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Over the last decade, technological advances have generated an explosion of data with substantially smaller sample size relative to the
number of covariates (p � n). A common goal in the analysis of such data involves uncovering the group structure of the observations and
identifying the discriminating variables. In this article we propose a methodology for addressing these problems simultaneously. Given a set
of variables, we formulate the clustering problem in terms of a multivariate normal mixture model with an unknown number of components
and use the reversible-jump Markov chain Monte Carlo technique to define a sampler that moves between different dimensional spaces.
We handle the problem of selecting a few predictors among the prohibitively vast number of variable subsets by introducing a binary
exclusion/inclusion latent vector, which gets updated via stochastic search techniques. We specify conjugate priors and exploit the conjugacy
by integrating out some of the parameters. We describe strategies for posterior inference and explore the performance of the methodology
with simulated and real datasets.
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1. INTRODUCTION

Over the last decade, technological advances have generated
an explosion of data for which the number of covariates is con-
siderably larger than the sample size. These data pose a chal-
lenge to standard statistical methods and have revived a strong
interest in clustering algorithms. The goals are to uncover the
group structure of the observations and to determine the dis-
criminating variables. The analysis of DNA microarray datasets
is a typical high-dimensional example, where variable selection
and outcome prediction have become a major focus of research.
The technology provides an automated method for simultane-
ously quantifying thousands of genes, but its high cost con-
strains researchers to a few experimental units. The discovery
of different types of tissues or subtypes of a disease and the
identification of genes that best distinguish them is believed
to provide a better understanding of the underlying biological
processes. This in turn could lead to better treatment choice
for patients in different risk groups, and the selected genes
can serve as biomarkers to improve diagnosis and therapeutic
intervention.

When dealing with high-dimensional datasets, the clus-
ter structure of the observations is often confined to a small
subset of variables. As pointed out by several authors (e.g.,
Fowlkes, Gnanadesikan, and Kettering 1988; Milligan 1989;
Gnanadesikan, Kettering, and Tao 1995; Brusco and Cradit
2001), the inclusion of unnecessary covariates could com-
plicate or even mask the recovery of the clusters. Common
approaches to mitigating the effect of noisy variables or iden-
tifying those that define true cluster structure involve differen-
tially weighting the covariates or selecting the discriminating
ones. Gnanadesikan et al. (1995) showed that variable weight-
ing schemes were often outperformed by variable selection
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procedures. In addition to improving the prediction of clus-
ter membership, the variable selection task reduces the mea-
surement and storage requirements for future samples, thereby
providing more cost-effective predictors.

In this article we focus on the analysis of high-dimensional
datasets characterized by a sample size, n, that is substan-
tially smaller than the number of covariates, p. We propose
a Bayesian approach for simultaneously selecting discriminat-
ing variables and uncovering the cluster structure of the obser-
vations. The article is organized as follows. In Section 2 we
give a brief review of existing procedures and discuss their
shortcomings. In Section 3 we describe our model specification,
which makes use of model-based clustering and introduces la-
tent indicators to identify discriminating variables. In Section 4
we present the prior assumptions and the resulting full condi-
tionals. We also provide guidelines for choosing the hyperpa-
rameters. In Section 5 we discuss in detail the Markov chain
Monte Carlo (MCMC) updates for each of the model parame-
ters, and in Section 6 we address the issue of label switching
and describe the inference mechanism. In Section 7 we assess
the performance of our methodology using various datasets.
We conclude the article with a brief discussion in Section 8.

2. REVIEW OF EXISTING METHODS

The most widely used approaches separate the variable
selection/weighting and clustering tasks. One common vari-
able selection approach involves fitting univariate models on
each covariate and selecting a small subset that passes some
threshold for significance (McLachlan, Bean, and Peel 2002).
Another standard approach uses dimension-reduction tech-
niques, such as principal component analysis, and focuses on
the leading components (Ghosh and Chinnaiyan 2002). The re-
duced data are then clustered using the procedure of choice.
These selection steps are suboptimal. The first approach does
not assess the joint effect of multiple variables and could throw
away potentially valuable covariates, which are not predic-
tive individually but may provide significant improvement in
conjunction with others. The second approach results in lin-
ear combinations and does not allow evaluation of the original
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variables. In addition, it has been shown that the leading com-
ponents do not necessarily contain the most information about
the cluster structure (Chang 1983).

The literature includes several procedures that combine the
variable selection and clustering tasks. Fowlkes et al. (1988)
used a forward selection approach in the context of complete
linkage hierarchical clustering. The variables are added using
information of the between-cluster and total sum of squares,
and their significance is judged based on graphical informa-
tion. The authors characterized this as an “informal” assess-
ment. Brusco and Cradit (2001) proposed a variable selection
heuristic for k-means clustering using a similar forward selec-
tion procedure. Their approach uses the adjusted Rand index
to measure cluster recovery. Recently, Friedman, and Meulman
(2003) proposed a hierarchical clustering procedure that uncov-
ers cluster structure on separate subsets of variables. The al-
gorithm does not explicitly select variables, but rather assigns
them different weights, which can be used to extract relevant
covariates. This approach is somewhat different from ours in
that it detects subgroups of observations that preferentially clus-
ter on different subsets of variables, rather than clustering on the
same subset of variables. These methods all work in conjunc-
tion with k-means or hierarchical clustering algorithms, which
have several limitations. One major shortcoming is the lack of
a statistical criterion for assessing the number of clusters. These
procedures also do not provide a measure of the uncertainty as-
sociated with the sample allocations. In addition, with respect
to variable selection, the existing approaches use greedy deter-
ministic search procedures, which can be stuck at local min-
ima. They also have the limitation of presuming the existence of
a single “best” subset of clustering variables. In practice, how-
ever, there may be several equally good subsets that define the
true cluster structure.

The Bayesian paradigm offers a coherent framework for
addressing the problems of variable selection and clustering
simultaneously. Recent developments in MCMC techniques
(Gilks, Richardson, and Spiegelhalter 1996) have led to sub-
stantial research in both areas. Bayesian variable selection
methods so far have been developed mainly in the context of
regression analysis. (See George and McCulloch 1997 for a re-
view on prior specifications and MCMC implementations, and
Brown, Vannucci, and Fearn 1998b for extensions to the case
of multivariate responses.) The Bayesian clustering approach
uses a mixture of probability distributions, each distribution
representing a different cluster. Diebolt and Robert (1994) pre-
sented a comprehensive treatment of MCMC strategies when
the number of mixture components is known. For the general
case of an unknown number of components, Richardson and
Green (1997) successfully applied the reversible-jump MCMC
(RJMCMC) technique, but considered only univariate data.
Stephens (2000a) proposed an approach based on continuous-
time Markov birth–death processes and applied it to a bivariate
setting.

