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Summary. When a number of distinct models contend for use in prediction, the choice of a
single model can offer rather unstable predictions. In regression, stochastic search variable se-
lection with Bayesian model averaging offers a cure for this robustness issue but at the expense
of requiring very many predictors. Here we look at Bayes model averaging incorporating variable
selection for prediction. This offers similar mean-square errors of prediction but with a vastly
reduced predictor space. This can greatly aid the interpretation of the model. It also reduces
the cost if measured variables have costs. The development here uses decision theory in the
context of the multivariate general linear model. In passing, this reduced predictor space Bayes
model averaging is contrasted with single-model approximations. A fast algorithm for updating
regressions in the Markov chain Monte Carlo searches for posterior inference is developed,
allowing many more variables than observations to be contemplated. We discuss the merits
of absolute rather than proportionate shrinkage in regression, especially when there are more
variables than observations. The methodology is illustrated on a set of spectroscopic data used
for measuring the amounts of different sugars in an aqueous solution.

Keywords: Bayesian model averaging; Decision theory; Multivariate general linear model;
QR-updating; Ridge regression; Variable selection

1. Introduction

Bayesian mixture models have received considerable attention in recent years. Optimal predic-
tions under squared error loss take the form of a Bayes model average; see Dempster (1973),
Draper (1995) and Hoeting et al. (1999). We focus here on stochastic selection models for multi-
variate linear regression with univariate multiple regression as a special case. Best single-model
variable selection is inherently unstable (see Breiman (1996)) and Bayesian model averaging
provides a robust prediction remedy. Bayes model average predictions for the regression model
have been given by Brown et al. (1998a), in the spirit of the univariate Bayes selection of Mitch-
ell and Beauchamp (1988) and George and McCulloch (1997). Our formulation allowed fast
computation even in the case of very many regressor variables, perhaps of the order of several
hundred. It also addressed the situation when the number of observations is much less than the
number of regressors.
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Fig. 1. Decision tree for variable selection for prediction: , decisions; �, random choices

One aspect of the Bayes model average prediction is that, whereas component models may
involve just a few regressor variables, model averages typical involve an order of magnitude
more variables. This may still be the case even when the set of models used in the averaging
is restricted as in Occam’s window (Madigan and Raftery, 1994). This may not be seen as a
drawback, but it will be viewed as such if variables have costs of measurement or we are looking
for interpretability of the mixture model a posteriori. Cost considerations were paramount in
the decision theory approach of Brown et al. (1999). However, although Brown et al. (1999)
broke new ground in the form of non-conjugate prior used it did not use a mixture model, rather
favouring a single ‘overmodel’ as in Dawid (1988). This paper in contrast will address the choice
of variables for prediction in the mixture model setting of Brown et al. (1998a). We shall later,
in passing, discuss the alternative strategy of choosing a single model to approximate the Bayes
model average, also resulting in reduced numbers of variables for prediction.

Selection is usually achieved either by decision theory with losses on the inclusion of vari-
ables or by a prior distribution for coefficients having spikes at zero. Our current approach is a
hybrid of these two: adopting the spike prior but in addition implicitly penalizing the inclusion
of variables, or rather promoting simple models.

The main work follows the paradigm of Lindley (1968), extending it in various directions, in
particular to the multivariate linear regression mixture model.

We consider prediction in multivariate regression when both X of the training data and X in
future are random and independent and identically distributed given parameters µ and Ω. We
shall explicitly consider continuous X having a multivariate normal distribution. In the general
formulation we shall have q responses Y . The decision tree in Fig. 1 consists of a series of round
random and square decision nodes starting at the left with a round node generating Xl and Yl,
the n×p and n×q matrices of the learning (superscript l) data; then a square node choosing the
subset identified by a p-vector of 0s and 1s denoted m, with pm 1s. Then a future (superscript f)
Xf

.m/ .1 × pm/ is generated randomly, where suffix .m/ denotes selection of those elements with
mi = 1; followed by a choice of the predictor of Y f denoted Ŷ f

m. Then Y f is randomly generated
with the consequent pay-off U.Y f ; Ŷ f

m/, where we shall look at a quadratic weighted loss. This
is the direction of time. For decision analysis we fold back the tree from right to left, backwards
in time, taking averages at random nodes and optimizing at decision nodes.

The paper is organized as follows: in Section 2 we set out the general multivariate linear
model, the mixture prior distributions and the resulting posterior distributions. Finally this sec-
tion develops the predictive distributions that are necessary for the following decision theoretic
choices. Section 3.1 introduces a new fast algorithm based on data augmentation and adding
and deleting variables.

