
BIOINFORMATICS Vol. 20 no. 16 2004, pages 2553–2561
doi:10.1093/bioinformatics/bth282

Identification of DNA regulatory motifs using
Bayesian variable selection

Mahlet G. Tadesse1, Marina Vannucci2,∗ and Pietro Liò3

1Department of Biostatistics and Epidemiology, University of Pennsylvania, PA 19104,
USA, 2Department of Statistics, Texas A&M University, College Station, TX 77843, USA
and 3Computer Laboratory, University of Cambridge, Cambridge CB3 OFD, UK

Received on January 15, 2004; revised on April 4, 2004; accepted on April 19, 2004

Advance Access publication April 29, 2004

ABSTRACT
Motivation: Understanding the mechanisms that determine
gene expression regulation is an important and challenging
problem. A common approach consists of identifying DNA-
binding sites from a collection of co-regulated genes and their
nearby non-coding DNA sequences. Here, we consider a
regression model that linearly relates gene expression levels
to a sequence matching score of nucleotide patterns. We use
Bayesian models and stochastic search techniques to select
transcription factor binding site candidates, as an alternative to
stepwise regression procedures used by other investigators.
Results: We demonstrate through simulated data the
improved performance of the Bayesian variable selection
method compared to the stepwise procedure. We then ana-
lyze and discuss the results from experiments involving
well-studied pathways of Saccharomyces cerevisiae and
Schizosaccharomyces pombe. We identify regulatory motifs
known to be related to the experimental conditions considered.
Some of our selected motifs are also in agreement with
recent findings by other researchers. In addition, our results
include novel motifs that constitute promising sets for further
assessment.
Availability: The Matlab code for implementing the Bayesian
variable selection method may be obtained from the corres-
ponding author.
Contact: mvannucci@stat.tamu.edu

1 INTRODUCTION
Identifying the repertoire of regulatory elements in a gen-
ome is one of the major challenges in modern biology. Gene
transcription is determined by the interaction between tran-
scription factors and their binding sites, called motifs or
cis-regulatory elements. In eukaryotes the regulation of gene
expression is highly complex and often occurs through the
coordinated action of multiple transcription factors. This com-
binatorial regulation has several advantages; it controls gene
expression in response to a variety of signals from the envir-
onment and allows the use of a limited number of transcription
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factors to create many combinations of regulators. Identifica-
tion of the regulatory elements is necessary for understanding
mechanisms of cellular processes. In eukaryotes these sites
comprise short DNA stretches often found within non-coding
upstream regions.

The detection of regulatory cis-acting elements has turned
out to be challenging for various reasons; non-coding regions
show little similarity, even between co-regulated genes; they
lack sharp delimitations, such as start and termination sig-
nals; and they seem to have larger plasticity than genes. Thus,
the regulatory information, if conserved, is hidden in short
fragments embedded into large regions of non-coding DNA.

DNA microarrays provide a simple and natural vehicle for
exploring the regulation of thousands of genes and their inter-
actions. Genes with similar expression profile are likely to
have similar regulatory mechanisms. A close inspection of
their promoter sequences may therefore reveal nucleotide pat-
terns that are relevant to their regulation. This motivates the
following strategy: (1) candidate motifs can be obtained from
the upstream regions of the most induced or most repressed
genes; (2) a score can be assigned to reflect how well each
motif matches the upstream sequence of a particular gene;
and (3) regression analysis and variable selection methods
can be used to detect sets of motifs acting together to affect
the expression of genes.

In this paper, we implement steps 1 and 2 using existing
procedures and available software. For step 3, we propose the
use of Bayesian variable selection methods as an alternative
to stepwise selection procedures used by other investigat-
ors. Bayesian variable selection methods use a latent binary
vector to index all possible sets of variables (nucleotide pat-
terns). Stochastic search techniques are then used to explore
the high-dimensional variable space and identify sets that best
predict the response variable (gene expression). The method
provides joint posterior probabilities of sets of patterns, as
well as marginal posterior probabilities for the inclusion of
single nucleotide patterns. Stepwise methods, on the other
hand, perform greedy deterministic searches and can be stuck
at local minima. Another limitation of the stepwise proced-
ure is that it presumes the existence of a single ‘best’ subset
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of variables and seeks to identify it. In practice, however,
there may be several equally good models. In this paper
we first use simulated data with similar structure to the real
datasets considered for analysis and show how Bayesian vari-
able selection can outperform stepwise procedures. We then
exemplify our method using Saccharomyces cerevisiae and
Schizosaccharomyces pombe genomes and microarray data
from environmental stress experiments.