We propose a method that simultaneously selects the dis-
criminating variables and clusters the samples into G groups,
where G is unknown. The computational burden of searching
through all possible 2p variable subsets is handled through the
introduction of a latent p-vector with binary entries. We use
a stochastic search method to explore the space of possible val-
ues for this latent vector. The clustering problem is formulated

in terms of a multivariate mixture model with an unknown num-
ber of components. We work with a marginalized likelihood
where some of the model parameters are integrated out and
adapt the RJMCMC technique of Richardson and Green (1997)
to the multivariate setting. Our inferential procedure provides
selection of discriminating variables, estimates for the number
of clusters and the sample allocations, and class prediction for
future observations.

3. MODEL SPECIFICATION

3.1 Clustering via Mixture Models

The goal of cluster analysis is to partition a collection of ob-
servations into homogeneous groups. Model-based clustering
has received great attention recently and has provided promis-
ing results in various applications. In this approach the data are
viewed as coming from a mixture of distributions, each distri-
bution representing a different cluster. Let X = (x1, . . . ,xn) be
independent p-dimensional observations from G populations.
The problem of clustering the n samples can be formulated in
terms of a mixture of G underlying probability distributions

f (xi|w, θ) =
G∑

k=1

wk f (xi|θk), (1)

where f (xi|θk) is the density of an observation xi from the
kth component and w = (w1, . . . ,wG)T are the component
weights (wk ≥ 0,

∑G
k=1 wk = 1).

To identify the cluster from which each observation is drawn,
latent variables y = ( y1, . . . , yn)

T are introduced, where yi = k
if the ith observation comes from component k. The yi’s are
assumed to be independently and identically distributed with
probability mass function p( yi = k) = wk. We consider the case
where f (xi|θk) is a multivariate normal density with parameters
θk = (µk,�k). Thus for sample i, we have

xi|yi = k,w, θ ∼N (µk,�k). (2)

3.2 Identifying Discriminating Variables

In high-dimensional data, it is often the case that a large num-
ber of variables provide very little, if any, information about the
group structure of the observations. Their inclusion could be
detrimental, because it might obscure the recovery of the true
cluster structure. To identify the relevant variables, we intro-
duce a latent p-vector, γ , with binary entries. γj takes value 1
if the jth variable defines a mixture distribution for the data
and 0 otherwise. We use (γ ) and (γ c) to index the discriminat-
ing variables and those that favor a single multivariate normal
density. Notice that this approach is different from what is com-
monly done in Bayesian variable selection for regression mod-
els, where the latent indicator is used to induce mixture priors
on the regression coefficients. The likelihood function is then
given by

L(G,γ ,w,µ,�,η,�|X,y)

= (2π)−(p−pγ )n/2
∣∣�(γ c)

∣∣−n/2

× exp

{
−1

2

n∑

i=1

(
xi(γ c) − η(γ c)

)T
�−1

(γ c)

(
xi(γ c) − η(γ c)

)
}
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×
G∏

k=1

(2π)−pγ nk/2
∣∣�k(γ )

∣∣−nk/2
wnk

k

× exp

{
−1

2

∑

xi∈Ck

(
xi(γ ) − µk(γ )

)T
�−1

k(γ )

(
xi(γ ) − µk(γ )

)}
,

(3)

where (η(γ c),�(γ c)) denote the mean and covariance parame-
ters for the nondiscriminating variables, (µk(γ ),�k(γ )) are the
mean and covariance parameters of cluster k, Ck = {xi|yi = k}
with cardinality nk, and pγ = ∑p

j=1 γj.

4. PRIOR SETTING AND FULL CONDITIONALS

4.1 Prior Formulation and Choice of Hyperparameters

For the variable selection indicator, γ , we assume that its
elements γj are independent Bernoulli random variables,

p(γ ) =
p∏

j=1

ϕγj(1 − ϕ)1−γj . (4)

The number of covariates included in the model, pγ , thus
follows a binomial distribution, and ϕ can be elicited as the
proportion of variables expected a priori to discriminate the dif-
ferent groups, ϕ = pprior/p. This prior assumption can be re-
laxed by formulating a beta(a,b) hyperprior on ϕ, which leads
to a beta-binomial prior for pγ with expectation p a

a+b . A vague
prior can be elicited by setting a + b = 2, which leads to setting
a = 2pprior/p and b = 2 − a.

Natural priors for the number of components, G, are a trun-
cated Poisson,

P(G = g) = e−λλg/g!
1 − (e−λ(1 + λ) + ∑∞

j=Gmax+1 (e−λλ j)/j!) ,

g = 2, . . . ,Gmax, (5)

or a discrete uniform on [2, . . . ,Gmax], P(G = g) = 1
Gmax−1 ,

where Gmax is chosen arbitrarily large. For the vector of com-
ponent weights, w, we specify a symmetric Dirichlet prior,
w|G ∼ Dirichlet(α, . . . , α).

Updating the mean and covariance parameters is somewhat
intricate. When deleting or creating new components, the corre-
sponding appropriate changes must be made for the component
parameters. However, it is not clear whether adequate proposals
can be constructed for the reversible jump in the multivariate
setting. Even if this difficulty can be overcome, as γ gets up-
dated, the dimensions of µk(γ ), �k(γ ), η(γ c), and �(γ c) change,
requiring another sampler that moves between different dimen-
sional spaces. The algorithm is much more efficient if we can
integrate out these parameters. This also helps substantially ac-
celerate model fitting, because the set of parameters that need
to be updated would then consist only of (γ ,w,y,G). The inte-
gration can be facilitated by taking conjugate priors

µk(γ )

∣∣�k(γ ),G ∼ N
(
µ0(γ ),h1�k(γ )

)
,

η(γ c)

∣∣�(γ c) ∼ N
(
µ0(γ c),h0�(γ c)

)
,

(6)
�k(γ )|G ∼ IW

(
δ;Q1(γ )

)
,

�(γ c) ∼ IW
(
δ;Q0(γ c)

)
,

where IW(δ;Q1(γ )) indicates the inverse-Wishart distribution
with dimension pγ , shape parameter δ = n − pγ + 1, n degrees
of freedom, and mean Q1(γ )/(δ − 2) (Brown 1993). Weak prior
information is specified by taking δ small, which we set to 3, the
smallest integer such that the expectations of the covariance ma-
trices are defined. We take Q1 = 1/κ1Ip×p and Q0 = 1/κ0Ip×p.
Some care in the choice of κ1 and κ0 is needed. These hyperpa-
rameters need to be in the range of variability of the data. At the
same time, we do not want the prior information to overwhelm
the data and drive the inference. We experimented with differ-
ent values and found that values commensurate with the order
of magnitude of the eigenvalues of cov(X), where X is the full
data matrix, lead to reasonable results. We suggest setting κ1
between 1 and 10% of the upper decile of the n − 1 non-zero
eigenvalues and κ0 proportional to their lower decile.

