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Abstract We describe a method for the integration of high-throughput data from
different sources. More specifically, iBATCGH is a package for the integrative
analysis of transcriptomic and genomic data, based on a hierarchical Bayesian
model. Through the specification of a measurement error model we relate the
gene expression levels to latent copy number states which, in turn, are related to
the observed surrogate CGH measurement via a hidden Markov model. Selection
of relevant associations is performed employing variable selection priors that
explicitly incorporate dependence information across adjacent copy number states.
Posterior inference is carried out through Markov chain Monte Carlo techniques that
efficiently explores the space of all possible associations. In this chapter we review
the model and present the functions provided in 1BATCGH, an R package based on
a C implementation of the inferential algorithm. Lastly, we illustrate the method via
a case study on ovarian cancer.

1 Introduction

In recent years, the field of genomics has seen the development of modern profiling
high-throughput techniques that have resulted in the generation of large-scale data
sets. The development of these modern techniques has made available several
platforms to profile DNA, RNA and proteins, at different levels of accuracy.
Integrating data from those different sources has emerged as a challenging problem
in genomics, and a fundamental step in the understanding of many diseases. For
example, it is now well known that cancer is the consequence of a dynamic interplay
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106 A. Cassese et al.

at different levels (DNA, mRNA and protein). Multilevel studies that try to integrate
different types of data have therefore become of great interest.

Here we focus on the combined analysis of gene expression data and DNA copy
number aberrations. Gene expression data are measurements of the abundance of
a set of transcripted genes in a specific tissue. At the DNA level, many different
kinds of aberration can occur and, for this reason, many different methods have been
developed to detect them. Here we focus on Comparative Genomic Hybridization
(CGH), a method able to detect copy number changes. This technique has a
relatively high resolution and can span a large part of the genome in a single
experiment. CGH data are well suited for cancer studies, since cancer is the result
of a number of complex biological events and as such it cannot be attributed to a
single mutation. Thus, discovering amplification of oncogenes or deletion of tumor
suppressors is an important step for elucidating tumorigenesis.

Some methods that rely on regression models as a way to integrate gene
expression data with copy number variants have been developed [21, 28]. These
methods do not infer the underlying copy number information, but rather use
their surrogate CGH measurements as regressors. Alternatively, methods have been
proposed that first estimate copy number latent states using available methodology,
and, as a second step, use these estimates as regressors [3, 33]. Here we describe a
novel method we have proposed for the joint estimation of copy number aberrations
and their association with copy number variants [7, 8]. More specifically, we have
developed a model that regresses gene expression on copy number states, while
simultaneously estimating the latent copy number states of the observed surrogate
CGH data. This modeling strategy is able to take into account the uncertainty on the
latent unobserved copy number states typical of CGH data, while simultaneously
assessing their association with gene expression. The model employs selection
priors to detect significant associations, incorporating information on the physical
distance between neighboring DNA probes and their latent copy number and
association status. The latent copy number states are estimated via a hidden Markov
model, which is able to capture the peculiar stickiness of CGH data.

In this chapter, after reviewing the proposed methodology, we describe in details
the implementation of the methods via the package iBATGH, released under the
GNU General Public License within the R project, and freely available on the
CRAN website. The package is mainly based on an algorithm using C-code and
the interface with the R environment is handled using the packages Rcpp and
RcppArmadillo [13]. This choice achieves a good performance in terms of
computational speed, with the advantage of a user friendly interface as provided
by the R environment.

The rest of this chapter is organized as follows. In Sect. 2 we describe the model,
the priors and the posterior inferential algorithm. In Sect.3 we describe the R
package 1BATCGH. In Sect. 4 we illustrate the method via a case study.
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2 Model

Let us first introduce the notation that will be used throughout the following
sections. Let ¥ = [Yjo],x¢ be the n x G matrix of gene expression measurements on
G genes in n subjects. Let X = [X;,].xp denote the matrix of CGH measurements
on M DNA probes, on the same samples (i = 1, ..., n). We assume the CGH probes
ordered according to their chromosomal location and refer to two consecutive
probes as adjacent. Lastly, let Z = [Y, X],x(G+um) denote the (n x (G 4+ M)) matrix
containing all data measurements.

