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In this article we develop new methods for analyzing the data from an experiment using rodent models to investigate the effect of type
of dietary fat on O6-methylguanine-DNA-methyltransferase (MGMT), an important biomarker in early colon carcinogenesis. The data
consist of observed pro� les over a spatial variable contained within a two-stage hierarchy, a structure that we dub hierarchical functional
data. We present a new method providing a uni� ed framework for modeling these data, simultaneously yielding estimates and posterior
samples for mean, individual, and subsample-level pro� les, as well as covariance parameters at the various hierarchical levels. Our method
is nonparametric in that it does not require the prespeci� cation of parametric forms for the functions and involves modeling in the wavelet
space, which is especially effective for spatially heterogeneous functions as encountered in the MGMT data. Our approach is Bayesian; the
only informative hyperparameters in our model are effectively smoothing parameters. Analysis of this dataset yields interesting new insights
into how MGMT operates in early colon carcinogenesis, and how this may depend on diet. Our method is general, so it can be applied to
other settings where hierarchical functional data are encountered.
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1. INTRODUCTION

1.1 Colon Carcinogenesis Studies

Colorectal cancer is a major international health problem. It
is the third most common cancer worldwide and the second-
leading cause of cancer deaths in the United States. Because
colon cancer is often asymptomatic until it is advanced, and
current treatment of advanced disease has limited effectiveness,
the development of preventive approaches is crucial in � ghting
this disease. A large part of this effort entails gaining a better
understandingof the mechanisms underlyingcolon carcinogen-
esis, identifying important risk factors, and understanding how
they operate.

There are indications that environmental factors (most no-
tably, diet) play a primary role in the development of colon
cancer (see, e.g., Giovannucci and Willet 1994). Carcinogen-
induced colon cancer in rodent models are extensively used to
delineatemechanisms in colon carcinogenesis. In these models,
rodents are fed particular diets of interest for a speci� c period,
exposed to a carcinogenknown to induce colon cancer, and then
later euthanized, with their colons removed and examined for
carcinogenic responses.

In modeling biological mechanisms in the colon, it is im-
portant to consider the special architecture of cells within the
colon. Colon cells replicate and spend their entire life cycles
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within crypts, � ngerlike structures that grow into the wall of
the colon. An individual cell is “born” in a region known as the
stem cell region, toward the bottom of the crypt, and moves up
the crypt wall as it matures and differentiates, until it is � nally
exfoliated out into the lumen at the end of its natural life cycle.
This special cell-life sequence in the crypts suggests two impor-
tant facts. First, cells at the same relative depths within differ-
ent crypts will tend to share common biological characteristics.
Second, cells at different depths of a given crypt are at different
stages of maturity and could in principle react differently to car-
cinogens and other stimuli. As a result, it is important to study
biological measurements in the colon as a function of relative
cell position, because averaging over all crypt cells obscures
any potential depth-speci� c effects. The relative cell position t

is de� ned such that the bottom of each crypt has t D 0 and the
top has t D 1, with positions in between coded proportionally.

1.2 Application

Epidemiologic and animal studies have suggested that diets
high in � sh oil fats, or n-3 polyunsaturated fatty acids, have a
protective effect against colon cancer when compared with di-
ets high in corn oil fats (e.g., Boyle, Zaridze, and Smans 1985).
However, the biological mechanisms behind this observed ef-
fect remain unknown and are of considerable interest. Nutrition
researchers at Texas A&M University (Hong et al. 2001) inves-
tigated how dietary fat type affects the initiation stage of colon
carcinogenesis (the � rst few hours after exposure to a carcino-
gen). During this stage, the carcinogen exposure leads to dam-
age to the cells’ DNA, which, if not either repaired or removed,
may eventually lead to cancer. The biological responses of in-
terest in this study include DNA adduct levels, which quantify
the amount of carcinogen-induced damage; O6-methylguanine-
DNA-methyltransferase (MGMT), measuring the amount of an
enzyme that can repair this damage; apoptosis, the elimination
of damaged cells; and BCL2, a protein related to apoptosis.

In this study, 30 rats were randomized to a diet high in ei-
ther � sh oil or corn oil. After being fed these diets for 2 weeks,
each rat was exposed to the carcinogen azoxymethane (AOM)
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and euthanized at one of � ve randomly chosen time points: 0,
3, 6, 9, or 12 hours after exposure to the carcinogen. For each
response, 20–25 crypts were selected from each rat, and the re-
sponse was quanti� ed at � xed units of distance (pixel) along
the left side of each selected crypt using immunhistochemical
staining. The corresponding relative cell position for each pixel
was computed as the ratio of the number of pixels closer to
the crypt base and the total number of pixels in the crypt. These
data have a natural hierarchical structure (treatment groups, rats
within treatment, crypts within rats, and pixels within crypts),
and the data for each crypt can be viewed as a single longitudi-
nal pro� le over the spatial variable relative cell position.

Many important scienti� c questions can be answered us-
ing these data. For this article we focus on examining the
MGMT response. We would like to obtain estimates of the
mean MGMT pro� les for each diet/time group as a function
of relative cell position, from which we can perform various in-
ferences to detect whether the MGMT expressionpro� les differ
by diet or across time and whether the MGMT levels are higher
at particular depths within the crypts. Second, we would like
to obtain estimates of the variability at the various hierarchical
levels, allowing us to determine whether the diets differ in the
patterns of variability in MGMT expression and providingvalu-
able information for ef� ciently designing future studies. Third,
we would like to obtain estimates of the rat- and crypt-levelpro-
� les, to provide assurance that any diet/time level results are not
being driven by outliers. We would like to answer these ques-
tions in a uni� ed fashion using a single model, if possible.

1.3 Hierarchical Functional Data

The data that we have described consist of longitudinal pro-
� les for each crypt, contained within a larger hierarchy in-
cluding rats and treatment groups. We refer to data with this
structure as hierarchical functional data. Here we present a
uni� ed model for hierarchical functional data that is essentially
a hierarchical multilevel random-effects model, but with the
base level of the hierarchy being noisy functions observed on
a grid of spatial or time points:

yabc D gabc.t/ C ²abc;

gabc.t/ D gab.t/ C ´abc.t/;

gab.t/ D ga.t/ C »ab.t/:

(1)

Here yabc is the observed vector of responses for crypt c .c D
1; : : : ; Cab/ from rat b .b D 1; : : : ; Ba/ of treatment group a

.a D 1; : : : ; A/, corresponding to a grid of cell positions t of
length n. The functions gabc.¢/, gab.¢/, and ga.¢/ represent true
underlyingfunctionsof cell position for an individualcrypt, rat,
and treatment level. The terms ²abc are the measurement errors,
assumed to be N.0; ¾ 2

² In/, and ´abc.t/ and »ab.t/ are crypt-
speci� c and rat-speci� c errors, assumed to be mean-0 Gaussian
random variables with covariance matrices 61.t/ and 62.t/,
with ²abc , ´abc.t/, and »ab.t/ all mutually independent. Note
that with their form left unstructured, the matrices 61.t/ and
62.t/ each contain n.n C 1/=2 unique parameters. Clearly, fur-
ther assumptions must be made before this model can be � t.

If one is willing to assume a parametric structure on the
form of the g functions, then this model can be � t using stan-
dard mixed-model methodology. However, some responses in

carcinogenesis, including MGMT, give rise to irregular func-
tions that are not well represented by a parametric model. Fig-
ure 1 shows the observed MGMT functions for selected crypts.
Note the spike-like features in these observed pro� les. Clearly,
a model that is nonparametric in t is needed to represent these
data.