For the mean parameters, we take the priors to be fairly flat
over the region where the data are defined. Each element of µ0
is set to the corresponding covariate interval midpoint, and
h0 and h1 are chosen arbitrarily large. This prevents the speci-
fication of priors that do not overlap with the likelihood and al-
lows for mixtures with widely different component means. We
found that values of h0 and h1 between 10 and 1,000 performed
reasonably well.

4.2 Full Conditionals

As we stated earlier, the parameters µ, �, η, and � are inte-
grated out, and we need to sample only from the joint posterior
of (G,y,γ ,w). We have

f (X,y|G,w,γ )

=
∫

f (X,y|γ ,G,w,µ,�,η,�)f (µ|G,γ ,�)f (�|G,γ )

× f (η|�,γ )f (�|γ )dµd� dη d�. (7)

For completeness, we provide the full conditionals under the
assumption of equal and unequal covariances across clusters.
However, in practice, unless there is prior knowledge that fa-
vors the former, we recommend working with heterogeneous
covariances. After some algebra (see the Appendix), we get the
following:

1. Under the assumption of homogeneous covariance,

f (X,y|G,w,γ )

= π−np/2K(γ ) · ∣∣Q1(γ )

∣∣(δ+pγ −1)/2

×
∣∣∣∣∣Q1(γ ) +

G∑

k=1

Sk(γ )

∣∣∣∣∣

−(n+δ+pγ −1)/2

× H(γ c) · ∣∣Q0(γ c)

∣∣(δ+p−pγ −1)/2

× ∣∣Q0(γ c) + S0(γ c)

∣∣−(n+δ+p−pγ −1)/2
, (8)

K(γ ) =
[

G∏

k=1

wnk
k (h1nk + 1)−pγ /2

]

×
pγ∏

j=1

�( 1
2 (n + δ + pγ − j))

�( 1
2 (δ + pγ − j))

,
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H(γ c) = (h0n + 1)−(p−pγ )/2

×
p−pγ∏

j=1

�( 1
2 (n + δ + p − pγ − j))

�( 1
2 (δ + p − pγ − j))

,

Sk(γ ) =
∑

xi(γ )∈Ck

(
xi(γ ) − x̄k(γ )

)(
xi(γ ) − x̄k(γ )

)T

+ nk

h1nk + 1

(
µ0(γ ) − x̄k(γ )

)(
µ0(γ ) − x̄k(γ )

)T
,

S0(γ c) =
n∑

i=1

(
xi(γ c) − x̄(γ c)

)(
xi(γ c) − x̄(γ c)

)T

+ n

h0n + 1

(
µ0(γ c) − x̄(γ c)

)(
µ0(γ c) − x̄(γ c)

)T
,

x̄k(γ ) is the sample mean of cluster k, and x̄(γ c) corre-
sponds to the sample means of the nondiscriminating vari-
ables. As h1 → ∞, Sk(γ ) reduces to the within-group sum
of squares for the kth cluster, and

∑G
k=1 Sk(γ ) becomes the

total within-group sum of squares.
2. Assuming heterogeneous covariances across clusters,

f (X,y|G,w,γ )

= π−np/2
G∏

k=1

{
Kk(γ ) · ∣∣Q1(γ )

∣∣(δ+pγ −1)/2

× ∣∣Q1(γ ) + Sk(γ )

∣∣−(nk+δ+pγ −1)/2}

× H(γ c) · ∣∣Q0(γ c)

∣∣(δ+p−pγ −1)/2

× ∣∣Q0(γ c) + S0(γ c)

∣∣−(n+δ+p−pγ −1)/2
, (9)

where Kk(γ ) = wnk
k (h1nk + 1)−pγ /2 ∏pγ

j=1
�( 1

2 (nk+δ+pγ −j))

�( 1
2 (δ+pγ −j))

.

The full conditionals for the model parameters are then given
by

f (y|G,w,γ ,X) ∝ f (X,y|G,w,γ ), (10)

f (γ |G,w,y,X) ∝ f (X,y|G,w,γ )p(γ |G), (11)

and

w|G,γ ,y,X ∼ Dirichlet(α + n1, . . . , α + nG). (12)

5. MODEL FITTING

Posterior samples for the parameters of interest are obtained
using Metropolis moves and RJMCMC embedded within a
Gibbs sampler. Our MCMC procedure comprises of the follow-
ing five steps:

1. Update γ from its full conditional in (11).
2. Update w from its full conditional in (12).
3. Update y from its full conditional in (10).
4. Split one mixture component into two, or merge two into

one.
5. Birth or death of an empty component.

The birth/death moves specifically deal with creating/dele-
ting empty components and do not involve reallocation of
the observations. We could have extended these to include

nonempty components and removed the split/merge moves.
However, as described by Richardson and Green (1997), in-
cluding both steps provides more efficient moves and improves
convergence.

We would like to point out that as we iterate through these
steps, the cluster structure evolves with the choice of variables.
This makes the problem of variable selection in the context of
clustering much more complicated than classification or regres-
sion analysis. In classification, the group structure of the ob-
servations is prespecified in the training data and guides the
selection. Here, however, the analysis is fully data-based. In
addition, in the context of clustering, including unnecessary
variables can have severe implications, because it may obscure
the true grouping of the observations.

5.1 Variable Selection Update

In step 1 we update γ using a Metropolis search, as suggested
for model selection by Madigan and York (1995) and applied in
regression by Brown et al. (1998a), among others, and recently
by Sha et al. (2004) in multinomial probit models for classifi-
cation. In this approach a new candidate, γ new, is generated by
randomly choosing one of the following two transition moves:

1. Add/delete: Randomly choose one of the p indices in γ old,
and change its value from 0 to 1, or from 1 to 0, to be-
come γ new.

2. Swap: Choose independently and at random a 0 and a 1
in γ old, and switch their values to get γ new.

The new candidate γ new is accepted with probability
min{1,

f (γ new|X,y,w,G)

f (γ old|X,y,w,G)
}.

5.2 Update of Weights and Cluster Allocation

In step 2 we use a Gibbs move to sample w from its full
conditional in (12). This can be done by drawing independent
gamma random variables with common scale and shape para-
meters α + n1, . . . , α + nG, then scaling them to sum to 1.

In step 3 we update the allocation vector y one element at
a time via a sub-Gibbs sampling strategy. The full conditional
probability that the ith observation is in the kth cluster is given
by

f
(
yi = k

∣∣X,y(−i),γ ,w,G
) ∝ f

(
X, yi = k,y(−i)

∣∣G,w,γ
)
, (13)

where y(−i) is the cluster assignment for all observations except
the ith one.