In our modeling approach we treat the observed CGH intensities X as surrogates
for the unobserved copy number states. In particular, we introduce & = [£;]uxum»
a latent matrix of copy number states, and consider a four copy number states
classification [15]:

&m = 1 for copy number loss (less than two copies of the fragment)
&n = 2 for copy-neutral state (exactly two copies of the fragment)
&n = 3 for a single copy gain (exactly three copies of the fragment)

&m = 4 for multiple copy gains (more than three copies of the fragment).

We assume that, conditional on the latent state &, the corresponding observed
surrogate X does not contain additional information on the outcome Y, that is,
f(Y|&,X) = f(Y|&). In the statistical literature this modeling framework is
commonly referred to as a non-differential measurement error model [27], and
allows the factorization of the joint distribution of Z as the product of two
conditionally independent sub models: an outcome model, that in our modeling
context relates the gene expressions with the latent copy number states, and a
measurement model, that relates the latent states to the observed surrogate CGH
measurements, f(Z|&€) = f(Y|&)f(X|&). As commonly done in the literature on
integrative genomics, we assume conditional independence of the gene expression
measurements, Y; L Y;|&,...,&,,. We also assume independence of the CGH
measurements, conditional on their latent states, X; L X;|&,,...,&,,. Given those
assumptions, we can write our proposed model as

n G M
£@E) =T [ [ Xil&D) [ [f Kinlim) § - (1)

i=1 | g=1 m=1

Below we provide detailed specification of the outcome and the marginal models.
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2.1 Outcome Model with Measurement Error

We follow current literature on models that integrate gene expression levels with
genetic data and specify the outcome model as a linear regression of the gene
expression measurements on the latent copy number states [21, 28]. For each gene
g = 1,...,G the regression is defined as follows,

Yig:l‘g"‘giﬂg‘i‘éig, i=1,...,n, (2)

where 11, is a gene specific intercept and €;; ~ N (0, ag?) are independent normally
distributed errors, with ng a gene specific variance. We further assume conjugate
prior distributions for the intercept, jglo; ~ N(0,c.'0;), and gene specific
precisions, o, 2~ Ga(g, ‘—21), with ¢, § and d hyperparameters to be chosen.

We look at the identification of copy number variations associated with gene
expression levels as a variable selection problem. We therefore introduce a latent
binary matrix R = [rgu]oxm, Where the generic element rg, is set to one if
the corresponding regression coefficient fB,,, is different from zero, and ry, = 0
otherwise. As commonly done in the Bayesian variable selection literature, we adopt
spike and slab priors on the conditional distribution of the regression coefficients,

:Bgmlrgm» O—gz ~ rgm-/\/(ov CEIU&%) + (1 - rgm)SO(:Bgm)» 3)

with §p(-) a point mass at zero, 0; is a gene specific variance, and cg an hyperpa-
rameter to be chosen [5, 14]. Equation (3) is completed with a prior on r,,. The
simplest choice is to assume an independent Bernoulli prior, r,, ~ Bern(p) with
p a fixed hyperparameter. However, in Sect. 2.3 below, we describe two alternative

priors that accounts for spatial information [7, 8], borrowing strength across genes.

2.2 Marginal Model

We now describe the marginal model that relates the latent copy number states with
the surrogate CGH measurements. In the literature this problem has been tackled by
using modeling strategies that employ either circular binary segmentation, a method
that infers change points [35], or clustering based methods [6, 25]. In addition,
Bayesian nonparametric methods have been applied to CGH modeling [1, 12, 38],
as well as methods that rely on hidden Markov models [9, 15, 36]. Here we extend
the latter approaches, in particular the one proposed by Guha et al. [15], to handle
multiple samples in a single modeling framework.

A hidden Markov model is a state space model with discrete hidden states. It
comprises of a Markov chain with stochastic measurements on the hidden states
and, conditionally on the states, of an independent emission distribution. In the
context of our specific application, conditional on the latent copy number states, the
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observed CGH measurements are assumed independent and normally distributed,
and the emission distribution is defined as

Xinl (Ein = ) ~ N (5. 07), @)

with n; and sz denoting respectively the expected log, ratio and variance of all CGH
probes in state j (j = 1,...,4). As for the latent copy number states, we choose a
first order HMM, which assumes that the probability of being in a particular copy
number state for a given probe m depends only on the state of the previous probe
(m—1),

PEiml&is - - s Sim—1)) = PEiml&im—1)) = Qi) im> &)

with A = [ay;]4x4 a matrix of transition probabilities with strictly positive elements.
We also assume that the distribution of the first probe is given by the unique
stationary distribution of A, denoted by m4. We further assume the samples to
be independent, and that they share the same transition matrix. In summary, the
proposed HMM can be factorized as