A number of methods in the literature deal with nonparamet-
ric estimation of replicated functions (e.g., Rice and Wu 2001;
Fan and Zhang 2000), but most limit their scope to the single-
level hierarchical setting and use kernels or splines, which can
have dif� culty modeling curves that change rapidly in t , such
as the MGMT data. New methods are needed to model these
data effectively. Wavelet regression is a nonparametric regres-
sion technique that is particularly effective in estimating func-
tions that exhibit this type of local behavior. But most of the
published work in wavelet regression is limited to the single
function setting, and so cannot be directly applied to our setting.
The work of Brown, Fearn, and Vannucci (2001) involvesmod-
eling sets of curves resulting from near-infrared spectroscopy,
but in their problem the functions are predictors in a multivari-
ate regression setting.

In this article we present a uni� ed framework for � tting hi-
erarchical functional data. Our modeling is performed in the
wavelet space, which is useful for modeling spatially heteroge-
neous functions like those encountered here. Our approach is
nonparametric and Bayesian, with the only informative hyper-
parameters being effective smoothing parameters. Our method
makes full use of the data and simultaneously yields estimates
and posterior samples for pro� les at all hierarchical levels, as
well as all variance components.

The remainder of this article is organized as follows. In Sec-
tion 2 we provide an introduction to wavelets. In Section 3 we
describe our method, presenting our wavelet space model and
describing how we � t the model using a computationally ef-
� cient marginalized Metropolis-within-Gibbs sampler. In Sec-
tion 4 we discuss prior selection issues for the variance com-
ponents and the “smoothing” parameters for the nonparametric
procedure. We apply this method to the MGMT data in Sec-
tion 5, and conclude with a discussion of the strengths, weak-
nesses, and general applicability of our method in Section 6.

2. WAVELETS AND WAVELET REGRESSION

Wavelets are orthogonal families of basis functions that can
be used to accurately and parsimoniously represent other func-
tions. In L2.</, for example, an orthogonal wavelet basis is
obtained as translations and dilations of a mother wavelet Ã

as Ã j; k .x/ D 2¡j=2Ã.2¡j x ¡ k/ with j; k integers. A func-
tion g is then represented by a wavelet series as g.x/ DP

j; k2= d j; kÃ j; k.x/, with wavelet coef� cients dj; k D
R

g.x/

£ Ãj; k.x/ dx describing features of the function g at spatial lo-
cations indicated by k and frequencies indicated by j . In usual
wavelet notation, j and k are subscripts. In our notation,we use
superscripts to indicate the wavelet levels and reserve subscripts
to specify the hierarchical levels.

Let Y D .y1; : : : ; yn/ be a sample of a function at n equally
spaced points, with n assumed to be a power of 2. A fast al-
gorithm, the discrete wavelet transform (DWT), exists for de-
composing Y into a set of n wavelet coef� cients (Mallat 1989)
in only O.n/ operations. In matrix form, we can represent the
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Figure 1. MGMT Levels as a Function of Relative Cell Position (t) for Some Crypts From Selected Rats. The plot headers indicate the diet and
time group, rat number, and crypt number. For example, “� sh T3 R1 C6” indicates that the plot is for crypt number 6 from rat 1 from the group fed
�sh oil diets and euthanized 3 hours after exposure to the carcinogen. The full dataset contains roughly 750 such crypts.

DWT throughan orthogonalmatrix W D [W1;W2; : : : ; WJ ; VJ ]
applied to the vector Y of observations as d D WY that
decomposes the data into sets of wavelet coef� cients, d D
[dT

1 ; dT
2 ; : : : ; dT

J ; cT
J ]T , with dj D W T

j Y and cJ D V T
J Y. At

scale 2j¡1 or level j , the number of coef� cients is given by

Kj D n=2j : (2)

An algorithm for the inverse reconstruction (the IDWT) also
exists.

Wavelets can be used to perform nonparametric regression.
Suppose that we have a response vector y of length n observed
on an equally spaced grid t, assumed without loss of generality
to be on .0; 1/. The observed response y is assumed to be a
function of t plus some additive white noise; that is, with ² »
MVN.0; ¾ 2

e In/,

y D g.t/ C ²: (3)

The aim of nonparametric regression is estimation of the func-
tion g.t/ without imposing any particular parametric structure
on its form. There are numerous methods available to accom-
plish this, and all involve the choice of a regularizationparame-
ter, which determines the trade-off between bias and variance
in the resulting estimator.

Wavelet regression follows three basic steps. First, the data
are converted to the wavelet space using the DWT. The wavelet
space model corresponding to (3) is given by

d D µ C ²¤; (4)

where d D Wy are the empirical wavelet coef� cients, µ D
Wg.t/ are the true function’s wavelet coef� cients, and ²¤ D
W² » MVN.0; ¾ 2

e In/ is the noise in the wavelet space.
Next, the true wavelet coef� cients are estimated using a

thresholding or shrinkage rule, whereby a coef� cient may be

set to 0 or shrunk toward 0, depending on the magnitude of
its empirical coef� cient. The thresholding or shrinkage can
be done using frequentist rules (e.g., Donoho and Johnstone
1994) or Bayesian hierarchicalmodels (e.g., Clyde, Parmigiani,
and Vidakovic 1998). This estimation technique effectively re-
moves the noise from the signal, and so after the third step,
whereby the true wavelet coef� cient estimates are converted
back into the data space using the IDWT, we end up with a de-
noised, or regularized, nonparametric estimate of the function.

3. OVERVIEW OF METHOD

Implementation of our method involves three basic steps:
1. Perform a DWT on the response vector for each crypt,

yabc , to obtain the correspondingempiricalwavelet coef� cients.
2. Fit a Bayesian multilevel hierarchical model to these em-

pirical wavelet coef� cients, yielding posterior samples of the
true wavelet coef� cients correspondingto the treatment, rat and
crypt-level pro� les, as well as the variance components.

3. Using inverse discrete wavelet transforms, obtain the pos-
terior distribution of the mean diet/time pro� les ga.t/, as well
as any rat- or crypt-level pro� les on a � xed grid of t , which can
then be used to perform various Bayesian inferences.

3.1 Wavelet Space Model

We specify a version of model (1) in the wavelet space.
The data are the scaling coef� cients, c

J; k
abc , and empirical

wavelet coef� cients, d
j; k
abc , for a D 1; : : : ;A, b D 1; : : : ; Ba ,

c D 1; : : : ; Cab , obtained by performing a DWT on the vec-
tors yabc , response vectors of length n, a power of 2. Recall
that j D 1; : : : ; J is the scale or wavelet resolution level, and
k D 1; : : : ; Kj D n=2j speci� es the location of the wavelet co-
ef� cient within level j .
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Let ¾ 2
² and Ä D fÄj g D .¾ 2

1; j ; ¾ 2
2; j / be the set of variance

components in the model

d
j; k
abc D Normal.2j; k

abc; ¾ 2
² /; (5)

2
j; k
abc D Normal.2j; k

ab ; ¾ 2
1; j /; (6)

and
2

j; k
ab D Normal.2j; k

a ; ¾ 2
2; j /: (7)

An analogous model is de� ned for the observed scaling coef-
� cients cJ; k

abc , with true mean coef� cients !
J; k
abc , !