In what follows, we first conclude this section with a short
description of the state of the art on transcription site detection.
In Section 2, we briefly describe the data and provide details
on the statistical procedures used. Section 3 uses simulated
data to assess the performance of the method and compare it
to the stepwise procedure. Section 4 describes the analyses
and related findings using genome sequence and microarray
data. We conclude the paper with a brief discussion.

1.1 State of the art on transcription site
detection

Motif detection involves the search for DNA patterns that are
over-represented in the upstream region of co-regulated genes.
Several computational algorithms have been developed to this
end. These methods fall into three broad classes: (1) The word-
enumeration approach (van Helden et al., 1998) compares
the frequency counts of substrings in the upstream region to
some reference set. (2) The probability-based models update a
position-specific probability matrix using local multiple align-
ment searches. In this approach, the model parameters are
estimated using Expectation–Maximization (EM) (Bailey and
Elkan, 1995) or Gibbs sampling methods (Liu et al., 1995).
Various modifications of the latter have been implemented;
these include AlignAce (Roth et al., 1998) and MotifSampler
(Thijs et al., 2001), among others. (3) The dictionary model
(Bussemaker et al., 2000) is based on a probabilistic segment-
ation of strings of nucleotides into ‘words’. A dictionary is
then built by adding words that have high probabilities of
occurrence.

These motif detection methods require a set of co-regulated
genes, which can be determined experimentally or compu-
tationally. A common approach consists of clustering high-
throughput gene expression data and searching the upstream
regions of each cluster for shared sequence patterns. This,
however, leads to a large list of candidate motifs. Busse-
maker et al. (2001) recently proposed refining the search for
biologically meaningful motifs by fitting a linear model that
relates the expression data to the counts of each motif. The
significant ones were then determined using an extreme value
statistic. A similar approach was presented by Keleş et al.
(2002), who scored the motifs according to their frequency
of occurrence and their positions with respect to the gene’s
translation start site. A linear regression model with step-
wise selection was used to identify relevant motifs. Conlon
et al. (2003) also applied linear regression with stepwise selec-
tion after getting a list of candidate motifs using MDScan

(Liu et al., 2002), an algorithm that makes use of word-
enumeration and position-specific probability matrix updating
techniques. The candidate motifs were scored in terms of num-
ber of sites and degree of matching with each gene. Here, we
propose using Bayesian variable selection techniques instead
of stepwise methods. In general, Bayesian model selection
methods perform a more thorough search of the model space
and hence may pick up motifs that can be missed by stepwise
methods. In Section 3 we illustrate this with simulated data.

2 METHODS
2.1 Data
We consider two cDNA microarray experiments that explore
the transcriptional responses of S.cerevisiae (Gasch et al.,
2000) and S.pombe (Chen et al., 2003) to environmental
stresses. We focus on two stress conditions in wild-type cul-
tures: oxidative stress caused by hydrogen peroxide and heat
shock caused by temperature increase.

Our other data consist of the organisms genome sequences
and related information, such as the start/stop position and
orientation of each open reading frame (ORF). These were
obtained from the NCBI’s FTP site (ftp://ftp.ncbi.nih.gov/
genomes/).

2.2 Generating motif candidates
The motif finding algorithms are sensitive to noise, which
increases with the size of upstream sequences examined. As
reported by van Helden et al. (1998), the vast majority of
the yeast regulatory sites in the TRANSFAC database are
located within 800 bp from the transcription start site. We
therefore extract sequences up to 800 bp upstream, shorten-
ing them, if necessary, to avoid overlap with adjacent ORF’s.
For genes with negative orientation, this is done taking the
reverse complement of the sequences.