PX1,.... X, E,..... &) = HP(anEil)P(Sil)

i=1

M
[ 1 PKinl&in) PEinl&iin—1)). (6)

m=2

To complete our prior specification of the HMM, we choose conjugate priors.
In particular, we assume each row of the transition matrix A as a draw from
independent Dirichlet distributions, @, = [ap1, ans, ans, aps] ~ Dir(P1, P2, ¢3, Pa),
for h = 1,...,4, with ¢ = [¢1, P2, ¢P3,Ps] a vector of hyperparameters to be
chosen. As for the state specific mean 7; and variance sz, we assume 17; ~
N(8j, tHI{low, < 1 < uppy}y and 07> ~ Gamma(b;, [)I{o;> > upp,}, for j =
I,...,4. Lastly, we set low,, = —00, upp,, = oo, while all other hyperparameters
are defined by the user on the base of the platform [15].

2.3 Spatially Informed Variable Selection Priors

Our choice of the selection prior relies on the consideration that two contiguous
regions of copy number variants might correspond to the same aberration. As a
consequence, they are more likely to jointly affect gene expression. We therefore
define a prior that accounts for the selection status of the adjacent probes. In other
words, the prior probability p(r,,) of an association between gene g and probe m
depends on the values of r,(,,—1) and r(,+1). As a first step of the prior construction,
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we define a probe specific quantity that incorporates, in a multiplicative fashion,
information on the physical distance among probes and on the frequency of copy
number change points across samples as

B exp{l—%’"}—l 1 < .
S(m—l)m_{ CXp{l}—l } {;;I{Elm—gl(m—l)} > (7)

where d,, denotes the distance between adjacent probes [m — 1, m] and where D is
the total length of the DNA fragment, for example the length of the chromosome
under study. We then explore two different ways of employing these quantities in
the definition of the selection prior [7, 8]. More specifically, we have investigated a
mixture prior and a Probit prior.

(a) Mixture prior: We start defining the quantities,

o

Ym = )
" o+ S(m—1)m + Sm(m+1)

o) — S(m—1)m 0@ — Sm(m+1) 8)
" o+ S(m—1)ym + Sm(m+1) " o+ S(m—1)ym + Sm(m+1)

with o set to a positive real value, and then define a mixture prior with two
components

T (Fgml|Tem—1)» Femt1)» €, 1) = Y[ (1 = 771) 177

2
+ Y 0D = ryuicp} )
j=1

According to Eq. (9), with probability y,,, the rg,’s are distributed Bern(r),
independently of the neighboring values. Otherwise, rg, assumes the same

value as in ry(m—1) O Fg(m+1), With probability oy or w, respectively. We

note that the weights in Eq. (8) sum up to one, i.e. y,, + a),g,l) + w,gf ) — 1, and
that the case y,, = 1 reduces to an independent Bernoulli prior. We further note
that @ — oo implies y,, — 1, that is the independent prior, while when o = 0,
rem depends only on the values rg(,—1) and rg(n+1), With weights proportional to
S(m—1ym and s,,(n+1), TEspectively. As a consequence, lower values of & implies a
stronger dependence on the selection status of the adjacent probes. In addition,
larger values of s(,—1), imply a stronger dependence of probe m on probe
(m — 1), and viceversa. This reflects the assumption that two probes physically
close and that share a similar copy number status are more likely to have the
same association pattern. In [7] we suggest to chose « in the range o = [20, 50],
for a good balance in terms of false positives and false negatives. We complete
our prior specification by imposing a Beta hyperprior on 7; ~ Beta(e, f), and
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integrating it out. This results in the following equation

_ I'(etf) I (etrem) [ (F+1—rgm)
T[(rgm|rg(m—l)a Vo(m+1)» S) = VYm F(e-l—f—i—i)]“(e)l“(f) :

) (10)
+ 2 jmr om Fogn=r, g ciyh
(b) Probit prior: Let us first define the quantity Q,, as
Om = (=1 " Vsgu_tym + (= 1)« s011). (11)

Note that Q,, can either increase or decrease based on the selection status of the
adjacent probes, and that the amount of increase or decrease depends on $(,—1ym
and s,,(n+1). We define the probability of inclusion for r,, as