J; k
ab , and !

J; k
a

and variance components º2
1; J and º2

2; J .
We assume that ¾² is known. Following Donoho and John-

stone (1994), in practice we plug in a robust estimator of the
standard deviation of all wavelet coef� cients at � nest resolu-
tion level for ¾² , because these coef� cients are expected to con-
sist almost entirely of noise. Speci� cally, we use the median
absolute deviation over all crypts divided by :6745 (see Welsh
1996, p. 107).

When unknown, the ¾ 2
1; j and ¾ 2

2; j are assumed to have
proper inverse gamma priors with hyperparameters .A1; j ;

B1; j / and .A2; j ; B2; j /. The inverse gamma parameterization
that we use is detailed in the Appendix.

The model (5)–(7) is essentially a standard two-level random-
effects model for each wavelet coef� cient, with random effects
at the crypt and rat levels. To obtain denoised or regularized
estimates of the diet/time pro� les, as is done in single-function
wavelet regression, we place the following shrinkage prior on
the wavelet coef� cients 2

j; k
a :

2
j; k
a D Normal.0; °

j; k
a ¿ 2

j / (8)

and
°

j; k
a D Bernoulli.pj /: (9)

The hyperparameters ¿ 2
j and pj simply determine the amount

of regularization done in estimating the mean pro� les ga.t/,
and so are like smoothing parameters. More discussion regard-
ing the choice and effect of these priors and how they result in
regularized pro� le estimates is given in Section 4.2.

3.2 Evaluation of Relative Variability

We choose the trace to summarize the variability at the var-
ious hierarchical levels in the data space model (1), so V0 D
trace.¾ 2

e I /, V1 D trace.61/, and V2 D trace.62/ summarize the
amount of variability within crypts, between crypts, and be-
tween rats in our rat colon carcinogenesis example. The rela-
tive variability at level i is then de� ned as Vi=.V0 C V1 C V2/.
This measure gives a rough assessment of the amount of vari-
ability at the different hierarchical levels, and estimates of these
quantitiescan aid the design of future experiments, in that larger
sample sizes can be used at the hierarchical levels with the most
variability.

Because the DWT is an orthogonal transformation, these
quantities are the same in the data space and the wavelet space.
Using the variance components in (5)–(7), these quantities are
easily calculated to be V0 D n¾ 2

e , V1 D
P

j Kj ¾ 2
1; j C KJ º2

1; J ,

and V2 D
P

j Kj ¾ 2
2; j C KJ º2

2; J , with Kj as de� ned in (2).
The amount of variability within hierarchical level i that can
be explained by wavelet resolution level j can be measured by
Wi; j D Kj ¾ 2

i; j =Vi and provides a frequency domain summary
of the pro� les at the various levels.

3.3 Fitting the Model When Variance
Components Known

If the set of variance components, Ä, is known, then we
have a closed-form solution for the posterior distribution of
the diet/time level wavelet coef� cients 2

j; k
a , from which we

can compute the posterior distribution of the diet/time pro� les
ga.t/. Let d

j; k
a D .d

j; k
a11; : : : ; d

j; k
aBaCab

/T . For each a, j , and k

independently, the posterior distribution .2
j; k
a jdj; k

a ;Äj / is a
mixture of a point mass at 0 and a normal distribution with
mean and variance given by (A.7) and (A.8) in the Appendix,
with the mixture proportion for the normal given by (A.1) in the
Appendix.

Samples from this mixture distribution are easily obtained
using a Monte Carlo simulation.Applying the IDWT to the pos-
terior sample vectors of wavelet coef� cients for each treatment
group a , 2a D .2

1; 1
a ; : : : ;2

J; KJ
a ;!

J; 1
a ; : : : ; !

J; KJ
a /T , we ob-

tain posterior samples of the treatment pro� les ga.t/ on the
equally spaced grid t.

3.4 Fitting the Model When Variance
Components Unknown

In the more realistic situation where the variance components
Ä are unknown and of interest, they must be estimated along
with the mean parameters. This precludes closed-form expres-
sions for our posteriordistributionsand requires the use of an it-
erative procedure. Here we propose a Metropolis-within-Gibbs
MCMC sampler performed on a marginalized version of the
model speci� ed in (5)–(9), marginalized in the sense that the
rat- and crypt-level random effects, 2

j; k
ab and 2

j; k
abc , are inte-

grated out.
Sampling is done as follows. Let dj; k

a D .d
j; k
a11; : : : ;

d
j; k
aBaCab

/T , dj D .d
j; 1
111; : : : ; d

j; Kj

ABa Cab
/T , and 2

j
3 D .2

j; 1
1 ; : : : ;

2
j; Kj

A /T . Each iteration of the MCMC consists of the fol-
lowing two steps performed for each wavelet coef� cient level
j D 1; : : : ; J , with similar expressions for the scaling coef� -
cients:

1. Generate 2
j; k
a from .2

j; k
a jdj; k

a ;Äj / for each
a D 1; : : : ;A and k D 1; : : : ;Kj . (10)

2. Generate Äj D f¾ 2
1; j ; ¾ 2

2; j g from .Äj jdj ;2
j
3/. (11)

The distribution in (10) is simply the posterior distribution of
2

j; k
a assuming the variance components are known, given in

Section 3.3. The distribution in (11) is proportional to expres-
sion (A.10) in the Appendix, from which samples are drawn
using a random-walk Metropolis step. These give us posterior
samples of the 2

j; k
a and the variance components ¾ 2

1; j and

¾ 2
2; j . As described in Section 3.3, IDWTs can be subsequently

used to obtain posterior samples of the diet/time pro� les ga.t/
on the � xed grid t.

In principle, a simple Gibbs sampler without marginaliza-
tion could be used to estimate these posterior distributions. Al-
though much simpler analytically, this method had poor con-
vergence properties, especially for the covariance parameters.
Our marginalized Metropolis-within-Gibbs sampler resulted in
better mixing.
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3.5 Estimating Crypt- and Rat-Level Pro� les

The procedure described in Section 3.4 for � tting our model
gives only the posterior samples and estimates for the diet/time-
level pro� les and the variance components.If estimated pro� les
for individual rats and/or crypts are desired, then the following
steps may be performed for each j and k using the samples from
the MCMC in Section 3.4. Let dj; k

ab D .d
j; k
ab1; : : : ; d

j; k
abCab

/T :

1. Generate 2
j; k
ab from .2

j; k
ab jdj; k

ab ;2
j; k
a ; ¾ 2

2; j /

for each a; b. (12)

2. Generate 2
j; k
abc from .2

j; k
abcjd j; k

abc; 2
j; k
ab ; ¾ 2

1; j /

for each a;b; c. (13)

It can be shown using standard calculations that .2
j; k
ab jdj; k

ab ;

2
j; k
a ; ¾ 2

2; j / is normally distributed with mean [Cab
Ndj; k
ab ¾ 2

2; j

C 2
j; k
a .¾ 2

1; j C ¾ 2
e /]=[Cab¾ 2

2; j C ¾ 2
1; j C ¾ 2

e ] and variance

[¾ 2
2; j ¤ .¾ 2

1; j C ¾ 2
e /]=[Cab¾ 2

2; j C ¾ 2
1; j C ¾ 2

e ]. Similarly, .2
j; k
abcj

d
j; k
abc; 2abj; k; ¾ 2

1; j / is normally distributedwith mean .d
j; k
abc¾ 2

1; j

C 2
j; k
ab ¾ 2

e /=.¾ 2
1; j C ¾ 2

e / and variance .¾ 2
1; j¾ 2

e /=.¾2
1; j C ¾ 2

e /.
As previously described, applying the IDWT to the posterior

samples of these wavelet coef� cients yields posterior samples
of the individual rat- and crypt-level pro� les.