Another source of noise is the presence in the dataset of
upstream sequences that do not contain the motif. We there-
fore restrict our search to the top 20 up-regulated and top 20
down-regulated genes. We then use Motif Regressor (Conlon
et al., 2003) to generate a large list of candidate motifs and
calculate the matching scores for each gene. The software uses
MDScan (Liu et al., 2002) to search for nucleotide patterns.
The algorithm starts by enumerating each segment of width
w (seed) in the top t sequences. For each seed, it looks for
w-mers with at least n base pair matches in the t sequences.
These are used to form a motif matrix and the highest scoring
seeds are retained, based on a semi-Bayesian scoring function

log(xn)

w


 w∑

i=1

T∑
j=A

pij log(pij ) − 1

xn

∑
all segments

log(p0(s))


 ,

where xn is the number of n-matches aligned in the motif, pij

is the frequency of nucleotide j at position i of the motif mat-
rix, and p0(s) is the probability of generating the n-match s
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from the background model. The updating step is done iterat-
ively by scanning all w-mers in the set of sequences used for
refinement and adding in or removing from the weight mat-
rix segments that increase the score. This is repeated until
the alignment stabilizes. We used the top 50 up-regulated
and top 50 down-regulated genes for refinement. For each
organism, the intergenic regions were extracted and used as
background models. We searched for nucleotide patterns of
length 5 to 12 bp and considered up to 30 distinct candidates
for each width.

2.3 Bayesian motif selection model
Our goal is to identify regulatory motifs among the over-
represented nucleotide patterns obtained as described above.
This is accomplished by fitting a linear regression model relat-
ing gene expression levels (Y ) to pattern scores (X), and using
a Bayesian variable selection method to select motifs that best
predict the expression. The pattern score of motif m for gene
g is given by:

Smg = log2


 ∑

x∈Xwg

P (x from θm)

P (x from θ0)


 ,

where θm is the probability matrix of motif m of width w, θ0

is the transition probability matrix for the background model,
and Xwg is the set of all w-mers in the upstream sequence of
gene g (Conlon et al., 2003).

The variable selection method proceeds as follows. A latent
vector, γ , with binary entries is introduced to identify vari-
ables included in the model; γj takes on value 1 if the j -th
variable (motif) is included and 0 otherwise. The regression
model is then given by:

Y = Xγ βγ + ε, ε ∼ N(0, σ 2I ), (1)

with N(µ, �) indicating the multivariate Gaussian distribu-
tion with vector mean µ and variance-covariance matrix �.
Here the columns of X and Y are mean centered. The vec-
tor γ indexes the variables included in the model (George
and McCulloch, 1993; Brown et al., 1998). We specify inde-
pendent Bernoulli priors for the elements of γ with common
probability θ = pprior/p, where pprior is the number of cov-
ariates expected a priori to be included in the model. For the
other model parameters, we take

βγ ∼ N(0, cσ 2{X′
γ Xγ }−1)

σ 2 ∼ Inv − χ2(a, b), (2)

where Inv-χ2(a, b) is the scaled-inverse-χ2 distribution. The
hyperparameters a, b and c need to be specified by the
investigator.

2.4 Stochastic search of regulatory motifs
Having set the prior distributions, a Bayesian analysis pro-
ceeds by updating the prior beliefs with information that

comes from the data. Our interest is in the posterior distri-
bution of the vector γ given the data, f (γ | X, Y ). Vector
values with high probability identify the most promising sets
of candidate motifs. Given the large number of possible vec-
tor values (2p possibilities with p covariates), we make use
of stochastic search Markov chain Monte Carlo (MCMC)
techniques to look for sets with high posterior probabilities.

Our method visits a sequence of models that differ success-
ively in one or two variables. At each iteration, a candidate
model, γ new, is generated by randomly choosing one of the
following two transition moves:

(i) Add or delete one variable from γ old.

(ii) Swap the inclusion status of two variables in γ old.