7T (rgm = 1|rg(m—1)’ Femt+1), &) = 1 — P(ap + 1 Om), (12)

where @ indicates the c.d.f. of a standard normal distribution, and g and ¢y > 0
are hyperparameters to be set. In particular, oy represents a baseline intercept
that can be set according to an a priori specified “level of significance”, in
absence of other covariates. Similarly, o; can be interpreted as a coefficient
that captures the strength of the association between adjacent probes. We note
that 77(r,,) is a monotonic function of Q,,, therefore it increases or decreases,
based on the selection status of the adjacent probes, by an amount determined
by S(n—1)m and spm+1). This reflects the assumption that two probes physically
close and that share a similar copy number status are more likely to have the
same association pattern. Even though the prior specifications (9) and (12) share
the same assumptions and employ similar quantities, prior (12) is of more easy
interpretation and has produced better results on simulated data [8].

2.4 Posterior Inference

In this section we describe the approach employed to perform posterior inference.
In particular, the methodology aims at estimating the association matrix R and the
matrix of copy number states &. We rely on a Markov chain Monte Carlo algorithm
that employs stochastic search variable selection techniques [5, 7, 8, 14, 28, 29,
31]. In order to simplify the algorithm and to improve the mixing of the chain,
we integrate out the regression coefficients ji,4, B, and ng [5, 29, 32]. The marginal
likelihood reduces to

Cm)H () ep) T ()

cutn

f(Y,|&.R) = , (13)

1 dtgg~ (2
U |21 (5 (52) )
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Algorithm 1 Selection of the subsets of rows of R and & to be updated at every
MCMC iteration

set cumsum = 0
repeat

Generate ¢ from Geom(p)

Sum ¢ to cumsum

Add cumsum to the set of selected features
until cumsum > F

with g, = Y{H,Y, — Y H.E U '§RHY,, U, = cpli, + EfH & and H, =

I,— rllil’; where k, indicates the number of selected regressors for the gth regression.
Aiming at more efficient MCMC steps, we perform multiple updates of R and &.
This is accomplished relying on Algorithm 1 for the selection of a subset of rows
to be updated at every MCMC iteration. The MCMC consists of four steps and is

described below.

* Update R using a Metropolis step. First use Algorithm 1 with parameters p = pg
and FF = G to select at random a set of genes. Then, for each gene in the set,
choose between an Add/Delete or Swap moves, with probability p and (1 — p)
respectively. For the Add/Delete move, choose at random one element of the
row and change its selection status. For the Swap move, select at random two
elements of the row with different inclusion status and swap their values. In order
to efficiently explore the space of all possible associations, we do not consider
some CGH probes as possible regressors. In particular, we exclude those CGH
probes that have been called in neutral state in a fraction of samples larger than
puc, at the current MCMC iteration. Note that pyc is a parameter set by the user,
for example 10 % is the default argument in the package. We accept the proposed
move with probability

[f(YIS R™)m(R™|§) 1]
fY|E, R ) (R™|E)

» Update & using a Metropolis-Hastings step. First select a column of & and then
use Algorithm 1 with parameters p = pg and F = N to select at random a subset
of samples. For each selected element sample a candidate state using the current
transition matrix A. In other words, we propose ;""" conditional on Old . Accept
the proposed move with probability

[f(Ylé"fW RO (X&) (RIE") (6" £, A)g (£ |£"") 1}
FOVIE, RO (XIE ) (RIE™) (67767, A)g(&"" &)

» Update n;, for j = 1,...,4 using a Gibbs step. Sample 7;|X,&,0; ~
N (Vj’Qj_z)I{lownj<nj<uppﬂj}’ with precision 0, = ‘Ej_z + njaj_2 and weighted
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mean v; = 9j_2(5jfj_2 + )_(jnjaj_z), where n; = M Yoo I{&n =Jj} and
Xj = nlj Zﬁm/lzl Z?:] Ximl{gim :]}
» Update oj, forj = 1,...,4 using a Gibbs step. Sample o;|X, &, n; ~ IG(b; +
n; Vi n
2.5+ P where n; = 3, Yin I, = and V; = (Xin —
* Update A using a Metropolis step. Generate for each row of A a new vector
as A"~ Dir(¢1 + on.¢2 + on, 3 + 0p3.Ps + opa), Where oy =
S M {Em=h.Emir)=j}» @Nd accept it with probability

. ~r Tanew (€i1)
o |:1’ 1_[ T[A"ld(éil)i| '

i=1

>uppo;}?