4. PRIOR SELECTION ISSUES

4.1 Choosing a Prior for the Variance Components

We avoid using improper priors for the variance components,
because it is well known that this may lead to improper posteri-
ors in this setting. However, it is not practical to elicit informa-
tive proper priors in this setting, because a priori it is dif� cult
to know what the variation of wavelet coef� cients at various hi-
erarchical and resolution levels will be. Our approach is to use
priors that are proper but contain little information relative to
the data, and here we present a method based loosely on the
data for choosing the inverse gamma hyperparameters.

Rather than directly specifying the hyperparametersAi; j and
Bi; j , we specify ¹i; j and 1i; j , a one-to-one reparameteriza-
tion of Ai; j and Bi; j given the sample sizes of the study de-
sign. Here ¹i; j is the prior density’s mode (i.e., the value of
¾ 2

i; j considered most likely a priori) whereas 1i; j generally in-
dicates the weight of the prior relative to the current dataset.
A choice of 1 D 1 indicates a prior whose in� uence on the
posterior is roughly equal to the data, and 1 ¿ 1 and 1 À 1
correspond to very vague and very informative priors. Based
on these quantities, the inverse gamma parameters are set to
Ai; j D 1i; j Ni; j =2 and Bi; j D ¹i; j .Ai; j C 1/, where Ni; j is
the effective number of data points used in estimating the vari-
ance component at the ith hierarchical level and j th wavelet
resolution level. In our example, N1; j D Kj

PA
aD1

PBa

bD1 Cab

and N2; j D Kj

PA
aD1 Ba , with Kj de� ned in (2).

For the prior modes, ¹i; j , we plug in easily computed
estimators of the ¾ 2

i; j in an empirical Bayes-like fashion.
We use ANOVA-type method-of-moment estimators com-
puted under the assumption of no thresholding, that is, pj D 1
and ¿ 2

j ! 1 for all j . In our experience, these yield
estimates that are close enough to the estimates from our
model to be useful. For example, assuming equal sample sizes

(Ba D B and Cab D C) and ¾ 2
e known, our estimators are

O¾ 2
1; j D MSWj ¡ ¾ 2

e and O¾ 2
2; j D .MSBj ¡ MSWj /=C, with

MSWj D SSWj =fKj AB.C ¡ 1/g, MSBj D SSBj =fKj A.B ¡
1/g, SSWj D

P
a

P
b

P
c

P
k.d

j; k
abc ¡ Ndj; k

ab /2, and SSBj D
P

a

P
b

P
k Cab. Ndj; k

ab ¡ Ndj; k
a /2. A negative estimate of ¾ 2

i; j can
be replaced by a very small positive value ² .

4.2 Choosing the Regularization Parameters

The hyperparameters pj and ¿ 2
j regulate the shrinkage of the

wavelet coef� cients, and thus the smoothing or regularization
done in nonparametricallyestimating the ga.t/. We now discuss
the interpretationof these parameters and give some guidelines
for choosing them.

To investigate these parameters’ effect on regularization, we
focus on the posterior means of the 2

j; k
a in the known vari-

ance components case given by (A.7), with the understanding
that the effect is similar when the variance components must be
estimated. This posterior mean can be rewritten as

b2j; k
a D E.2

j; k
a jdj; k

a ;Äj / D b2j; k
a; NS £ h.T 2

j ;pj ;Z
j; k
a / (14)

and

h
¡
T 2

j ;pj ;Z
j; k
a

¢
D

³
T 2

j

T 2
j C 1

´³
Oj;k

Oj;k C 1

´
; (15)

where T 2
j D ¿ 2

j = var.b2j; k
a; NS/, Oj;k D [pj=.1 ¡ pj /] £

.1CT 2
j /¡1=2 exp[.Zj; k

a /2=2.1CT ¡2
j /¡1], and Z

j; k
a D .b2j; k

a; NS/=q
var.b2j; k

a; NS/.

b2j; k
a; NS is the maximum likelihoodestimator for 2

j; k
a assum-

ing that the variance components are known and no threshold-
ing is done (e.g., if pj D 1), and is de� ned in Section A.1 in the

Appendix along with var.b2j; k
a; NS/. Our posterior mean estima-

tors b2j; k
a in (14) are the product of this unshrunken estimator

and the shrinkage factor h, which is a function of the regular-
ization parameters and the data through the quantities T 2

j ;pj ,

and Z
j; k
a . This shrinkage factor has two components, one lin-

ear and the other nonlinear. The linear shrinkage component
T 2

j =.T 2
j C 1/ performs the usual Bayesian shrinkage toward the

mean and acts equally on all coef� cients at the j th resolution
level. The nonlinear shrinkage component Oj;k=.Oj;k C 1/ ef-
fectively performs Bayesian model averaging over models with
and without 2

j; k
a (i.e., °

j; k
a being 1 or 0), and operates differ-

entially dependingon the magnitude of b2j; k
a; NS . The smaller the

b2j; k
a; NS , the more it is shrunk toward 0, with very large b2j; k

a; NS

left largely unaffected by the nonlinear shrinkage. This differ-
ential shrinkage is the key to denoising the signal and thus reg-
ularizing the function estimates while retaining important fea-
tures of the functions,because the small coef� cients expected to
consist of mostly noise are shrunk the most, whereas the larger
coef� cients consisting of mostly signal are left alone. The de-
pendence on b2j; k

a; NS is through the quantity Z
j; k
a , which mea-

sures how many standard deviation units b2j; k
a; NS is from 0.

In single-function wavelet regression, it is useful to evalu-
ate the shrinkage properties of a particular estimator by plotting
the shrunken estimators of 2 versus the empirical coef� cients
d (e.g., Vidakovic 1999, chap. 6). In cases where no shrinkage
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is done, these curves simply follow a 45-degree line. We intro-
duce a similar curve for the hierarchical function case, which
we call a shrinkage curve. A shrinkage curve plots the quantity
Z against the shrinkage factor h for a particular choice of T 2

j

and pj . The range of these curves is from 0 to 1, with 0 rep-
resenting a completely thresholded coef� cient and 1 represent-
ing a coef� cient with no shrinkage done. Figure 2 contains the
shrinkage curves for various choices of pj and T 2

j , and graphi-
cally illustrates many of the points made in this section.

Our prior structure in (8)–(9) implies that when °
j; k
a D 0,

the wavelet coef� cient 2
j; k
a is considered negligible and effec-

tively removed (thresholded)from the model. Thus the parame-
ter pj represents the expectedproportionof wavelet coef� cients
at the j th resolution level that are nonnegligible.A smaller pj

results in more smoothing of any features of the function cor-
responding to that resolution level or frequency. Generally, it
is expected that pj should increase in j . In the single-function
case, Abramovich, Sapatinas, and Silverman (1998) suggested
a parameterization in which pj increases exponentially in j .