The proposed γ new is accepted with a probability that depends
on the ratio of the relative posterior probabilities of the new
versus the previously visited models:

min

{
f (γ new | X, Y )

f (γ old | X, Y )
, 1

}
, (3)

which leads to the retention of the more probable set of
patterns.

Our stochastic search results in a list of visited sets and
corresponding relative posterior probabilities. The marginal
posterior probability of inclusion for a single motif j , P(γj =
1|X, Y ), can be computed from the posterior probabilities of
the visited models:

p(γj = 1 | X, Y ) ≈
∑

γ :γj =1

p(Y |X, γ (t)) · p(γ t ), (4)

where γ (t) is the vector γ at the t-th iteration.
Our methodology is summarized in Figure 1. The analysis

starts with gene expression data from microarray experiments
and a large list of candidate motifs. We fit a linear regression
model and make use of the Bayesian variable selection method
described above to identify sets of motifs that best explain and
predict changes in expression level.

3 SIMULATION STUDY
Before analyzing the yeast genomes, we motivate the use of
Bayesian variable selection methods over stepwise procedures
by comparing their performance on simulated data designed
to imitate the structure and features of the yeast expression
data. In DNA microarray data, the gene expression levels are
not independent. One reason is that genes that share common
roles in cellular processes tend to be co-expressed (Eisen et al.,
1998). The form of this dependence, however, is not known.
We define a covariance matrix � = WW ′ where W is the vec-
tor of gene expression levels for S.cerevisiae under heat stress
and use the matrix of nucleotide pattern scores as the covariate
matrix X. We draw a vector of regression coefficients, β, such
that all but 30 of its elements are equal to 0 then simulate the
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Fig. 1. Graphical representation of methodology—a linear regression model that relates gene expression data to pattern scores is fitted and a
Bayesian variable selection method is used to identify variables. This is accomplished through a latent binary vector γ , updated via stochastic
search MCMC techniques. Motifs with high posterior probability indicate promising sets.

response vector Y ∼ N(Xβ, �). In order to assess the effect
of the magnitude of the regression coefficients on the results,
we generate two datasets where the non-zero elements of β

fall in the range [−2, 2] and [−10, 10].
Let us first briefly describe the results from the stepwise

method. The procedure involves (1) identifying an initial
model, (2) iteratively adding or removing a predictor variable
from the model previously visited according to a ‘stepping cri-
teria’, and (3) terminating the search when adding/removing
variables is no longer possible given the specified criteria.
Detailed descriptions of the procedure can be found in many
linear models books (Draper and Smith, 1981). We ran the
stepwise regression using three different criteria (P -values of
0.05, 0.01 and 0.001) for adding or deleting variables from
the subsets considered at each iteration. Table 1 summarizes
the results. For the simulated data where the non-zero βj s are
in the range [−2, 2], the stepwise procedure with a P -value of
0.05 selected 57 variables, 38 of which were false positives.
As expected, the procedure becomes more conservative with
a more stringent criterion but the proportion of false positives
remains high. With a P -value of 0.01, 42 variables were selec-
ted with 26 false positives and there were 14 false negatives.
With a P -value of 0.001, 11 out of the 24 variables included
in the model are false positives and there were 17 false neg-
atives. The stepwise method performed equally poorly with
the second simulated data where larger regression coefficients

in the range [−10, 10] were considered. The false negatives,
i.e. the non-selected predictive variables were not necessarily
those with smallest regression coefficients.

For the Bayesian variable selection method, we ran two par-
allel MCMC chains with 100 000 iterations each and started
the searches from widely different points to avoid possible
dependence of the results on the initial model. For the first
chain, all the γj s were set to 0 except for 10 randomly selec-
ted, and for the second chain, γj was set to 1 for 100 randomly
selected js. We chose the number of variables expected a pri-
ori to be included in the model to pprior = 20. For the prior on
σ 2, we took a = 3, which corresponds to the smallest integer
such that the expectation of σ 2, E[σ 2] = ab

(a−2)
, exists. The

scaling value b was taken to be comparable in size to the
expected error variance of the standardized data. We assessed
the sensitivity of the results to the choice of the hyperpara-
meter c by running three separate analyses with c set to 20,
50 and 100.