We summarize the output of the MCMC as follows. Inference on R is performed
computing the marginal probability of inclusion (PPI) for each of its elements.
More specifically, PPIs are obtained by counting for each element of the matrix
the number of iterations it was set to one after burn-in, and dividing by the total
number of iteration after burn-in. A selection of the most relevant associations can
be made by thresholding the PPIs based on some decision theoretic criterion, see for
example [2, 23]. As for the inference on & we select for every position of the matrix
the modal state after burn-in, i.e. the state that shows the highest count. Inference on
the HMM parameters A, p and o is performed by averaging their values across the
MCMC iterations, after burn-in.

3 The iBATCGH Package

The package 1iBATCGH is released under the GNU General Public License within
the R project, and is freely available on the CRAN website. It uses the libraries
Rcpp and RcppArmadillo, and it is based on a backbone C implementation
[13]. The package comprises of nine functions and two data sets. The first data
set, NCI_ 60, consists of the processed and filtered NCI-60 cancer cell lines data,
as used in [7]. The second one, TCGA_lung, is the processed and filtered TCGA
lung squamous cell carcinoma data set, as used in [8]. In the rest of the section,
we describe the main R functions and provide an example on how to run them. A
summary of the functions with their arguments, output and a brief description can be
found in Table 1. Throughout this Section, the variables in the code will be written
using teletypefont, while the corresponding notation used in Sect. 2 will be
reported in parenthesis.

The functions Scenariol and Scenario2 generate two types of simulated
data sets, with Scenario2 explicitly assuming dependence among the regression
coefficients [7]. Their only argument is the error variance of the regression model
sigmak (o), set to 0.1 by default. Those functions return a list composed by the

marina@rice.edu



114

A. Cassese et al.

Table 1 Available functions of the package iBATCG, their arguments, output and brief

description

Function
Center

iBAT

iBATProbit

Inference

InitMu

InitXi

Scenariol

Scenario2

Tran

Arguments
Y

Y, X,d, D, intercept, &,
R, A, n,0,cu,c4,8,d,
e, f, o, 8, tau, upp,,
low,,b, L, upps, @,
niter, burnin, Cout, ¢,
PR> PMC> P&

Y, X,d, D, intercept, &,
R, A, n,0,cu,¢p,6,d,
oo, o1, 8, tau, upp,,
low,, b, upps, §,
niter, burnin, Cout, ¢,
DR»> PmC> P, indep
MCMC output, G, M,
niter, burnin, threshold

8,1, low,, upp,

O

O

Output
Y

MCMC output

MCMC output

Y? X: ssAs M'» 0—9B3 d7 D

Y7X7 EyAy ”', G9B7d7D

Description

Preprocessing, center
each column of the
gene expression matrix

Main, function for the
model that employs the
mixture prior

Main, function for the
model that employs the
Probit prior

Postprocessing,
perform posterior
inference on the output
of the main function
Initialization, initialize
I, sampling from the
prior distribution
Initialization, initialize
&, using a crude
estimator on X

Simulated data,
simulate the data as
described in [7, 8]
Simulated data,
simulate the data as
described in [7, 8]
Preprocessing,
compute the transition
matrix corresponding
to a specific &

A bold variable in the arguments/output represents a vector, matrix or list

two data matrices Y (Y) and X (X), and the empirical parameters of the HMM, Xi
(¢§),A (A), mu (u) and Sd (o). Also, they return a matrix of regression coefficients
coeff (B), a vector of distances between probes distance (d) and the total
length of the DNA fragment disfix (D).

The function Center takes as argument a matrix of gene expression measure-
ments Y (Y) and returns the matrix obtained after centering each column with respect
to its mean. As for the initialization of the parameters, InitMu initializes the state
specific mean vector, by sampling each element independently from its prior, i.e.
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Algorithm 2 Crude estimator employed to initialize &
for i=1 to i=N do

for m=1 to m=M do

if X;,, < bounds, then

set &, =1

else if X;,, < bounds, then
set &, =2

else if X;,, < bounds; then
set &, =3

else
set &, = 4

end if

end for

end for

truncated normal distribution. This function has default arguments and can be run
simply as > mu = InitMu ().However the user can change the arguments of the
vector of state specific means deltak (8), standard deviations tauk (7), lower
bound 1low_bounds (low,) and upper bound upp_bounds (upp,). The function
InitXi takes a matrix of CGH data as the only argument and returns a crude
estimate of the corresponding latent copy number states. More specifically, given a
vector of threshold bounds, set by default to [—0.5, 0.29, 0.79], the function simply
applies the thresholding to the data and groups them into four subsets. Each subset
is associated to a specific latent state as described in Algorithm 2. Given a matrix of
latent states &, an empirical transition matrix can be computed. In order to initialize
A, we use this empirical transition matrix computed on the initialized value of &.
The function implemented for this purpose is Tran and takes xi as only argument.