One must take special care in choosing the parameters ¿ 2
j ,

which represent the expected variation of the nonnegligible
wavelet coef� cients. Very small ¿ 2

j will result in much linear
shrinkage, which affects even the large coef� cients at level j ,
leading to more bias and possible distortion in estimating the
function. Making ¿ 2

j very large will make the linear shrinkage
component negligible, but making if too large can lead to un-
desirable nonlinear shrinkage as a result of Lindley’s paradox
(see Lindley 1957; Kass and Raftery 1995). This corresponds
to shrinkage curves whose shape is too steep (see Fig. 2). Be-
cause ¿ 2

j enters into the shrinkage factor via T 2
j , its ratio with

var.b2j; k
a; NS/, any evaluation of the size of ¿ 2

j must be made rel-

ative to var.b2j; k
a; NS/, a function of the possibly unknown vari-

ance componentsand the sample sizes. When the variance com-
ponents are unknown, the method-of-moments estimators dis-
cussed in Section 4.1 can be used as rough estimates. Thus one
easy way to choose ¿ 2

j is to � rst estimate var.b2j; k
a; NS/ for each j ,

then elicit T 2
j , and let ¿ 2

j D T 2
j ¤ cvar.b2j; k

a; NS/. We have found

that moderate values of T 2
j between 10 and 100 seem practical,

avoiding the problems at either extreme. It is typical in wavelet
regression to not perform any shrinkage at the smoothest res-
olution levels; for example, choosing p » 1 and ¿ 2 D 1=² for
some ² ¼ 0 at the desired levels.

5. APPLICATION

5.1 Implementation of Method

We applied our method to the MGMT data described in Sec-
tion 1.2. First, we used linear interpolation to obtain estimates
for all crypt curves on a common grid t, equally spaced of
length n D 28. The interpolation should not have a substantial
effect on the results, given the high sampling frequency and
high signal-to-noise ratio present in these data.

We used the S-PLUS Wavelets package to perform all DWT
and IDWT, and � t the hierarchical model using a CCC pro-
gram written by us. We chose the Daubechies wavelet basis
with four vanishing moments (Daubechies 1992). We allowed
the variance components to differ across diets, and chose pri-
ors on them to be diffuse, more speci� cally inverse gammas
with method-of-moments estimates as mode and weight .001

Figure 2. Shrinkage Functions Versus Z for Various Choices of T 2 , for (a) p D :50 and (b) p D :10. . /T 2 D 2I .¢ ¢ ¢ ¢ ¢ ¢/T 2 D 5;
.¢— ¢ — ¢/T 2 D 20I .— —/T 2 D 100I .– ¢ ¢ ¢ –/T 2 D 1000. Note how small choices of T 2 yield much shrinkage, even for large coef�cients. Also note
how the curve steepens as T 2 increases, corresponding to more nonlinear shrinkage for moderately large empirical coef�cients.
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Figure 3. Posterior Mean MGMT Functions for Diet/Time Groups, Distal Colon, With 90% Posterior Pointwise Bounds.

relative to the data (1i; j D :001 for all i; j ). No shrinkage was
done on the scaling function coef� cients. For the wavelet coef-
� cients, we chose p D f:005; :01; :015; :03; :07; :20g. We chose
the ¿ 2

j as described in Section 4.2, using T 2
j ´ 20. We � t the

models using the marginalized Metropolis-within-Gibbs sam-
pler described in Section 3.4. A sensitivity analysis on these
prior choices is discussed in Section 5.3.

We ran parallel MCMC chains with diverse starting values;
these converged to the same range of values for each parameter.
Given the extremely large number of parameters in this prob-
lem, we did not do formal tests of MCMC convergence, but
instead used iteration plots to assess convergence. All model
parameters appeared to mix satisfactorily. The Metropolis ac-
ceptance probabilities were all between .16 and .47. The re-
sults presented here are from a single chain of 50,000 iterations,
keeping every tenth one, after a burn-in of 5,000.

5.2 Results

Figure 3 presents the estimated MGMT mean pro� les in the
distal colon for each diet-by-time group, along with the cor-
responding 90% pointwise posterior credible intervals. First,
we see that there is more MGMT expression toward the lume-
nal surface of the distal colon (t » 1) than toward the base of
the crypts (t » 0). The posterior probability that ga.1/ > ga.0/

is equal to 1.00 for all diet/time groups except corn oil (time
12 hours), where it is .73. Targeted apoptosis, another major

mechanism for combatting the carcinogen-induced DNA dam-
age, has been shown to be stronger at the bases of the crypts
(Hong et al. 1999; Lantham, Lund, and Johnson 1999). This
raises the possibility that apoptotic removal of damaged cells
is the major mechanism of action at the bases of distal crypts,
whereas DNA repair by MGMT may be a major factor at the
lumenal surfaces.

We see little evidence of any diet or time effects from the
time points 0–9 hours, but at time 12 hours the data suggest an
interesting difference between the � sh oil and corn oil diets at
the tops of the crypts. Twelve hours after exposure to the car-
cinogen AOM, the � sh oil–fed rats tend to have signi� cantly
higher MGMT expression levels than the corn oil–fed rats near
the lumenal surface of their distal crypts (posterior probability,
1.00). This effect is especially interesting given that colon tu-
mors form at the lumenal surface. One possible explanation for
this effect is that after a period of time, the � sh oil–fed rats’
DNA repair mechanism at the lumenal surface continues to re-
pair damaged cells, whereas somehow the corn oil–fed rats’ re-
pair response drops off. Future experiments will be designed to
include the 12-hour and later time points to see whether this
holds true.

To con� rm that this diet effect is not driven by a single outly-
ing rat, we estimated the rat-level pro� les for all rats sacri� ced
at 12 hours (not shown), revealing that all three rats in the � sh
oil group still had notably higher MGMT levels at the tops of
their crypts, whereas all three corn oil rats had less MGMT than
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any of the � sh oil rats at the top of their crypts. This result was
not driven by an outlier but re� ects a pattern seen in all three
rats in the two diet groups.

The within-crypt error variance is ¾ 2
e D :284 for the � sh and

¾ 2
e D :249 for the corn oil diet groups. The posterior mean

and standard error estimates of the crypt-level variance com-
ponents for the wavelet and scaling coef� cients from � ner to
coarser resolutions for the � sh oil and corn oil diet groups are
¾ 2

1; FISH D f:14§ :002; 4:01§ :03;23:43§ :23;111§1:5;292§
5:5; 491 § 13; 1312 § 35g and ¾ 2

1; CORN D f:13 § :002; 3:97 §
:03;21:03 § :20;105 § 1:4; 233 § 4:4;454 § 12;930 § 25g.
For the rat-level variance components, the estimates and stan-
dard errors for the � sh oil and corn oil diet groups are ¾ 2

2; FISH D
f:029§ :001; :33§ :02; :71§ :16;6:68§1:17; :016§ :030; 85§
22;457 § 117g and ¾ 2

2; CORN D f:020 § :001; :26 § :02; :54 §
:12;2:85 § :79; 11:7 § 2:8; 42 § 12, 786 § 188g.

Note that for both diets, the crypt-to-crypt variation domi-
nates both the rat-to-rat and residual error variation for distal
and proximal MGMT. Based on the traces of the covariance
matrices for the � sh oil group (see Sec. 3.2), 83.8% (with stan-
dard error §2:7%) of the distal MGMT variation is at the crypt
level, whereas only 15:7%§ 2:7% and .5% can be explainedby
the rat and within-crypt levels. For the corn oil group, we see
slightly less variation at the crypt level, but this variability still
comprised most of the total. The percentages of variation were
74:0% § 4:0%, 25:5% § 4:0%, and .5% at the between-crypt,
between-rat, and within-crypt hierarchical levels. This suggests
that in future experiments, it will be important to sample a large
number of crypts from each rat for both diets, because the crypt-
to-crypt variation makes up such a large fraction of the total.