Let us first consider the simulated data with β in the range
[−2, 2]. The MCMC samplers mostly visited models with
30–35 variables. For each value of c, we pooled together
the output of the parallel chains and computed the normal-
ized posterior probabilities of each distinct visited model.
We also derived the marginal posterior probabilities of inclu-
sion for each variable. In general, we found good agreement
between variables with high marginal posterior probabilities
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Table 1. The results of simulated data using the stepwise procedure with dif-
ferent P -value criteria for adding/deleting variables and the Bayesian variable
selection method with different values for the hyperparameter c

No. of % False No. of R2

selected positives false
variables negatives

βj ∈ [−2, 2]
P -value cutoff

0.05 57 66.7 11 0.782
0.01 42 61.9 14 0.763
0.001 24 45.8 17 0.712
c

20 29 0 1 0.977
50 29 0 1 0.977

100 29 0 1 0.977
βj ∈ [−10, 10]

P -value cutoff
0.05 52 65.4 12 0.865
0.01 39 56.4 13 0.854
0.001 30 43.3 13 0.842
c

20 26 3.8 5 0.997
50 26 0 4 0.998

100 25 4.0 6 0.976

and those selected in the ‘best’ models, defined as the sets
with the highest joint posterior probability among all distinct
models visited by the MCMC sampler. Table 1 reports the vari-
ables selected in the ‘best’ model based on the pooled output
from the parallel chains for each value of c considered. These
variables correspond also to the ones with highest marginal
posterior probabilities. For all values of c, the ‘best’ model
contained 29 variables with no false positives and a single false
negative. The Bayesian stochastic search method therefore
does an excellent job at identifying the predictive variables.
Consequently, this approach leads to larger coefficients of
determination. It explained around 97% of the variability in
the response compared to 70–80% with the stepwise proced-
ure. The analysis of the second simulated data with non-zero
βj s in the range [−10, 10] also gave good results. For c = 20
and 50, 26 variables were selected with 1 and 0 false posit-
ives respectively. For c = 100, 25 variables were included
in the model with a single false positive and six false negat-
ives. The R2 values for this case were close to 100% with the
Bayesian approach compared to around 85% with the stepwise
procedure.

This simulation study is meant to show that the Bayesian
variable selection approach can provide better results
compared to the stepwise procedure, especially in situations
where the space of variable subsets is prohibitively large.
There are many well-documented problems with stepwise
regression. Our results are in line with findings of other authors
that have compared the performance of the two procedures on

experimental data [see, e.g. the critique of Viallefont et al.
(2001) on the use of stepwise methods and P -values in the
context of case-control studies].

4 RESULTS
We now return to the analyses of the yeast data. For each
organism and stress condition, we regressed the expression
levels on the pattern scores using separate models. In all
cases, the analyses were started with a set of around 400
patterns. We chose the same prior settings as in the simula-
tion study. For every regression model, we ran two parallel
MCMC chains with 100 000 iterations each. One of the
chains was started with 10 and the other with 100 randomly
selected γj s set to 1. We pooled together the sets of pat-
terns visited by the two MCMC chains and computed the
normalized posterior probabilities of each distinct visited
set. We also computed the marginal posterior probabilit-
ies, p(γj = 1 | X, Y ), for the inclusion of single nucleotide
patterns.

For comparison, we repeated the analysis with Motif
Regressor (Conlon et al., 2003), which uses stepwise
regression to select motifs. Both the Bayesian variable selec-
tion method and the stepwise procedure started with the same
set of around 400 motifs found by MDscan and used the same
sequence scores. As described in the next section, the two
methods differed in the selected final models.