We now focus on the two main functions implemented for the integrative
Bayesian analysis of gene expression and CGH data. More specifically, iBAT
employs the mixture prior and iBATProbit employs the Probit prior. Tables 2
and 3 show a description of their arguments. In particular, the first column reports
the arguments used in the code, the second column recalls the corresponding math
notation as introduced in Sect. 2, and the third column adds a brief description. Note
that the case of spatially independent variable selection priors can be obtained by
setting the option indep to one or alphal to zero, respectively in iBAT and
iBATProbit. The output consists of an R list composed by 4xniter 43 objects,
where niter is the number of MCMC iterations. The first niter objects of the
list are vectors, each containing the positions of the association matrix set to one,
at the corresponding MCMC iteration. Each of the following niter objects of
the list are the transition matrices at the corresponding MCMC iteration, while the
third and the fourth set of niter objects are the vectors of state specific mean and
state specific variance, respectively. The last three objects of the list consist of three
matrices counting the number of times the corresponding latent state has been set to
1, 3 and 4, respectively.
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Table 2 Arguments of iBAT: name in the code, corresponding math notation, and brief descrip-

tion
Argument Math | Description
Y Y Matrix of gene expression data
X X Matrix of CGH data
distance d Vector of distance between CGH probes
disfix D Length of the chromosome under investigation
intercept NA | If set to one an intercept is included in the regression model
xi & Initialized matrix of latent states
R R Initialized association matrix in a vector form. Default set to —1,
that automatically creates a vector with all the positions set to zero
tran A Initialized transition matrix
mu n Initialized state specific mean vector
sigma o Initialized state specific standard deviation vector
cmu Cu Parameter that controls the variance of the prior on the intercept
c cg Parameter that determines the shrinkage in the model
delta ] Parameter of the Inverse-Gamma prior on the error variance
d d Parameter of the Inverse-Gamma prior on the error variance
e e Parameter of the Beta prior on the inclusion probability
£ f Parameter of the Beta prior on the inclusion probability
alpha o Parameter that regulates the strength of the independent part of the
mixture
deltak ] Vector of mean of the prior on the state specific mean
tauk T Vector of standard deviation parameters of the prior on the state
specific mean
upp_bounds upp, | Vector of upper bounds of the prior on the state specific mean
low bounds low, | Vector of lower bounds of the prior on the state specific mean
alpha IG b Vector of parameters of the prior on the state specific standard
deviation
beta IG l Vector of parameters of the prior on the state specific standard
deviation
low IG upp, | Truncation of the prior on the state specific standard deviation
a ¢ Vector of parameters of the prior on the transition matrix
niter NA | Number of Markov Chain Monte Carlo iterations
burnin NA |Bum-in
Cout NA | Print the number of iterations ran every Cout iterations
phi ¢ Probability of an A/D step
PR PR Parameter of the distribution used to select the rows to be updated
at every MCMC iteration
selectioncgh | pyc | Number of samples not in neutral state in order to consider a CGH
as a potential candidate for association with gene expression.
Default set to —1 that automatically set it to 10 % of the samples
pXI Dt Parameter of the distribution used to select the rows to be updated
at every MCMC iteration
indep NA | If set to an integer different from zero, run the analysis with an

independent prior, i.e. setting o« — 00
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Table 3 Arguments of iBATProbit: name in the code, corresponding math notation, and brief

