269 H + S 2 13 56 D + Wat  0.84 19.32 19.32 19.32 3nxh
T0640  250 H + S 56 7 56 D + Wat  1.00 3.62 5.20 4.19 3nyw
T0641 296 H + S 10 10 56 D + Wat  1.00 2.60 2.63 2.84 2nyi
TR530 115 R NA5 2 96 hrMD 0.70 2.47 2.47 2.48 2npp
TR557  145 R NA 7 56 D + Wat  0.86 4.48 4.48 4.63 2kyy
TR567 145 R NA 7 56 D + Wat  0.98 3.77 3.77 3.95 3n70
TR568  158 R NA 6 56 D + Wat  0.61 8.22 8.22 8.15 3n6y
TR569 79 R NA 3 56 D + Wat  1.00 3.45 3.45 3.31 2kyw
TR574  126 R NA 8 56 D + Wat  0.81 4.24 4.24 4.38 3nrf
TR576  172 R NA 8 56 D + Wat  0.80 7.14 7.14 7.26 3na2
TR592  144 R NA 6 56 D + Wat  0.73 1.74 1.74 2.13 3nhv
TR594  140 R NA 8 56 D + Wat  1.00 2.40 2.40 2.75 3ni8
TR606 169 R NA 10 56 D + Wat  0.73 5.26 5.26 5.34 3noh
TR622  138 R NA 4 56 D + Wat  0.88 6.62 6.62 6.82 3nkl

Target is the target number used in CASP9. Length refers to the number the amino acid residues for a target. Class indicates classification type during CASP9, where H is human,
S  is server, and R is refinement. The templates column shows the number of templates used in our approach, where the NA for all refinement targets indicates that the only
structure used was  supplied by CASP9. The nLoops refers to the number of loops that were modeled by WatLoop. The nProc label is the number of structures generated at
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ach  step and is proportional to the number of processors used. Score indicates whi
nd  the water distance based filter was applied to ‘D + Wat’ targets. Coverage is the
olumns are C�/side-chain center of mass RMSD in Å. The last column pdbid is the P

he unity line shows the sampling was more away from the native
tructure than towards it. This is partly attributable to our sampling
cheme, which was essentially a random walk, with no scoring
unction to allow us to keep “good” moves and reject “bad” moves.
owever, the more fundamental issue is that our method is too
onservative in its move-set since it relies heavily on information
rom the template structure. Because the 3SP repacks the conserved
esidues found in the template core, the approach does not contain
hose new clique conformations that make the difference between
hat template and native structure. Even if we used the closest tem-
late, our sampling of packing space remains close to the starting
tructure. As shown in Fig. 2, some targets began with that clos-
st native template, but this did not improve our sampling. To test
hat limitation of move-set library, model structures for each tar-
et were built up by selecting the cliques from our library that were

losest in C�RMSD to the template cliques. The dotted line in Fig. 2
hows the average improvement of about 0.2 Å C�RMSD to native,
hich lies just below the unity line. The best improvement found
as just under 0.5 Å C�RMSD and our worst was an increase in
ring functions were used, where the hrMD scoring function was used for all targets
ntage coverage of the template to the native structure. The template, start, and final
entification of the native structure.

C�RMSD from native of 1.2 Å. This increase was due to small lever
arm effects in a region where the native had strained backbone tor-
sion angles nearer to disallowed regions. This result shows that the
limit of this 3SP approach is not a significant improvement over the
starting structure.

3.1.2. CorTorgles loop modeling
For all but two  targets, there were regions of the protein that

could not be modeled by 3SP. This could be due to lack of coverage
in the templates, unpacked residues, or rare packing arrangements
that were not well represented in the PDB. We  consider all of these
cases as candidates for loop modeling and modeled the �,� distri-
butions for these residues using the DPM-HMM method detailed
in Lennox et al. (2010).  Once the �,� distributions are calculated,

making draws and building putative structures is very fast, allowing
us to generate 1,000,000 models for each loop region. However, the
stem filter, which enforces loop closure, removes the vast majority
of these loops and only a small fraction could be grafted back onto
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Fig. 3. Loop modeling results. (A) Number of loops that pass the loop closure (stem)
filter and clash filter as a function of loop length. In order to save processor time,
the  clash filter was stopped after 1000 loops had passed. We initially generated 1
million draws for each loop. (B) Whole template C�/side-chain center of mass RMSD
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Fig. 4. Similarity between target cliques and template cliques. (A) Fraction of target
cliques that are found in any template as a function of the C�/side-chain center of
mass RMSD between the target and best template. (B) Fraction of template cliques
that  are present in the target and within 1 Å RMSD of the target clique as a function
of  the RMSD between the target and best template. (C) Similarity between target
cliques and PDB cliques. The colors represent the fraction of target cliques with N
cliques found in the PDB within the distance cutoff on the x-axis. Thus, for ∼40% of
target cliques there are no cliques in our PDB set within 0.5 Å RMSD, but for ∼90% of
mprovement when best loop is built onto template as a function of loop length. The
ine represents the fitted line of lowest energy loops selected using the WatLoop
coring function.