4.1 Findings
Interesting sets of motifs can be found by exploring the visited
sets with highest joint posterior probabilities. An alternat-
ive would be to select nucleotide patterns with high marginal
posterior probabilities. It is important to stress that the sets
of motifs with high posterior probability represent groups of
motifs that work in combination to explain gene expression.
Marginal probabilities are instead indications of how well
single motifs work. Here we found good agreement between
motifs with high marginal posterior probabilities and those in
the ‘best’ models. Indeed, all motifs in the model with highest
joint posterior probability are also the ones with highest mar-
ginal posterior probabilities. These indicate promising motifs
for further investigation.

Tables 2–5 report the motifs selected in the ‘best’ model
in each of the regression analyses, ordered according to their
marginal probabilities. Selections that are robust to the choice
of c, i.e. motifs that show up in the best model of all MCMC
analyses run with different values of c, are represented with
two asterisks, and those that appear in two of the three MCMC
analyses have a single asterisk. The tables also present the
motifs selected by the stepwise procedure implemented in
Motif Regressor (Conlon et al., 2003) with a P -value cutoff
of 0.01 for inclusion/removal of variables.

Some of the motifs we discovered are experimentally known
to be related to stress. Others are novel and constitute a
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Table 2. Selected motifs for S.cerevisiae under heat shock, using expression data as response variable

Bayesian variable selection Motif regressor
Discovered motif Known Marginal probabilities Discovered motif Known

WTAAGGGAK** 1.0000 WTAAGGGAK
TGAAA** M3A 1.0000 TGAAA M3A
ACCYTGAAA** M3A 0.9999 ACCYTGAAA M3A
TCYAGAATRTT** Cliften et al. 0.9998 TCYAGAATRTT Cliften et al.
GGCAGGAMA** 0.9991 GGGCCWGGM
HYCCWTMCAT** 0.9991 WTGYAYKGGTK
WARGGG** STRE 0.9987 AAARGGRGMMG STRE
MGATGAGATGAR** M3B 0.9985 MGATGAGATGAR M3B
GMGATGAGMWT** M3B 0.9839 GMGATGAGMWT** M3B
GAADRAAAGGGR** STRE 0.9739 GAADRAAAGGGR STRE
GCCCC* 0.9573 GCCCC
AGGGRGSGAAD* STRE 0.9251 CCCCCTT STRE
GCWCATCCACC 0.8441 GRCCCC
CMAACAAAS 0.8195 AATTT
GSCCKGSWA 0.5308 TGCGATG
ARGGGGSGGR* STRE 0.5136 GAWTMAGGGG STRE
AMRWGCCAGAA 0.4364 AGATC

Motifs are ordered according to their marginal posterior probabilities. Selections that are robust to the choice of the hyperparameter c are shown with asterisks. Selected patterns by
Motif Regressor are also reported.
Characters in bold face correspond to matches between known and discovered motifs.
IUPAC codes are used for degenerate nucleotides: K = G/T; M = A/C; R = A/G; S = C/G; Y = C/T; W = A/T; B = C/G/T; D = A/G/T; H = A/C/T; V = A/C/G; and N = A/C/G/T.

Table 3. Selected motifs for S.cerevisiae under oxidative stress, using expression data as response variable

Bayesian variable selection Motif regressor
Discovered motif Known Marginal probabilities Discovered motif Known

GAAWGRCWGTAG** Cliften et al. 1.0000 TTACT
YGATTAGTAAKS** 1.0000 TTTAT
AAATT** 0.9999 TAAAA
AATMAGGGG** STRE 0.9987 AGAGGG
CACCCCTTW** STRE 0.9959 GATTASTAATS
ACTAMGTGTAT** 0.9943 WGGCTAGSM
GCCCCYT** STRE 0.9929 GCCCCYT STRE
GATGAATAA** M3B 0.9751 TGCWTGACTTGM
RCGGGTARC** 0.9655 GCTKCTAAA
CGGATCCG** 0.9534 TACATACAC
ATGMGTCARG** 0.8403 RSCTAGSCTA
ACCCGCCG 0.7051 CTTTT
GCTYCKCTCT* 0.6773 YCATYTCTTGA
AATGGA* 0.6540 GGCTKTTATTT
GTGATCAG* 0.6620 GATTTTA
CTGAMRTMGTA* 0.6594 AGAKGAAVCTG
GGTGACGCAAA 0.3567 RGCTKYYAWTTT

set of promising candidates for future experimental work.
Nucleotide patterns that match known motifs appear in the
tables with bold characters, along with the associated binding
site or a reference.