5.3 Reversible-Jump MCMC

The last two steps, split/merge and birth/death moves, cause
the creation or deletion of new components, and consequently
require a sampler that jumps between different dimensional
spaces. A popular method for defining such a sampler is RJM-
CMC (Green 1995; Richardson and Green 1997), which
extends the Metropolis–Hastings algorithm to general state
spaces. Suppose that a move type m from a countable family
of move types is proposed from ψ to a higher-dimensional
space ψ ′. This will very often be implemented by drawing
a vector of continuous random variables, u, independent of ψ ,
and setting ψ ′ to be a deterministic and invertible function of
ψ and u. The reverse of this move (from ψ ′ to ψ) can be ac-
complished by using the inverse transformation, so that in this
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direction the proposal is deterministic. The move is then ac-
cepted with probability

min

{
1,

f (ψ ′|X)rm(ψ ′)
f (ψ |X)rm(ψ)q(u)

∣∣∣∣
∂ψ ′

∂(ψ,u)

∣∣∣∣

}
, (14)

where rm(ψ) is the probability of choosing move type m when
in state ψ and q(u) is the density function of u. The final term
in the foregoing ratio is a Jacobian arising from the change of
variable from (ψ,u) to ψ ′.

5.3.1 Split and Merge Moves. In step 4 we make a random
choice between attempting to split a nonempty cluster or com-
bine two clusters, with probabilities bk = .5 and dk = 1 − bk

(k = 2, . . . ,Gmax − 1, and bGmax = 0).
The split move begins by randomly selecting a nonempty

cluster l and dividing it into two components, l1 and l2, with
weights wl1 = wlu and wl2 = wl(1 − u), where u is a beta(2,2)

random variable. The parameters ψ = (G,wold,γ ,yold) are up-
dated to ψ ′ = (G + 1,wnew,γ ,ynew). The acceptance probabil-
ity for this move is given by min(1,A), where

A = f (G + 1,wnew,γ ,ynew|X)

f (G,wold,γ ,yold|X)
× q(ψ |ψ ′)

q(ψ ′|ψ) × f (u)

×
∣∣∣∣
∂(wl1,wl2)

∂(wl,u)

∣∣∣∣

= f (X,ynew|wnew,γ ,G + 1) × f (wnew|G + 1) × f (G + 1)

f (X,yold|wold,γ ,G) × f (wold|G) × f (G)

× dG+1 × Pchos

bG × G−1
1 × Palloc × f (u)

× wl, (15)

f (wnew|G + 1)

f (wold|G)
= wα−1

l1 wα−1
l2

wα−1
l B(α,Gα)

and

f (G + 1)

f (G)
=

{
1 if G ∼ uniform [2, . . . ,Gmax]

λ
G+1 if G ∼ truncated Poisson (λ).

Here G1 is the number of nonempty components before the
split, and Palloc is the probability that the particular allocation is
made and is set to unl1(1 − u)nl2 , where nl1 and nl2 are the num-
ber of observations assigned to l1 and l2. Note that Richardson
and Green (1997) calculated Palloc using the full conditional of
the allocation variables, P( yi = k|rest). In our case, because the
component parameters µ and � are integrated out, the alloca-
tion variables are no longer independent, and calculating these
full conditionals is computationally prohibitive. The random al-
location approach that we took is substantially faster even with
the longer chains that need to be run to compensate for the
low acceptance rate of proposed moves. Pchos is the probability
of selecting two components for the reverse move. Obviously,
we want to combine clusters that are closest to one another.
However, choosing an optimal similarity metric in the multi-
variate setting is not straightforward. We define closeness in
terms of the Euclidean distance between cluster means and con-
sider three possible ways of splitting a cluster:

a. Split results into two mutually adjacent components,

⇒ Pchos = G∗
1

G∗ × 2
G∗

1
.

b. Split results into components that are not mutually ad-
jacent; that is, l1 has l2 as its closest component, but there is

another cluster that is closer to l2 than l1 ⇒ Pchos = G∗
1

G∗ × 1
G∗

1
.

c. One of the resulting components is empty, ⇒ Pchos =
G∗

0
G∗ × 1

G∗
0

× 1
G∗

1
.

Here G∗ is the total number of clusters after the split.
G∗

0 and G∗
1 are the number of empty and nonempty components

after the split. Thus splits that result in mutually close com-
ponents are assigned a larger probability, and those that yield
empty clusters have lower probability.

The merge move begins by randomly choosing two com-
ponents, l1 and l2, to be combined into a single cluster, l.
The updated parameters are ψ = (G,wold,γ ,yold) → ψ ′ =
(G − 1,wnew,γ ,ynew), where wl = wl1 + wl2. The acceptance
probability for this move is given by min(1,A), where

A = f (X,ynew|γ ,wnew,G − 1) × f (wnew|G − 1) × f (G − 1)

f (X,yold|γ ,wold,G) × f (wold|G) × f (G)

× bG−1 × Palloc × (G1 − 1)−1 × f (u)

dG × Pchos

× (wl1 + wl2)
−1, (16)

where f (wnew|G−1)
f (wold|G)

= wα−1
l B(α,(G−1)α)

wα−1
l1 wα−1

l2
and f (G−1)

f (G)
equals 1 or G

λ

for the Uniform and Poisson priors on G. G1 is the number
of nonempty clusters before the combining move, f (u) is the
beta(2,2) density for u = wl1

wl
, and Palloc and Pchos are defined

similarly to the split move, but now G∗
0 and G∗

1 in Pchos corre-
spond to the number of empty and nonempty clusters after the
merge.

5.3.2 Birth and Death Moves. We first make a random
choice between a birth move and a death move using the
same probabilities, bk and dk = 1 − bk, as earlier. For a birth
move, the updated parameters are ψ = (G,wold,γ ,y) → ψ ′ =
(G + 1,wnew,γ ,y). The weight for the proposed new compo-
nent is drawn using w∗ ∼ beta(1,G), and the existing weights
are rescaled to w′

k = wk(1−w∗), k = 1, . . . ,G (where k indexes
the component labels), so that all of the weights sum to 1. Let
G0 be the number of empty components before the birth. The
acceptance probability for a birth is min(1,A), where

A = f (X,y|wnew,γ ,G + 1) × f (wnew|G + 1) × f (G + 1)

f (X,y|wold,γ ,G) × f (wold|G) × f (G)

× dG+1 × (G0 + 1)−1

bG × f (w∗)
× (1 − w∗)G−1, (17)

f (wnew|G+1)
f (wold|G)

= w∗α−1(1−w∗)G(α−1)

B(α,Gα)
, and (1 − w∗)G−1 is the

Jacobian of the transformation (wold,w∗) → wnew.
For the death move, an empty component is chosen at

random and deleted. Let wl be the weight of the deleted com-
ponent. The remaining weights are rescaled to sum to 1 (w′

k =
wk/(1 − wl)) and ψ = (G,wold,γ ,y) → ψ ′ = (G − 1,wnew,

γ ,y). The acceptance probability for this move is min(1,A),
where

A = f (X,y|wnew,γ ,G − 1) × f (wnew|G − 1) × f (G − 1)

f (X,y|wold,γ ,G) × f (wold|G) × f (G)

× bG−1 × f (wl)

dG × G−1
0

× (1 − wl)
−(G−2), (18)
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f (wnew|G−1)
f (wold|G)

= B(α,(G−1)α)

wα−1
l (1−wl)

(G−1)(α−1)
, G0 is the number of empty

components before the death move, and f (wl) is the beta(1,G)

density.