description
Argument Math | Description
Y Y Matrix of gene expression data
X X Matrix of CGH data
distance d Vector of distance between CGH probes
disfix D Length of the chromosome under investigation
intercept NA | If set to one an intercept is included in the regression model
xi & Initialized matrix of latent states
R R Initialized association matrix in a vector form. Default set to —1,
that automatically creates a vector with all the positions set to zero
tran A Initialized transition matrix
mu n Initialized state specific mean vector
sigma o Initialized state specific standard deviation vector
cmu Cu Parameter that controls the variance of the prior on the intercept
c cg Parameter that determines the shrinkage in the model
delta ] Parameter of the Inverse-Gamma prior on the error variance
d d Parameter of the Inverse-Gamma prior on the error variance
alpha0 o Baseline intercept of the selection prior
alphal o Parameter that regulates the strength of the spatially informed
dependence
deltak ) Vector of mean of the prior on the state specific mean
tauk T Vector of standard deviation parameters of the prior on the state
specific mean
upp_bounds upp, | Vector of upper bounds of the prior on the state specific mean
low_bounds low, | Vector of lower bounds of the prior on the state specific mean
alpha IG b Vector of parameters of the prior on the state specific standard
deviation
beta IG l Vector of parameters of the prior on the state specific standard
deviation
low IG upp, | Truncation of the prior on the state specific standard deviation
a ¢ Vector of parameters of the prior on the transition matrix
niter NA | Number of Markov Chain Monte Carlo iterations
burnin NA | Burn-in
Cout NA | Print the number of iterations ran every Cout iterations
phi ¢ Probability of an A/D step
PR PR Parameter of the distribution used to select the rows to be updated
at every MCMC iteration
selectioncgh | pyc | Number of samples not in neutral state in order to consider a CGH
as a potential candidate for association with gene expression
Default set to —1, that automatically set it to 10 % of the samples
pXI De Parameter of the distribution used to select the rows to be updated

at every MCMC iteration
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The last function that we discuss summarizes the output of the MCMC chains
and, therefore, allows to perform posterior inference. More specifically, the argu-
ments of the function Inference are the output of the MCMC 1listComplete,
the number of gene expression probes G, the number of CGH probes M, the number
of MCMC iteration niter, the number of iterations to be discarded as burn-
in burnin, and the threshold on the PPIs threshold, set by default to 0.5.
The output of the function is a list made by five elements: R, the binary matrix
of estimated association, Xi, the matrix of estimated copy number states, A, the
estimated transition matrix, Mu, the estimated vector of state specific means, and
Sd, the estimated vector of state specific standard deviations.

We now give an example of the use of the code. First get the data,
> data (NCI 60)
> Y = NCI 60SAffy
> X = NCI_60$aCGH
> distance = NCI 60sdistance
then initialize £, A and n and center the measurements of each gene in the gene
expression matrix,

> x1 = InitXi(X)
> tran = Tran (xi)
> mu = InitMu()

> Y = Center (Y)

finally run the main function and summarize the results.

> res = 1BAT (Y=Y, X=X,distance=distance,
disfix=146274826,xi=x1i,tran=tran,
mu=mu,d=0.2587288)

> summRes = Inference(res,G=dim(Y) [[2]],
M=dim(X) [[2]] ,niter=niter,bi=bi, threshold=0.5)

The example above takes approximately S min to run 1000 iterations, using a
double core ® Intel ® Xeon processor with 16 GB of memory, 2.2 GHz.

4 Case Study

In order to illustrate the performance of the model and the type of inference it
allows, we further used the function iBATProbit to analyze data from a study
of ovarian cancer obtained from The Cancer Genome Atlas (TCGA) data portal,
currently not included in the package. We used the level 3 Affymetrix HG-U133A
array data as gene expression levels, and the normalized 415K array as CGH data.
We selected a total of 350 samples, as those for which both data types were available.
We further focused our attention on a subset of genes with highest variation across
the samples (coefficient of variation). As for the CGH probes, we focused on the
probes belonging to chromosome 17, which is highly involved in ovarian cancer
[24]. We further reduced the complexity of the CGH data by smoothing the original
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signal via replacing each value with the median in a window of three elements, using
the R function runmed. We then selected one probe every 5. After reduction, the
data set consisted of G = 119 genes and M = 2265 probes.

We ran our analysis using the default parameters of the function iBATProbit,
except for upp, = [-0.3,0.3,0.73, oo], low, = [~Inf,—0.3,0.3,0.73] and pyc =
5. The default choice for &y = 1 and g = 2.32 were used. We ran our MCMC for
500,000 iterations and we discarded the first 300,000 as burn-in. We report here the
results by selecting associations with PPI > 0.5, that is the modal model selected by
our method [2]. The selected set of associations contained 16 unique target genes
and 22 unique CGH probes. As an example of the output of our analysis, Fig. 1
shows the marginal posterior probability of inclusion for each element of the matrix
R. The horizontal red line corresponds to the threshold used for our analysis. As
for the inference on &, Fig.2 shows the frequency of copy number gains (states 3
and 4) and loss (state 1) across the samples for every CGH probe considered in our
analysis. Note that there are a large number of CGH probes with high frequency of
copy number loss, in line with what reported in the literature [34].