The analyses of S.cerevisiae led to the selection of around
25 motifs for each stress condition (Tables 2 and 3). They
explained respectively 16 and 8% of the expression variability

in response to heat and oxidative stress. Among the selected
motifs, we identified some that contain matches to three well
known stress-related motifs: STRE, M3A and M3B. STRE is
known to respond to general environmental stress and to pos-
itively regulate transcription (Schmitt and McEntee, 1996).
M3A and M3B have previously been found in genes repressed
under environmental stress and act by slowing down cell
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Table 4. Selected motifs for S.pombe under heat shock, using expression data as response variable

Bayesian variable selection Motif regressor
Discovered motif Known Marginal probabilities Discovered motif Known

ACGTCAT** ATF/CRE 1.0000 AGAGGAA
CTCTYTYTTTTT** Chen et al. 1.0000 CTCTYTYTTTTT Chen et al.
TTTTACCMAC** 1.0000 TCAATWGCATTG
TYTYTTKCT** Chen et al. 0.9986 GAATTC
ACKTAARATCG** 0.9974 TYTATTTAY
GTTTAC* 0.9967 CTTTTATT
TAGATAA 0.9261 TTCCATTT
GAATTGTAG** 0.8778 GAATTGTAG
CCGGGTTTYKA* 0.7675 TTYTTCTCTYTT
ATTAA* 0.6709 ATTAA
RTATATATATA** 0.6545 CTCAATCTC
AATARAATKGA** 0.6465 TTYTTATAAT
AAAAT 0.4381 AACGACGTTTM
TTATYTATYTTC 0.4317 TTATAATWATAA
TCGTTTTTTG* 0.2619 GTTTA

TAMGTAARGWAW
TTAAAA
AACTWRCGKWAG
GGAAA
TTTCGTT
TGTTTAC
TGATTTG
TCCTCTT
TTGTTTAC
CTATTTTT
AGKAAACAA
TTGCTTWTC
TKCCTTTTC
WATATATATAY

growth (Gasch et al., 2000). We also selected some patterns
that overlap with the stress-related motifs found by Cliften
et al. (2003) using comparative genomics.

For S.pombe (Tables 4 and 5) the selected patterns explained
respectively 9 and 13% of the expression variability in
response to heat and oxidative stress. Among these, we identi-
fied matches to the ATF/CRE motif (Hai and Hartman, 2001).
This is a binding site for the Atf1p family of transcription
factors, which regulate stress-dependent transcription (Takeda
et al., 1995). The analyses also confirmed some of the novel
motifs described by (Chen et al., 2003).

As for the comparison with Motif Regressor, although the
R2 values are comparable, we note some differences in the list
of selected motifs. A thorough evaluation of which method
performs best in this context is difficult since there are very
few stress related motifs that are known for these organisms, in
particular for S.pombe. With regards to motifs that are exper-
imentally known or cited in the literature, we notice that in
some cases both approaches identified matches to the same
binding sites (see, e.g. M3A, M3B, STRE for S.cerevisiae
under heat shock—Table 2). In other cases, the Bayesian

variable selection method selected more matches to the known
motifs than Motif Regressor; for S.cerevisiae under oxidat-
ive stress see M3B and motif found in Cliften et al., and for
S.pombe under heat shock see ATF/CRE.

Within each organism similar motifs were selected for the
different stress conditions. This can be explained by the
general stress response strategy in these organisms. Both have
a cross-protection program wherein exposure to a non-lethal
dose of one stress can protect against a potentially lethal dose
of other stresses (Chen et al., 2003).