The multiresolution decomposition inherent in our method
allows us to use the frequency domain to deduce features of
the pro� les at the various hierarchical levels. We see that the
crypt and rat levels exhibit different patterns of variation at the
various wavelet levels, which implies that the crypt- and rat-
level pro� les have different degrees of smoothness. Based on
the trace, 99.0% of the distal variability at the rat level can
be explained using just the scaling coef� cients and coarsest
wavelet coef� cients, whereas at the crypt level, these levels ac-
count for only 57% of the variability. One must include all but
the � nest wavelet resolution levels before accounting for 99%
of the variability at the crypt level. This suggests that the un-
derlying pro� les at the rat level are inherently smoother than
the spike-laden crypt-level pro� les. This result is not surprising
given that the rat-level pro� les are effectively obtained by aver-
aging over crypt-level curves, which tends to have a smoothing
effect.

Note that the crypt-level variance componentsat wavelet lev-
els 3, 4, and 5 are orders of magnitudes larger than the cor-
responding rat-level components. Our chosen wavelet bases at
these levels have support roughly between 28/256 and 112/256,
and major peak of width 4/256–16/256, suggesting that the
crypt-level pro� les contain features at these frequencies that do
not tend to be present in the smoother rat-level curves. Inspec-
tion of the raw data reveal that these features are likely the iso-
lated peaks of width 10–20 pixels that characterize the crypt-
level pro� les. These peak widths match up with the expected
width of individual cells, given that there are roughly 300 pix-
els and 15–30 cells per crypt, suggesting that the peaks may

correspond to individualcells with high levels of MGMT activ-
ity. This cannot be con� rmed using these data because a limita-
tion in immunohistochemical staining prevents us from visually
making out the actual cell boundaries, which is the reason why
a pixel-based measuring scheme was necessary in lieu of a cell-
based scheme. If true, however, this isolated peak phenomenon
suggests that the MGMT DNA repair process may operate on
a cell-by-cell basis, with little signaling between neighboring
cells. With more intercellular signaling,one would expect more
smoothness in the crypt-level curves, or at least similar heights
of peaks corresponding to adjacent cells. This insight is poten-
tially important in understandinghow MGMT operates to repair
carcinogen-induced DNA damage in colonic crypts.

5.3 Sensitivity Analysis

We performed a sensitivity analysis to assess the robustness
of our biological results to the choice of prior in our Bayesian
method. Because our priors on the variance components were
chosen to be essentially uninformative relative to the data, we
focus on the hyperparameters Tj and pj of the shrinkage prior
(see Sec. 4.2), which we argue are simply “smoothing”parame-
ters that determine the degree of regularization in the nonpara-
metric estimation.

We � t our model to the MGMT data under the following
choices for T 2

j and pj :

(a) T 2
j D 20, p D f:005; :01; :015; :03; :07; :20g

(b) T 2
j D 20, pj D :999999 for all j D 1; : : : ; 6.

(c) T 2
j D 20, pj D :0001 for all j D 1; : : : ; 6.

(d) T 2
j D 20, p D f:015625; :03125; :0625; :125; :250; :500g.

(e) T 2
j D 10;000, p D f:005; :01; :015; :03; :07; :20g

(f) T 2
j D 1, p D f:005; :01; :015; :03; :07; :20g.

Case (a) contains the settings that we used in our application.
Cases (b) and (c) correspond to the two extreme cases in which
there is no shrinkage or total shrinkage in the wavelet coef� -
cients. In case (d), the pj decay exponentially by powers of
two. Cases (e) and (f) have very large or very smaller values
for T 2

j but the same p as our application. Note that some of
these hyperprior choices are extreme and would never be used
in practice, but are included to assess the robustness of our re-
sults to even the most extreme priors.

As expected, changing these shrinkage hyperparameters af-
fected the degree of regularization in estimating the diet/time
pro� les, but did not affect any of the major substantive results
of our case study. For all cases, we still found higher MGMT
levels at the lumenal surface of the crypts, and we observed a
diet difference at the lumenal surface at 12 hours. The estimates
from (a), (b), (d), and (e) were virtually the same, differing only
in the amount of regularization. In case (b), no shrinkage of the
wavelet coef� cients is done, so the estimates are more noisy in
appearance, as expected. In cases (c) and (f), the nondiscrim-
inant shrinkage of all wavelet coef� cients toward 0 results in
distortion in the estimates near the crypt bases for � sh oil–fed
rats, again as expected from our discussion in Section 4.2. It is
clear that the substantive results of our case study have not been
driven by the prior.
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6. DISCUSSION

From this case study, we found that MGMT expression tends
to be greater near the lumenal surface of distal crypts than
deeper within the crypts, suggesting the possibility of differen-
tial mechanisms of response to carcinogen-induced DNA dam-
age depending on cell depth. Also, we found that rats fed the
protective � sh oil diet had higher MGMT levels at their lume-
nal surface at the latest time point included in the study, sug-
gesting a possible mechanism by which the � sh oil confers pro-
tection. From rat-level pro� le estimates, we con� rmed that this
result was not caused by a single outlying rat, but rather was a
pattern seen across rats. Our analysis of covariance parameters
indicated that a vast majority of the variability was at the crypt
level, suggesting the importance of sampling a large number
of crypts. Our multiresolution analysis pointed to the presence
of peaks in the crypt-level data at frequencies corresponding to
the typical width of individualcells, suggesting that the MGMT
process may operate on a largely cell-by-cell basis.

We obtained these results by � tting a single uni� ed model in
the wavelet space. The method that we have introduced and ap-
plied to the MGMT data provides a uni� ed framework for mod-
eling hierarchical functional data without prespecifying a para-
metric form on the functions.As presented, it models one or two
hierarchical levels but is easily generalized to more complex hi-
erarchies. Our method is Bayesian, but our prior choices are un-
informative except for the shrinkage hyperparameters, which,
as we have demonstrated in our sensitivity analysis, are essen-
tially smoothing parameters. By using wavelets, our method
can handle spatially heterogeneous data, because in estimating
the pro� les, it smooths in such a way as to preserve local fea-
tures. Note that our wavelet regression-based estimators are not
as smooth in appearance as kernel or spline-based estimators,
which is a trade-off for the procedure’s strength in preserving
local features of the pro� les. Our method makes full use of the
data and yields estimates and posterior samples for nearly any
quantity that may be of interest.

We � rst obtain nonparametric estimates of the population
pro� les. Having obtained posterior samples for these pro� les,
we also have standard errors and credible intervals and can
perform any Bayesian inferences of interest. We also obtain
nonparametric estimates and posterior samples for the individ-
ual (rat)- and subsample (crypt)-level pro� les, along with vari-
ance component estimates and posterior samples at the vari-
ous hierarchical and wavelet levels. These can provide insight
into the characteristics of the pro� les at the different hierar-
chical levels and aid in designing future experiments. We can
also garner insights about the data from the frequency do-
main information contained in the various wavelet resolution
levels.