he template structure (Fig. 3A). The median number of remaining
oops after applying the stem filter is 572. These loops are then
uilt onto the best scoring 3SP models and a backbone clash filter

s applied, leading to a further reduction in the number of structures
hat must be scored. As Fig. 3B shows, it was difficult to improve
n loops of shorter length from 5 to 7 residues. In this regime, the
tarting loops usually began very close to native leaving little room
or improvement. At the other end of the spectrum, longer loops of
6 and up were not sampled well by CorTorgles, and increases in
�RMSD to native is seen. CorTorgles exhibits its best performance

rom 8 to 15 residues, where improvements to the overall template
y the loops pushed 0.3 Å. As the template put constraints on the

tarting and end points of the loop as well as the path it takes to
onnect those points, this improvement is a significant contribu-
ion to building better models for loops in the 8–13 residue length
ange.
target cliques there are more than 100 cliques in our PDB set within a 1.0 Å RMSD
cutoff. (For interpretation of the references to color in this figure legend, the reader
is  referred to the web version of the article.)

3.2. Scoring functions

Addressing the effectiveness of the scoring function used in this

study is difficult as we  generally did not move the templates sig-
nificantly closer to or further from the target (Fig. 2). Using just
the hrMD scoring function to select from the distribution of model
structures on average selected structures on average that were just
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Fig. 5. Clique conservation and similarity by clique type. In A and B, the cliques are grouped according to their size (i.e. the number of residues in each clique). In C and D, the
4  residue cliques are classified according to whether the residues in the clique are local in sequence (local), are within the same element of h-bonded secondary structure
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secondary), or connect multiple secondary structure elements (tertiary). A and C 

ne  or more templates formed by residues in the same alignment positions. B and D
lique.  In all figures, the horizontal black line indicates the average value for all cliq

lightly worse than the starting template structure. The long dashed
ine in Fig. 2 shows this average and indicates that hrMD performs
onsistently regardless of how close the template structure starts
o the native. The hope was that using the molecular dynamics
ata would be able to discriminate structures that were closer to
ative, which is not the trend shown by the line. As scoring function
ased on physical principles of a protein structure, these results
re consistent and suggest the limitation of a score like hrMD.
ince the hrMD scores structures on their physical reasonableness,
eviations that unfold or perturb a fold would not be allowed. For
tructures far from native that require large rearrangement, hrMD
ould score movement away from the template structure poorly.

n a similar manner, the hrMD only selects close structures with
emplates that are nearer to native. Therefore, the hrMD scoring
unction is good at keeping the structure stable, but inappropriate
or sampling across conformational space.

Adding the water path distance filter (WatLoop) displayed a
mall improvement over hrMD alone, so the improvement of the
emplate that WatLoop provided was investigated for the loops.
ig. 2B shows the fitted line to the average improvement of loops
elected by WatLoop. Consistent with the ability of the CorTorgles

o make loops, the WatLoop was able to generally find the bet-
er candidates. In 39% of the 213 loops modeled, WatLoop selected
oops that were farther from native. In the remaining 61%, Wat-
oop was able to select loops that moved the structure towards the
clique conservation, i.e. the fraction of target cliques for which there is a clique in
 the fraction of conserved template cliques that are within 1.0 Å RMSD of the target

native structure. In 3 instances, WatLoop was  able to select the best
loop made by CorTorgles. In each of these, the starting structure
was below 3 Å C�RMSD to the native. Since the WatLoop scoring
function relies on the network of waters around the loop and its
respective structure, the WatLoop scoring function is promising for
refinement in template based structure prediction when the tem-
plate structure is close to the native structure. Alternatively, these
results suggest that WatLoop should be used in the final steps of
model sampling when the model structure is hopefully closer to
the native structure to allow the WatLoop discrimination.