Instead of the short list presented by Chen et al. (2003), we
found approximately equal number of motifs for both organ-
isms. Chen et al. (2003) hypothesized that there are qualitative
differences between stress motifs of budding and fission
yeast. The budding yeast genome is organized by stress spe-
cific mechanisms while the fission yeast genome is regulated
mainly by Sty1p mitogen-activated protein kinase (MAPK)
pathway that acts as a main stress switch. These differences
reflect the fact that S.pombe activates gene expression pro-
grams more specialized for a given stress or a subset of stresses
than S.cerevisiae. On the other hand, fission yeast and budding
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Table 5. Selected motifs for S.pombe under oxidative stress, using expression data as response variable

Bayesian variable selection Motif regressor
Discovered motif Known Marginal probabilities Discovered motif Known

TGACGTA** ATF/CRE 1.0000 TGACGTA ATF/CRE
AWGARKAAAATM** 0.9998 AWGARKAAAATM
TTACGTMAG** ATF/CRE 0.9701 TTACGTMAG ATF/CRE
AACTCGTTC** 0.9588 AACTCGTTC
CCAACAACC** 0.8929 GTAAAATTGG
ATATAGCAAA* 0.8451 TAGGATTKAAAA
CATTT* 0.8421 CATTT
GATGATGATGT 0.8356 GATGATGATGT
CATCTTCCR** 0.7997 CATCTTCCR
TGATATCATATY* 0.7521 TGATATCATATY
TCTTYCTTTTCT* Chen et al. 0.6797 TCTTYCTTTTCT Chen et al.
ATGATGTT* 0.5202 ATGATGTT
GAAGAAG 0.5054 TGATT
TAAACA* 0.4667 TTTTA
TATWTATWTATT** 0.4381 ATTYTATTY
TTAATT 0.3688 TTTCCTTTCTYT
AATTYTATTYTW 0.3536 TGAAATCA
TCTTTTCKTATA* 0.3144 ACAAT
GTAAA* 0.3098 ACGTATA

CTTCTTC
TTKCATTYC
TCTTTAC
ATTTCA
TTACTCT
CTTTCTTT
CATCTTTT
YCYWCTMCC
TTGTGTKTGTGT
TATATATATAT

yeast although distantly related share some similarities. For
instance they have comparable genome sizes and similar num-
ber of transcription binding sites in different gene networks
(Chen et al., 2003).

5 DISCUSSION
The discovery of regulatory sites is an important field of
research. Our work has focused on the detection of regulatory
motifs by integrating DNA microarray data with genome
sequences. This was accomplished by regressing expression
levels on pattern scores and using Bayesian variable selec-
tion methods. We examined stress-related transcription sites
in S.cerevisiae and S.pombe and identified some well known
stress regulators. We also found novel motifs that may con-
stitute promising candidates for further experimental assess-
ment. Our results were based on an initial set of around 400
motifs. The composition of this initial set depends on the num-
ber of genes used in the motif finding procedure described in
Section 2.2. We used the top 20 genes to search for candidate
motifs and the top 50 for refinement.

We have shown that the Bayesian variable selection method
proposed in this paper has lower false positive and false neg-
ative rates compared to the greedy stepwise regression used in
Motif Regressor. The Bayesian approach is computationally
more intensive, both in terms of time and memory require-
ments, since the method explores a larger set of possible
models. This, however, is a cheap price to pay relative to the
labor and cost incurred in trying to validate erroneous findings
through experimental laboratory techniques.

Alternative approaches for motif discovery are based on
sequence alignment among related species at different evol-
utionary distances (Cliften et al., 2003). These analyses,
however, are limited by current genome sequence availability.
For example, although several Saccharomyces species that are
closely related to S.cerevisiae have become available, none of
them are close enough to S.pombe to allow transcription site
detection by alignment.

The identification of regulatory motifs can provide a bet-
ter understanding of selection and mutation processes both
at the sequence and gene expression levels. It also provides
improved ability in building biochemical and signaling
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pathways, ultimately leading to the understanding of an entire
cell as a vast genetic network. In the future, it would be inter-
esting to look at transcription regulation in human and mouse,
an inherently more difficult problem since transcription factor
binding sites show more combinatorial complexity and are
spread over distances of 10 kb or more from the coding region.
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