The reader will naturally wonder whether our approach is
necessary for either our particular application or more general
problems, and whether simpler approachesmight give the same
information. This seeming complexity occurs in other contexts
of function estimation in hierarchical data. For example, if the
crypt-level functions had been smooth instead of spikey as in
Figure 2, then we could have used the smoothing-splinemeth-
ods of, for example, Brumback and Rice (1998). These authors’

approach in that context is not noticeably simpler than ours, ei-
ther computationally or notationally, and their use of � xed ef-
fects for many crypt-level parameters is in contrast to our use
of random effects throughout.

We believe that the power of our approach is that having run
the MCMC, many questions can be answered in a straightfor-
ward fashion while still taking into account the intrinsic bio-
logical nature of the data. Among the questions that we have
answered in Figure 3 and Section 5.2 are the following:

(a) Model diet-level functions with con� dence statements
via Bayesian credible intervals.

(b) Make probability statements about the diet functions at
different colonic crypt depths.

(c) Make probability statements about different diet-level
functions.

(d) Obtain crypt-level, rat-level, and diet-level variance
components, allowing estimation, inference, comparison
across diets, and so on.

(e) Obtain individual rat-level functions along with con� -
dence statements.

(f) Obtain individual crypt-level functions along with con� -
dence statements.

There is no doubt that other, seemingly simpler methods can
be constructed to shed light on all of (a)–(f), although impor-
tant subtleties of inference remain. Consider, for example, (a),
the estimation of and inference about diet-level functions. We
focus on this issue, although similar remarks can be made for
(b)–(f). One modeling method would be as follows. For each
cell depth t , average the responses in the data space across all
of the crypts for each rat, average over all rats in the diet–time
combination, and then � nally � t some sort of nonparametric
regression across t . We have applied this method to our data us-
ing a smoothing spline as the function � t, and obtained function
estimates that are essentially the same as the solid lines in Fig-
ure 4. What our methods yield naturally that this method does
not is con� dence and probability statements of the type (b)–
(c), discussed in Section 5.2. To obtain such statements in our
problem (and, importantly, for other applications), the simple
method would have to be adjusted to account for possibly dif-
ferent number of crypts within rats, for possibly different num-
bers of rats within diet–time combinations, to allow the rats and
crypts within rats to be random and not � xed, and so on. At the
level of detail of inference as opposed to estimation, this “sim-
ple” approach does not seem much simpler than our method.

Now consider (e). Naive estimates of the rat pro� les can be
obtainedby averaging together all of the observed crypt pro� les
within that rat, but these estimates are noisy compared with the
regularized estimates resulting from our method. Alternatively,
smooth estimates could be obtained by � tting a smoothing pro-
cedure such as loss separately to the data for each rat. The ad-
vantage of our method is that we obtain regularized pro� le es-
timates that borrow strength from other rats and give standard
error estimates that appropriately take into account the correla-
tion structure imposed by the hierarchy.

An alternative to our procedure is to � t a multivariate hi-
erarchical model to the data-space values. In our problem the
responses are 256-dimensional, precluding the use of a gen-
eral covariance structure. Whether the results of (a)–(f), and
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especially likelihood inferences, are sensitive to the choice
of the covariance structure would remain to be seen. Alter-
natively, one could choose a coarser grid of cell depths, say
t D 0; :05; :10; : : :; 1:00, and � t such multivariate hierarchical
model to these data-space values. The general covariance struc-
ture is still quite large even in this case. It would appear to be
worth future investigationto see whether the loss of information
inherent in using only some of the data would be substantial
enough to affect any of (a)–(f).

We believe that the method we have introduced here and ap-
plied to the MGMT dataset is a valuable tool for researchers
working with hierarchical functional data. The method also
shows promising potential for future extensions to other set-
tings where replicated functional data are encountered with
even more complex covariance structures, and the ideas con-
tained herein may also be useful in building methods for hi-
erarchical functional analysis using basis functions other than
wavelets, such as Fourier series or regression splines.

APPENDIX: DERIVATION OF DISTRIBUTIONS
FOR MCMC

A.1 Sampling for the ° ’s

We show that

Pr.°
j; k
a D 1jdj; k

a ;Ä/ D Oj;k=.1 C Oj;k/; (A.1)
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We now begin our proof of (A.1). For any set of matrices Gm for

m D 1; : : : ; M , we de� ne diagM .Gm/ D diag.G1; : : : ;GM /. Let jAj
represent the determinant of matrix A. Let Jn be the n £ n matrix of
1s, let 1n be a n£1 vector of 1s, and let In be the n£n identity matrix.
If J or I has no subscript, then it is assumed to match the dimensions
of the argument. Let N D Na D
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b Cab . We � rst show that
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where 60 D ¾ 2
2; j diagBa

.JCab/ C .¾ 2
1; j C¾ 2

² / diagBa
.ICab / and 61 D

60 C ¿ 2
j JN .

To prove (A.3), � rst note by a trivial calculation that BF D
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We now prove (A.1). First, note that j61j=j60j D jIN C ¿ 2
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0 1N /gj. Because 60 is a block-diagonal matrix

with Ba diagonal blocks 60.bb/ , say, for b D 1; : : : ;Ba , it follows

that 1T
N 6

¡1
0 1N D

PBa

bD1 1T
Cab

6
¡1
0.bb/1Cab . Note that each diagonal

block 60.bb/ is an intraclass correlation matrix, with the eigenvectors

C
¡1=2
ab 1Cab , a unit vector, and Cab ¡ 1, contrast vectors. This means

that if ¸1.bb/ is the largest eigenvalue of 60.bb/ , corresponding to the

unit eigenvector, then 1T
N 6¡1

0 1N D
PBa

b C¡1
ab 1T

Cab
1Cab ¸¡1

1.bb/1
T
Cab

£ 1Cab
D

PBa

b Cab¸
¡1
1.bb/ . Because ¸1.bb/ D Cab¾ 2

2; j C ¾ 2
1; j C ¾ 2

² ,
it follows that

1T
N 6¡1

0 1N D
BaX

b

Cab
¡
Cab¾ 2

2; j C ¾ 2
1; j C ¾ 2

²

¢¡1

D
©
var

¡b2j; k
a; NS

¢ª¡1
; (A.4)

and hence fj61j=j60jg¡1=2 D .1 C ¿ 2
j fvar.b2j; k

a; NS/g¡1/¡1=2. Note
that this is the � rst term in (A.2).

We next turn to the consideration of 6¡1
1 ¡ 6

¡1
0 . If 61 D 60 C

uvT , then the usual inverse calculation states that 6¡1
1 ¡ 6¡1

0 D
¡6¡1

0 uvT 6¡1
0 =.1 C vT 6¡1

0 u/. In our case, u D ¿ 2
j 1N and v D 1N ,

thus showing that 6¡1
1 ¡6

¡1
0 D ¡f.1T

N6
¡1
0 /T .1T

N6
¡1
0 /g=f.¿ 2

j /¡1 C
1T

N 6
¡1
0 1N g. We now refer to (A.4), so that

6¡1
1 ¡ 6¡1

0 D ¡
©
.1T

N 6¡1
0 /T .1T

N 6¡1
0 /

ª

¯©
.¿ 2

j /¡1 C
©
var

¡b2j; k
a; NS

¢ª¡1ª
: (A.5)

We now focus on the numerator of (A.5). We know that from
the eigenvalue calculations given earlier, 1T

N 6¡1
0 D .1T

Ca1
6¡1

0.11/;

1T
Ca2

6¡1
0.22/; : : : ;1T

CaBa
6¡1

0.BaBa // and 1T
Cab

6¡1
0.bb/

D C¡1
ab .1T

Cab
1Cab/

£ ¸¡1
1.bb/1

T
Cab

D ¸¡1
1.bb/1

T
Cab

. Thus the numerator of (A.5) equals the
N £ N matrix

V D
£
.¸1.ss/¸1.pp//

¡11Cas
1T

Cap

¤
s; p: (A.6)

Combining (A.5) and (A.6), we � nd that expf¡.1=2/.d
j; k
a /T .6¡1

1 ¡
6¡1

0 /d
j; k
a g D exp..1=2/[.¿ 2

j /¡1 Cfvar.b2j; k
a /g¡1]¡1.d

j; k
a /T V d

j; k
a /.