3.3. Packing rearrangements

Overall, the templates possessed a certain amount of variation
in their packing from the samples and representation in the PDB as
explored by Fig. 4. Even for templates that are geometrically similar
to the target (C�/side-chain center of mass C�RMSD < 4 Å), the frac-
tion of cliques that are identical in target and templates is always
less than 60% and may  be as low as 30% (Fig. 4A). As expected,
clique conservation is even lower for poorer templates. In contrast,
the structural similarity between cliques that are conserved is high

regardless of the similarity between target and template (Fig. 4B).
Thus, if regions of low clique conservation could be predicted, we
could be confident that the remaining regions provide a good tem-
plate for packing in the template. Another issue that may  affect a
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acking centered template based modeling approach is the com-
leteness of the PDB in describing different packing arrangements.
his issue is investigated by considering the number of represent-
tives in the filtered PDB set for each target clique in all CASP9
argets. The three C�/side-chain center of mass RMSD cutoffs were
onsidered for defining representatives. At the shortest cutoff, 0.5 Å,
he PDB set appears to be quite incomplete. Three in four target
liques have fewer than 10 representatives in the PDB that are
0.5 Å RMSD. The PDB appears to be much more complete when a
.0 Å RMSD cutoff is used, with less than 5% of cliques having fewer
han 10 representatives. At a 1.5 Å RMSD cutoff, the PDB is essen-
ially complete. While the incompleteness of the PDB at the 0.5 Å
MSD cutoff suggests a lower limit on the resolution of packing
ased approaches to TBM, the clique conservation issues discussed
bove represent a much larger practical challenge.

A simple analysis of the types of cliques that are conserved pro-
ides some insight into what regions of the protein are more likely
o be different in the target and template (Fig. 5). Cliques formed
y four residues are by far the most common in the PDB. These also
ppear to be the most likely to be conserved between target and
emplate. Two  and three residue cliques are poorly conserved in the
ASP9 targets (Fig. 5A) by a significant margin. Even when they are
onserved, three residue cliques are less likely than larger cliques
o be geometrically similar to the template clique (Fig. 5B). Taken
ogether, these observations at first suggest that regions of the pro-
ein with many two or three residue cliques are poorly packed and

ore sensitive to changes in sequence. Based on a new analysis
Joo et al., 2012), isolated changes in two and three residue cliques
ccurs in less than 9% of the cases for two and three body cliques.
he 91% majority of changes in two and three body cliques results
rom repacking and rearrangements of three and four body clique
acking. Cliques can also be classified according to the backbone
onnectivity of the residues in the clique.

In Fig. 4C and D, we classify four residue cliques as local if all
esidues are near each other in primary sequence, secondary if
hey all come from the same element of hydrogen bonded sec-
ndary structure (i.e. consecutive turns of a helix or neighboring
trands in a sheet), and tertiary if one or more residues is nei-
her local nor hydrogen bonded to the other members of the
lique. We  find that 4 residue local cliques are the least con-
erved and the least structurally similar. At 82%, most of these
ocal cliques are found in regions classified as loops. The remaining
8% are those local cliques that start in defined secondary struc-
ure and extend into loop regions. Secondary cliques defined by
elatively rigid secondary structural elements are more likely to
e conserved than tertiary cliques, which are more sensitive to
hanges in the detailed orientation of different secondary structure
lements.

. Conclusion

Stone Soup, a novel side-chain based packing algorithm cou-
led with a new loop modeling protocol, was tested against the
ASP9 set of template based homology modeling targets (Mariani
t al., 2011; Kinch et al., 2011). An analysis of Stone Soup’s per-
ormance indicated that the scoring functions are limited and the
pproach’s move set is overly conservative. As a physical sco-
ing function, hrMD restricts a model structure from sampling
nto physically unreasonable regions of conformational space. The

atLoop function shows promise, but requires the core structure
o be close to the native (<3 Å) to perform well. For the move

et, larger perturbations from the template structure need to be
ncluded, because template and target side-chain packing contacts
end to differ significantly even if the sequences are close homologs.
herefore, improvement requires the prediction of regions packing
 and Chemistry 42 (2013) 40– 48 47

rearrangements between template and native structure, which has
been a core problem in template based structure prediction.

To this end, a recent development in our group has the charac-
terization of a basic principle underlying protein packing of knobs
into sockets that allows us to identify the amino acid code for pro-
tein structure (Joo et al., 2012). The knob-socket construct allows us
to identify the exact changes in packing between the template and
native structure that need to be modeled. In effect, sockets identify
regions of protein structure that will form or not form interactions
with other parts of the protein. If there is an interaction, the socket
packs with a socket. So, perturbations in structure that either create
or remove tertiary packing can be identified and then move sets can
be sampled using 3SP. Inclusion of the knob-sockets and the corre-
sponding amino acid code has great potential and should improve
our predictions.
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