6. POSTERIOR INFERENCE

We draw inference on the sample allocations conditional
on G. Thus we first need to compute an estimate for this para-
meter, which we take to be the value most frequently visited by
the MCMC sampler. In addition, we need to address the label-
switching problem.

6.1 Label Switching

In finite mixture models, an identifiability problem arises
from the invariance of the likelihood under permutation of the
component labels. In the Bayesian paradigm, this leads to sym-
metric and multimodal posterior distributions with up to G!
copies of each “genuine” mode, complicating inference on the
parameters. In particular, it is not possible to form ergodic av-
erages over the MCMC samples. Traditional approaches to this
problem impose identifiability constraints on the parameters,
for instance, w1 < · · · < wG. These constraints do not always
solve the problem, however. Recently, Stephens (2000b) pro-
posed a relabeling algorithm that takes a decision-theoretic ap-
proach. The procedure defines an appropriate loss function and
postprocesses the MCMC output to minimize the posterior ex-
pected loss.

Let P(ξ) = [pik(ξ)] be the matrix of allocation probabilities,

pik(ξ) = Pr( yi = k|X,γ ,w, θ)

= wk f (xi(γ )|θk(γ ))∑
j wjf (xi(γ )|θ j(γ ))

. (19)

In the context of clustering, the loss function can be defined on
the cluster labels y,

L0(y; ξ) = −
n∑

i=1

log{piyi(ξ )}. (20)

Let ξ (1), . . . , ξ (M) be the sampled parameters and let ν1, . . . , νM

be the permutations applied to them. The parameters ξ (t) corre-
spond to the component parameters w(t), µ(t), and �(t) sampled
at iteration t. However, in our methodology, the component
mean and covariance parameters are integrated out, and we
do not draw their posterior samples. Therefore, to calculate
the matrix of allocation probabilities in (19), we estimate
these parameters and set ξ̃ (t) = {w(t)

1 , . . . ,w(t)
G , x̄(t)

1(γ )
, . . . , x̄(t)

G(γ )
,

S(t)
1(γ )

, . . . ,S(t)
G(γ )

}, where x̄(t)
k(γ )

and S(t)
k(γ )

are the estimates of
cluster k’s mean and covariance based on the model visited at
iteration t.

The relabeling algorithm proceeds by selecting initial values
for the νt’s, which we take to be the identity permutation, then
iterating the following steps until a fixed point is reached:

a. Choose ŷ to minimize
∑M

t=1 L0{ŷ;νt(ξ̃
(t))}.

b. For t = 1, . . . ,M, choose νt to minimize L0{ŷ;νt(ξ̃
(t))}.

6.2 Posterior Densities and Posterior Estimates

Once the label switching is taken care of, the MCMC samples
can be used to draw posterior inference. Of particular interest
are the allocation vector, y, and the variable selection vector, γ .

We compute the marginal posterior probability that sample i
is allocated to cluster k, yi = k, as

p( yi = k|X,G) =
∫

p
(
yi = k,y(−i),γ ,w

∣∣X,G
)

dy(−i) dγ dw

∝
∫

p
(
X, yi = k,y(−i),γ ,w

∣∣G
)

dy(−i) dγ dw

=
∫

p
(
X, yi = k,y(−i)

∣∣G,γ ,w
)

× p(γ |G)p(w|G)dy(−i) dγ dw

≈
M∑

t=1

p
(
X, y(t)

i = k,y(t)
(−i)

∣∣G,γ (t),w(t))

× p
(
γ (t)

∣∣G
)
p
(
w(t)

∣∣G
)
, (21)

where y(t)
(−i) is the vector y(t) at the tth MCMC iteration without

the ith element. The posterior allocation of sample i can then be
estimated by the mode of its marginal posterior density,

ŷi = arg max
1≤k≤G

{p( yi = k|X,G)}. (22)

Similarly, the marginal posterior for γj = 1 can be com-
puted as

p(γj = 1|X,G) =
∫

p
(
γj = 1,γ (−j),w,y|X,G

)
dγ (−j) dy dw

∝
∫

p
(
X,y, γj = 1,γ (−j),w

∣∣G
)

dγ (−j) dy dw

=
∫

p
(
X,y

∣∣G, γj = 1,γ (−j),w
)

× p(γ |G)p(w|G)dγ (−j) dy dw

≈
M∑

t=1

p
(
X,y(t)

∣∣G, γ
(t)
j = 1,γ

(t)
(−j),w(t))

× p
(
γj = 1,γ

(t)
(−j)

∣∣G
)
p
(
w(t)

∣∣G
)
, (23)

where γ
(t)
(−j) is the vector γ (t) at the tth iteration without the

jth element. The best discriminating variables can then be
identified as those with largest marginal posterior, p(γj = 1|
X,G) > a, where a is chosen arbitrarily,

γ̂j = I{p(γj=1|X,G)>a}. (24)

An alternative variable selection can be performed by con-
sidering the vector γ with largest posterior probability among
all visited vectors,

γ̂ ∗ = arg max
1≤t≤M

{
p
(
γ (t)

∣∣X,G, ŵ, ŷ
)}

, (25)

where ŷ is the vector of sample allocations estimated via (22)
and ŵ is given by ŵ = 1

M

∑M
t=1 w(t). The estimate given in (25)

considers the joint density of γ rather than the marginal distri-
butions of the individual elements as (24). In the same spirit, an
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estimate of the joint allocation of the samples can be obtained
as the configuration that yields the largest posterior probability,

ŷ∗ = arg max
1≤t≤M

{
p
(
y(t)

∣∣X,G, ŵ, γ̂
)}

, (26)

where γ̂ is the estimate in (24).