Now recall that d
j; k
a D .d

j; k
a11; : : : ; d

j; k
aBa Cab

/T . Additionally, let d
j; k
ab D

.d
j; k
ab1; : : : ; d

j; k
abCab

/T . It follows that .d
j; k
a /T V d

j; k
a D f

PBa

bD1 ¸¡1
1.bb/

£ .d
j; k
ab /T 1Cab

g2 D f
PBa

bD1 Cab.Cab¾ 2
2; j

C ¾ 2
1; j

C ¾ 2
² / Ndabg2 D

f
PBa

bD1
Ndab=var. Ndab/g2 D .b2j; k

a; NS/2fvar.b2j; k
a; NS /g¡2. This proves

(A.2) and hence (A.1).

A.2 Sampling 2
j; k
a

Obviously, if °
j; k
a D 0, then 2

j; k
a D 0. We now show that the dis-

tributionof 2
j; k
a given °

j; k
a D 1, d

j; k
a , and Äj is normally distributed

with mean and variance given by

¹ D b2j; k
a; NS

£
¿ 2
j =

©
¿2
j C var

¡b2j; k
a; NS

¢ª¤
(A.7)

and
¾ 2 D var

¡b2j; k
a; NS

¢£
¿ 2
j =

©
¿ 2
j C var

¡b2j; k
a; NS

¢ª¤
: (A.8)

Note that the required conditional density is proportional to

f .2
j; k
a j° j; k

a D 1;Äj /

BaY

bD1

f .d
j; k
a j2j; k

a °
j; k
a D 1;Äj /: (A.9)

The � rst term in (A.9) is proportional to expf¡.1=2/.2
j; k
a /2=.¿ 2

j /g,

and the second term is proportional to expf¡.1=2/
PBa

bD1.2
j; k
a 1Cab

¡
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d
j; k
ab /T 6¡1

0 .2
j; k
a 1Cab

¡ d
j; k
ab /g. However, 6¡1

0 D .¾ 2
1; j C ¾ 2

² /¡1

£ [ICab
¡¾ 2

2; j =f.¾ 2
1; j

C¾ 2
² /.¾ 2

2; j
C¾ 2

1; j
C¾ 2

² /gJCab ]. After detailed
algebra, this means that the second term in (A.9) is proportional to

exp[¡.1=2/
PBa

bD1 Cabf.2j; k
a /2 ¡ 22

j; k
a

Ndj; k
ab g.Cab¾ 2

2; j
C ¾ 2

1; j
C

¾ 2
² /¡1]. Combining terms, we see that the posterior mean and vari-

ance are ¹ D f
PBa

bD1 Cab
Ndj; k
ab =.Cab¾ 2

2; j C ¾ 2
1; j C ¾ 2

² /g=f.¿2
j /¡1 C

PBa
bD1 Cab= .Cab¾ 2

2; j C ¾ 2
1; j C ¾ 2

² /g and ¾ 2 D f.¿ 2
j /¡1 C

PBa

bD1 Cab=.Cab¾ 2
2; j C ¾ 2

1; j C ¾ 2
² /g¡1. Further simpli� cations yield

(A.7)–(A.8).

A.3 Sampling Äj D f¾ 2
1; j ;¾ 2

2; j g

We now verify that the distribution of Äj given dj D .d
j; 1
111; : : : ;

d
j; Kj

ABa Cab
/T and 2

j
3 D .2

j; 1
1 ; : : : ; 2

j; Kj

A /T is proportional to the ex-

pression f .Äj jd j ; 2
j
3/ given by

f .Äj jdj ; 2
j
3 /

D .¾ 2
1; j C ¾ 2

² /¡Kj

PA
aD1

PBa
bD1.Cab¡1/=2

£
AY

aD1

BaY

bD1

.Cab¾ 2
2; j C ¾ 2

1; j C ¾ 2
² /¡Kj =2

£
2Y

iD1

.¾ 2
i; j /¡.Ai;j C1/ £ exp

"
¡

2X

iD1

Bi; j .¾ 2
i; j /¡1

#

£ exp

"
¡1=2

AX

aD1

KjX

kD1

BaX

bD1

CabX

cD1

.d
j; k
abc

¡ 2
j; k
a /2.¾ 2

1; j C ¾ 2
² /¡1

#

£ exp

"

1=2
AX

aD1

KjX

kD1

BaX

bD1

C2
ab. Ndj; k

ab ¡ 2
j; k
a /2£

¾ 2
2; j=

©
.¾ 2

1; j C ¾ 2
² /

£ .Cab¾ 2
2; j C ¾ 2

1; j C ¾ 2
² /

ª¤
#

: (A.10)

First, note that the conditionaldistributionof interest is proportional
to

f .¾ 2
1; j ;¾ 2

2; j /

AY

aD1

KjY

kD1

f .d
j; k
a jÄj ;2

j; k
a /: (A.11)

Assuming independent inverse gammas with parameters Ai; j

and Bi; j for ¾ 2
i; j , i D 1; 2, the � rst part of (A.11) has kernel

.¾ 2
1; j /¡.A1; j C1/.¾ 2

2; j /¡.A2; j C1/ expf¡B1; j =¾ 2
1; j

¡ B2; j =¾ 2
2; j

g,
giving the second and third terms in (A.10).

With 60 and N de� ned as in (A.3), the kernel of f .d
j; k
a jÄj ;2

j; k
a /

in (A.11) is

j60j¡1=2 expf¡1=2.d
j; k
a ¡ 2

j; k
a 1N /T 6¡1

0 .d
j; k
a ¡ 2

j; k
a 1N /g:

(A.12)
First, focus on j60j. Recall that 60 is a block-diagonal matrix

whose blocks, 60.bb/ , are intraclass correlation matrices, with largest
eigenvalue Cab¾ 2

2; j C ¾ 2
1; j C ¾ 2

² and remaining Cab ¡ 1 eigenvalues

¾ 2
1; j C ¾ 2

² . Thus j60 j D
QBa

bD1.¾ 2
1; j C ¾ 2

² /Cab¡1.Cab¾ 2
2; j C ¾ 2

1; j C
¾ 2

e /. Substituting into (A.12) and (A.11), with simpli� cation yields the
� rst term of (A.10). Further, the inverse of the diagonal blocks of 60

can be directly veri� ed to be ¡[f¾ 2
2; j =.¾ 2

1; j C ¾ 2
² /.Cab¾ 2

2; j C ¾ 2
1; j C

¾ 2
² /g]JCab

C .¾ 2
1; j

C ¾ 2
² /¡1ICab

. After substitutingfor 6¡1
0 in (A.12)

and (A.11) and doing some algebraic simpli� cations, we arrive at the
remaining terms of (A.10).

[Received October 2001. Revised September 2002.]
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