We assessed the biological relevance of our findings by using the database for
annotation visualization and integrated discovery (DAVID) tool [11]. In particular,
we performed a gene ontology (GO) analysis on the list of selected gene expressions
and CGHs separately. We first focused on the enrichment analysis for the gene
expressions, see Fig.3 for a schematic representation of our findings. We found
enrichment for six different GO terms. More specifically, we found enrichment
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Fig. 1 Marginal posterior probabilities of inclusion of the single elements of the matrix R, with
the horizontal red line corresponding to the threshold used in our analysis
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Fig. 2 Frequency of copy number gains (states 3 and 4) and loss (state 1) across the samples for
every CGH probe considered in our analysis

for genes that code for skeletal system development, acute phase response, pro-
teolysis, response to wounding, acute inflammatory response and regulation of
lipid metabolic process. In particular, genes IGF2 and SERPINA3 are members
of the acute phase response, response to wounding, acute inflammatory response
and regulation of lipid metabolic process terms, and IGF2 is also a member of
the skeletal system development. IGF2 is an insulin-like growth factor and has
been previously found inhibited after treatment of responsive RMS-13 cells with
5-fluorouracil and betulinic acid in a study on the effect of the combination of these
two acids on ovarian carcinoma cells [37]. SERPINA3, a serpin peptidase inhibitor,
has been found over expressed in recurrent ovarian tumors, when compared to the
expression in the primary tumor [17]. Focusing on the single genes identified by
our analysis a large number of them have been found as associated with tumors
in general (HOXB6, FAP, MMP1, GSTA, TAX3, FABP6, SERPINB2, HGMA?2)
and with ovarian cancer in particular (POSTN). In addition HGMAZ2 is a promising
target for ovarian cancer silencing therapy [20]. Also, although it has not been
confirmed yet, MAGEA4 may play a role in embrional development and tumor
transformation or aspects of tumor progression [4, 16, 26]. Lastly, we also found
enrichment for PPAR signaling KEGG pathway. This pathway inhibits proliferation
in PC3 prostate carcinoma cells [30].
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Fig. 3 Schematic representation of a GO analysis of the gene expressions identified by our model,
via thresholding the posterior probabilities of inclusion. The upper box (labeled RNA) shows the
enriched molecular functions together with the corresponding lists of target genes. The lower box
(labeled DNA) reports the lists of CGH probes that our model found to be associated with the gene
expressions. Bold CGH probes highlight those elements found enriched for molecular functions
in the GO analysis on the CGH probes. The solid connecting lines indicate estimated associations
between target genes and CNVs; dashed lines indicate genes that appear in multiple lists

As for the enrichment analysis of the CGH probes identified by our method, we
found enrichment for six GO terms. More specifically, we found enrichment for
the DNA metabolic process, cellular response to stress, DNA repair, cell projection
organization, cellular response to DNA damage stimulus and cell projection assem-
bly. A very interesting result is that we found enrichment for three terms that are
linked to cellular response to DNA damage (DNA repair and DNA damage stimulus)
and external stimulus (cellular response to stress). The DNA repair mechanism is
often altered in ovarian cancer. Indeed mutations on the genes BRCA1 and BRCA2
are genes involved in DNA repair, and are very well know for their association
with increased breast and ovarian cancer risks [19]. We also found enrichment for
two terms related to cell movement and migration, cell projection organization and
cell projection assembly. Cellular reorganization is often involved in acquisition
of motility ability by cancer cells. This is a key process for the cell invasion and
metastasis, two important stages of tumor progression. Further confirmation of our
results comes from inspecting the single genes. As an example we identified BRIP1,
the official symbol of BRCA1, and MAP2K4, the mitogen-activated protein kinase
kinase 4, both well known tumor suppressor genes in ovarian cancer [10, 19].
Also, we identified TNFAIP1, a tumor necrosis factor, SFRS1, a proto oncogene
upregulated in various tumors and SUMO?2, a gene that play a role in DNA
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replication and repair, among other cellular processes, and that has been already
associated with many tumors and with ovarian cancer in particular [18, 22].
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