6.3 Class Prediction

The MCMC output can also be used to predict the class mem-
bership of future observations, Xf . The predictive density is
given by

p( yf = k|Xf ,X,G)

=
∫

p( yf = k,y,w,γ |Xf ,X,G)dy dγ dw

∝
∫

p(Xf ,X, yf = k,y|G,w,γ )p(γ |G)p(w|G)dy dγ dw

≈
M∑

t=1

p
(
Xf ,X, yf = k,y(t)

∣∣γ (t),w(t),G
)

× p
(
γ (t)

∣∣G
)
p
(
w(t)

∣∣G
)
, (27)

and the observations are allocated according to ŷf ,

ŷf = arg max
1≤k≤G

{p( yf = k|Xf ,X,G)}. (28)

7. PERFORMANCE OF OUR METHODOLOGY

In this section we investigate the performance of our method-
ology using three datasets. Because the Bayesian cluster-
ing problem with an unknown number of components via
RJMCMC has been considered only in the univariate setting
(Richardson and Green 1997), we first examine the efficiency of
our algorithm in the multivariate setting without variable selec-
tion. For this, we use the benchmark iris data (Anderson 1935).
We then explore the performance of our methodology for simul-
taneous clustering and variable selection using a series of sim-
ulated high-dimensional datasets. We also analyze these data

using the COSA algorithm of Friedman and Meulman (2003).
Finally, we illustrate an application with DNA microarray data
from an endometrial cancer study.

7.1 Iris Data

This dataset consists of four covariates—petal width, petal
height, sepal width, and sepal height—measured on 50 flow-
ers from each of three species, Iris setosa, Iris versicolor, and
Iris virginica. This dataset has been analyzed by several authors
(see, e.g., Murtagh and Hernández-Pajares 1995) and can be ac-
cessed in S–PLUS as a three-dimensional array.

We rescaled each variable by its range and specified the prior
distributions as described in Section 4.1. We took δ = 3, α = 1,
and h1 = 100. We set Gmax = 10 and κ1 = .03, a value com-
mensurate with the variability in the data. We considered differ-
ent prior distributions for G: truncated Poisson with λ = 5 and
λ = 10, and a discrete uniform on [1, . . . ,Gmax]. We conducted
the analysis assuming both homogeneous and heterogeneous
covariances across clusters. In all cases, we used a burn-in
of 10,000 and a main run of 40,000 iterations for inference.

Let us first focus on the results using a truncated Pois-
son(λ = 5) prior for G. Figure 1 displays the trace plots for
the number of visited components under the assumption of het-
erogeneous and homogeneous covariances. Table 1, column 1,
gives the corresponding posterior probabilities, p(G = k|X).
Table 2 shows the posterior estimates for sample allocations, ŷ,
computed conditional on the most probable G, according
to (22). Under the assumption of heterogeneous covariances
across clusters, there is a strong support for G = 3. Two of
the clusters successfully isolate all of the setosa and virginica
plants, and the third cluster contains all of the versicolor ex-
cept for five identified as virginica. These results are satisfac-
tory, because the versicolor and virginica species are known
to have some overlap, whereas the setosa is rather well sepa-
rated. Under the assumption of constant covariance, there is a
strong support for four clusters. Again, one cluster contains ex-
clusively all of the setosa, and all of the versicolor are grouped

(a) (b)

Figure 1. Iris Data: Trace Plots of the Number of Clusters, G. (a) Heterogeneous covariance; (b) homogeneous covariance.
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Table 1. Iris Data: Posterior Distribution of G

Poisson(λ = 5) Poisson(λ = 10) Uniform[1, . . . , 10]

k Different �k Equal � Different Σk Equal Σ Different Σk Equal Σ

3 .6466 0 .5019 0 .8548 0
4 .3124 .7413 .4291 .4384 .1417 .6504
5 .0403 .3124 .0545 .2335 .0035 .3446
6 .0007 .0418 .0138 .2786 0 .0050
7 0 0 .0007 .0484 0 0
8 0 0 0 .0011 0 0

together except for one. Two virginica flowers are assigned to
the versicolor group, and the remaining are divided into two
new components. Figure 2 shows the marginal posterior prob-
abilities, p( yi = k|X,G = 4), computed using equation (21).
We note that some of the flowers among the 12 virginica al-
located to cluster IV had a close call; for instance, observa-
tion 104 had marginal posteriors p( y104 = 3|X,G) = .4169 and
p( y104 = 4|X,G) = .5823.

We examined the sensitivity of the results to the choice
of the prior distribution on G and found them to be quite
robust. The posterior probabilities p(G = k|X), assuming
G ∼ Poisson(λ = 10) and G ∼ uniform[1, . . . ,Gmax], are given
in Table 1. Under both priors, we obtained sample allocations
that are identical to those in Table 2. We also found little
sensitivity to the choice of the hyperparameter h1, with val-
ues between 10 and 1,000 giving satisfactory results. Smaller
values of h1 tended to favor slightly more components, but with
some clusters containing very few observations. For example,
for h1 = 10, under the assumption of equal covariance across
clusters, Table 3 shows that the MCMC sampler gives stronger
support for G = 6. However, one of the clusters contains only
one observation and another contains only four observations.
Figure 3 displays the marginal posterior probabilities for the
allocation of these five samples, p( yi = k|X,G); there is little
support for assigning them to separate clusters.

We use this example to also illustrate the label-switching
phenomenon, described in Section 6.1. Figure 4 gives the trace
plots of the component weights under the assumption of homo-
geneous covariance, before and after processing of the MCMC
samples. We can easily identify two label-switching instances
in the raw output of Figure 4(a). One of these occurred be-
tween the first and third components near iteration 1,000; the
other occurred around iteration 2,400 between components 2,
3, and 4. Figure 4(b) shows the trace plots after postprocessing
of the MCMC output. We note that the label switching is elim-
inated, and the multimodality in the estimates of the marginal
posterior distributions of wk is removed. It is now straightfor-
ward to obtain sensible estimates using the posterior means.

Table 2. Iris Data: Sample Allocation, ŷ

Heterogeneous
covariance

Homogeneous
covariance

I II III I II III IV

Iris setosa 50 0 0 50 0 0 0
Iris versicolor 0 45 5 0 49 1 0
Iris virginica 0 0 50 0 2 36 12

Figure 2. Iris Data: Poisson(λ = 5) With Equal Σ -Marginal Posterior
Probabilities of Sample Allocations, p(yi = k|X , G = 4), i = 1, . . . , 150,
k = 1, . . . , 4.

7.2 Simulated Data

We generated a dataset of 15 observations arising from four
multivariate normal densities with 20 variables such that

xij ∼ I{1≤i≤4}N (µ1, σ
2
1 ) + I{5≤i≤7}N (µ2, σ

2
2 )

+ I{8≤i≤13}N (µ3, σ
2
3 ) + I{14≤i≤15}N (µ4, σ

2
4 ),

i = 1, . . . ,15, j = 1, . . . ,20,

where I{·} is the indicator function equal to 1 if the condition
is met. Thus the first four samples arise from the same dis-
tribution, the next three come from the second group, the fol-
lowing six are from the third group, and the last two are from
the fourth group. The component means were set to µ1 = 5,
µ2 = 2, µ3 = −3, and µ4 = −6, and the component variances
were set to σ 2

1 = 1.5, σ 2
2 = .1, σ 2

3 = .5, and σ 2
4 = 2. We drew an

additional set of (p−20) noisy variables that do not distinguish
between the clusters from a standard normal density. We con-
sidered several values of p, p = 50,100,500, 1,000. These data
thus contain a small subset of discriminating variables together
with a large set of nonclustering variables. The purpose is to
study the ability of our method to uncover the cluster structure
and identify the relevant covariates in the presence of increasing
number of noisy variables.

We permuted the columns of the data matrix, X, to dis-
perse the predictors. For each dataset, we took δ = 3, α = 1,

Table 3. Iris Data. Sensitivity to Hyperparameter h: Results With h = 10

Posterior distribution of G

k 4 5 6 7 8 9 10

p(G = k |X) .0747 .1874 .3326 .2685 .1120 .0233 .0015

Sample allocations, ŷ
I II III IV V VI

Iris setosa 50 0 0 0 0 0
Iris versicolor 0 45 1 0 4 0
Iris virginica 0 2 35 12 0 1
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Figure 3. Iris Data. Sensitivity to h1: Results for h1 = 10–Marginal
Posterior Probabilities for Samples Allocated to Clusters V and VI,
p(yi = k|X , G = 6), i = 1, . . . , 5, k = 1, . . . , 6.

h1 = h0 = 100, and Gmax = n and assumed unequal covari-
ances across clusters. Results from the previous example have
shown little sensitivity to the choice of prior on G. Here we
considered a truncated Poisson prior with λ = 5. As described
in Section 4.1, some care is needed when choosing κ1 and κ0;
their values need to be commensurate with the variability of the
data. The amount of total variability in the different simulated
datasets is, of course, widely different, and in each case these
hyperparameters were chosen proportionally to the upper and
lower decile of the non-zero eigenvalues. For the prior of γ ,
we chose a Bernoulli distribution and set the expected num-
ber of included variables to 10. We used a starting model with
one randomly selected variable and ran the MCMC chains for
100,000 iterations, with 40,000 sweeps as burn-in.

Here we do inference on both the sample allocations and
the variable selection. We obtained satisfactory results for all

datasets. In all cases, we successfully recovered the cluster
structure used to simulate the data and identified the 20 dis-
criminating variables. We present the summary plots associated
with the largest dataset where p = 1,000. Figure 5(a) shows the
trace plot for the number of visited components, G, and Table 4
reports the marginal posterior probabilities, p(G|X). There is a
strong support for G = 4 and 5, with a slightly larger probability
for the former. Figure 6 shows the marginal posterior probabili-
ties of the sample allocations, p( yi = k|X,G = 4). We note that
these match the group structure used to simulate the data. As
for selection of the predictors, Figure 5(b) displays the num-
ber of variables selected at each MCMC iteration. In the first
30,000 iterations before burn-in, the chain visited models with
around 30–35 variables. After about 40,000 iterations, the chain
stabilized to models with 15–20 covariates. Figure 7 displays
the marginal posterior probabilities p(γj = 1|X,G = 4). There
were 17 variables with marginal probabilities greater than .9, all
of which were in the set of 20 covariates simulated to effectively
discriminate the four clusters. If we lower the threshold for in-
clusion to .4, then all 20 variables are selected. Conditional on
the allocations obtained via (22), the γ vector with largest pos-
terior probability (25) among all visited models contained 19 of
the 20 discriminating variables.

We also analyzed these datasets using the COSA algorithm of
Friedman and Meulman (2003). As we mentioned in Section 2,
this procedure performs variable selection in conjunction with
hierarchical clustering. We present the results for the analy-
sis of the simulated data with p = 1,000. Figure 8 shows the
dendrogram of the clustering results based on the non-targeted
COSA distance. We considered single, average, and complete
linkage, but none of these methods was able to recover the true
cluster structure. The average linkage dendrogram [Fig. 8(b)]
delineates one of the clusters that was partially recovered (the
true cluster contains observations 8–13). Figure 8(d) displays
the 20 highest relevance values of the variables that lead to this
clustering. The variables that define the true cluster structure are
indexed as 1–20, and we note that 16 of them appear in this plot.

(a) (b)

Figure 4. Iris Data: Trace Plots of Component Weights Before and After Removal of the Label Switching. (a) Raw output; (b) processed output.
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(a) (b)

Figure 5. Trace Plots for Simulated Data With p = 1,000. (a) Number of clusters, G; (b) number of included variables, pγ .

Table 4. Simulated Data With p = 1,000:
Posterior Distribution of G

k p(G = k|X )

2 .0111
3 .1447
4 .3437
5 .3375
6 .1326
7 .0216
8 .0040
9 .0015

10 .0008
11 .0005
12 .0007
13 .0012
14 .0002

Figure 6. Simulated Data With p = 1,000: Marginal Posterior Prob-
abilities of Sample Allocations, p(yi = k|X , G = 4), i = 1, . . . , 15,
k = 1, . . . , 4.

7.3 Application to Microarray Data

We now illustrate the methodology on microarray data
from an endometrial cancer study. Endometrioid endometrial
adenocarcinoma is a common gynecologic malignancy aris-
ing within the uterine lining. The disease usually occurs in
postmenopausal women and is associated with the hormonal
risk factor of protracted estrogen exposure unopposed by
progestins. Despite its prevalence, the molecular mechanisms
of its genesis are not completely known. DNA microarrays,
with their ability to examine thousands of genes simultaneously,
could be an efficient tool to isolate relevant genes and cluster
tissues into different subtypes. This is especially important in
cancer treatment, where different clinicopathologic groups are
known to vary in their response to therapy, and genes identified
to discriminate among the different subtypes may represent tar-
gets for therapeutic intervention and biomarkers for improved
diagnosis.

Figure 7. Simulated Data With p = 1,000: Marginal Posterior Proba-
bilities for Inclusion of Variables, p(γj = 1|X , G = 4).
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(a) (b)

(c) (d)

Figure 8. Analysis of Simulated Data With p = 1,000 Using COSA. (a) Single linkage; (b) average linkage; (c) complete linkage; (d) relevance
for delineated cluster.

Four normal endometrium samples and 10 endometrioid
endometrial adenocarcinomas were collected from hysterec-
tomy specimens. RNA samples were isolated from the 14 tis-
sues and reverse-transcribed. The resulting cDNA targets were
prepared following the manufacturer’s instructions and hy-
bridized to Affymetrix Hu6800 GeneChip arrays, which con-
tain 7,070 probe sets. The scanned images were processed with
the Affymetrix software, version 3.1. The average difference
derived by the software was used to indicate a transcript abun-
dance, and a global normalization procedure was applied. The
technology does not reliably quantify low expression levels, and
it is subject to spot saturation at the high end. For this particu-
lar array, the limits of reliable detection were previously set to
20 and 16,000 (Tadesse, Ibrahim, and Mutter 2003). We used
these same thresholds and removed probe sets with at least one
unreliable reading from the analysis. This left us with p = 762
variables. We then log-transformed the expression readings to
satisfy the assumption of normality, as suggested by the Box–
Cox transformation. We also rescaled each variable by its range.

As described in Section 4.1, we specified the priors with the
hyperparameters δ = 3, α = 1, and h1 = h0 = 100. We set
κ1 = .001 and κ0 = .01 and assumed unequal covariances
across clusters. We used a truncated Poisson(λ = 5) prior for G,

with Gmax = n. We took a Bernoulli prior for γ , with an expec-
tation of 10 variables to be included in the model.

To avoid possible dependence of the results on the initial
model, we ran four MCMC chains with widely different starting
points: (1) γj set to 0 for all j’s except one randomly selected;
(2) γj set to 1 for 10 randomly selected j’s; (3) γj set to 1 for
25 randomly selected j’s; and (4) γj set to 1 for 50 randomly
selected j’s. For each of the MCMC chains, we ran 100,000 it-
erations, with 40,000 sweeps taken as a burn-in.

We looked at both the allocation of tissues and the selec-
tion of genes whose expression best discriminate among the
different groups. The MCMC sampler mixed steadily over
the iterations. As shown in the histogram of Figure 9(a), the
sampler visited mostly between two and five components, with
a stronger support for G = 3 clusters. Figure 9(b) shows the
trace plot for the number of included variables for one of
the chains, which visited mostly models with 25–35 variables.
The other chains behaved similarly. Figure 10 gives the mar-
ginal posterior probabilities, p(γj = 1|X,G = 3), for each of
the chains. Despite the very different starting points, the four
chains visited similar regions and exhibit broadly similar mar-
ginal plots. To assess the concordance of the results across the
four chains, we looked at the correlation coefficients between
the frequencies for inclusion of genes. These are reported in
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(a) (b)

Figure 9. MCMC Output for Endometrial Data. (a) Number of visited clusters, G; (b) number of included variables, pγ .

Figure 11, along with the corresponding pairwise scatterplots.
We see that there is very good agreement across the different
MCMC runs. The marginal probabilities, on the other hand, are
not as concordant across the chains, because their derivation
makes use of model posterior probabilities [see (23)], which are
affected by the inclusion of correlated variables. This is a prob-
lem inherent to DNA microarray data, where multiple genes
with similar expression profiles are often observed.

We pooled and relabeled the output of the four chains, nor-
malized the relative posterior probabilities, and recomputed
p(γj = 1|X,G = 3). These marginal probabilities are displayed
in Figure 12. There are 31 genes with posterior probability
greater than .5. We also estimated the marginal posterior proba-
bilities for the sample allocations, p( yi = k|X,G), based on the
31 selected genes. These are shown in Figure 13. We success-
fully identified the four normal tissues. The results also seem to
suggest that there are possibly two subtypes within the malig-
nant tissues.

Figure 10. Endometrial Data. Marginal posterior probabilities for in-
clusion of variables, p(γj = 1|X , G = 3), for each of the four chains.

We also present the results from analyzing this dataset with
the COSA algorithm. Figure 14 shows the resulting single
linkage and average linkage dendrograms, along with the top
30 variables that distinguish the normal and tumor tissues.
There is some overlap between the genes selected by COSA and
those identified by our procedure. Among the sets of 30 “best”
discriminating genes selected by the two methods, 10 are com-
mon to both.

8. DISCUSSION

We have proposed a method for simultaneously clustering
high-dimensional data with an unknown number of components
and selecting the variables that best discriminate the different
groups. We successfully applied the methodology to various
datasets. Our method is fully Bayesian, and we provided stan-
dard default recommendations for the choice of priors.

Here we mention some possible extensions and directions
for future research. We have drawn posterior inference con-
ditional on a fixed number of components. A more attractive

Figure 11. Endometrial Data. Concordance of results among the four
chains: Pairwise scatterplots of frequencies for inclusion of genes.
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Figure 12. Endometrial Data. Union of four chains: Marginal posterior
probabilities p(γj = 1|X , G = 3).

approach would incorporate the uncertainty on this parame-
ter and combine the results for all different values of G vis-
ited by the MCMC sampler. To our knowledge, this is an open

Figure 13. Endometrial Data. Union of four chains: Marginal poste-
rior probabilities of sample allocations, p(yi = k|X , G = 3), i = 1, . . . , 14,
k = 1, . . . , 3.

problem that requires further research. One promising approach
involves considering the posterior probability of pairs of ob-

(a) (b)

(c) (d)

Figure 14. Analysis of Endometrial Data Using COSA. (a) Single linkage; (b) average linkage; (c) variables leading to cluster 1; (d) variables
leading to cluster 2.
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servations being allocated to the same cluster regardless of the
number of visited components. As long as there is no interest
in estimating the component parameters, the problem of label
switching would not be a concern. But this leads to

(n
2

)
proba-

bilities, and it is not clear how to best summarize them. For ex-
ample, Medvedovic and Sivaganesan (2002) used hierarchical
clustering based on these pairwise probabilities as a similarity
measure.

An interesting future avenue would be to investigate the per-
formance of our method when covariance constraints are im-
posed, as was proposed by Banfield and Raftery (1993). Their
parameterization allows one to incorporate different assump-
tions on the volume, orientation, and shape of the clusters.

Another possible extension is to use empirical Bayes esti-
mates to elicit the hyperparameters. For example, conditional
on a fixed number of clusters, a complete log-likelihood can
be computed using all covariates and a Monte Carlo EM ap-
proach developed for estimation. Alternatively, if prior infor-
mation were available or subjective priors were preferable, then
the prior setting could be modified accordingly. If interactions
among predictors were of interest, then additional interaction
terms could be included in the model, and the prior on γ could
be modified to accommodate the additional terms.

APPENDIX: FULL CONDITIONALS

Here we give details on the derivation of the marginalized full con-
ditionals under the assumption of equal and unequal covariances across
clusters.

Homogeneous Covariance: �1 = · · · = �G = �

f (X,y|G,w,γ )
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