Section 4.1 develops the decision theory approach to optimum prediction using a subset of
regressors. We then contrast this with a method of generating a single model that approximates
the Bayes model average. Section 5 presents a spectroscopic application. There follows a com-
mentary in Section 6 on the general issue of proportional or absolute shrinkage. This critique
is broader than the context of variable selection and offers a critical overview of g-priors and
associated proportional (Stein) shrinkage. The paper concludes with a general discussion of the
results achieved.
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This paper shares with Brown et al. (1998a) a multivariate regression model incorporating
a normal mixture prior on the regression matrix. In addition it requires the assumption of
multivariate normal explanatory variables. In return it justifies a drastically reduced set of pre-
dictor variables. In analysing the training data, before contemplating prediction, our new fast
algorithm for Markov chain Monte Carlo (MCMC) sampling can cope with very large num-
bers of explanatory variables. Our application involves 700 explanatory variables, which is far
in excess of the number that is usually contemplated for this type of mixture model.

2. Bayesian analysis

2.1. The model and prior distribution
Our model for Y given X is a standard multivariate regression as in Brown et al. (1998a). Let
the p-vector γ be the vector of 0s and 1s that defines the mixture model of Brown et al. (1998a),
i.e. γ defines the prior structure of the regression coefficients. It represents the unknown ‘true’
model whereas the binary p × 1 vector m denotes the variables selected. Let Yl be the n × q

response data in the learning set and Xl be the corresponding n×p set of explanatory variables.
The matrix B is the p × q matrix of regression coefficients fixed by the scales adopted for the
X-variables. The q × 1 vector α gives intercepts for the q responses. Using the matrix variate
notation of Dawid (1981), given Σ and γ, letting 1n denote an n × 1 vector of 1s and denoting
transposes by primes throughout, we have

Yl − 1nα
′ − XlB ∼ N .In;Σ/; .1/

α′ − α′
0 ∼ N .h;Σ/; .2/

B − B0 ∼ N .Hγ;Σ/; .3/

with the marginal distribution of Σ as

Σ ∼ IW.δ; Q/: .4/

In this notation both arguments of N .·; ·/ are covariances, the first referring to rows and the
second to columns, as described for example in Brown et al. (1999). The notation has the ad-
vantage of preserving the matrix structure instead of reshaping the matrix as a vector. It also
makes formal Bayesian manipulations much easier.

We take B0 = 0 a prior matrix of 0s, and h → ∞ in distribution (2), a vague prior on the
intercept vector so that mean centring of Xl produces a posterior mean for α of Ȳ

l (Smith, 1973).
A selection prior will have diagonal elements of Hγ of 0 corresponding to γi = 0; so that such
coefficients are 0 with probability 1. Berger (1988) has noted that such priors act as proxies for
regression coefficients β that are small in magnitude, i.e. |β| < " for suitably small ": For such
a selection prior B is such that each column has a singular p-variate distribution, and given γ
the pγ variables with γi = 1 can be selected out from distribution (3) to give

B.γ/ ∼ N .H.γ/;Σ/

where .γ/ indicates selection by γi = 1. The prior distribution on γ is taken to be of a Bernoulli
form,

π.γ/ = ηpγ .1 − η/p−pγ : .5/

Here typically η is prespecified, although a further less stringent beta prior distribution on η
was used in Brown et al. (1998b). If a small value of η is specified then smaller models will be
preferred a priori.
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2.2. Posterior distributions
The posterior mean of B.γ/ conditional on γ is

B̃γ = WγB̂γ : .6/

The result follows from standard normal theory calculations; see for example appendix B of
Brown (1993). In equation (6), the pγ × pγ matrix Wγ is given as

Wγ = .H−1
.γ/ + Xl′

.γ/X
l
.γ//

−1Xl′
.γ/X

l
.γ/;

and the pγ × q matrix B̂γ is the least squares estimate from the selected γ-model:

B̂γ = .Xl′
.γ/X

l
.γ//

−1Xl′
.γ/Y

l:

Also the posterior distribution of γ is as equation (20) of Brown et al. (1998a). Rewritten in a
data augmentation format, this becomes

π.γ|Yl′ ; Xl/ ∝ g.γ/ = .|X̃l′
.γ/X̃

l

.γ/|/−q=2|Qγ |−.n+δ+q−1/=2 π.γ/; .7/

where

X̃
l

.γ/ =
(

Xl
.γ/H

1=2
.γ/

Ipγ

)
;

Ỹ =
(

Yl

0

)

are .n + pγ/ × pγ and .n + pγ/ × q matrices respectively and

Qγ = Q + Ỹ
′
Ỹ − Ỹ

′
X̃

l

.γ/.X̃
l′
.γ/X̃

l

.γ//
−1X̃

l′
.γ/Ỹ ; .8/

an updating of Q by the residual sum of products matrix from the least squares regression of
Ỹ on X̃.γ/: This form also lends itself to fast updating using the QR-decomposition where Q

is orthogonal and R upper triangular and adding and subtracting columns of the augmented
X-matrix, avoiding ‘squaring’ quantities, simply back-solving a set of triangular equations;
see for example Seber (1984). A new fast form of this applicable to diagonal forms of prior
covariance structure Hγ is described in Section 3.1.

2.3. Predictive distributions
In predicting a single future response vector Y f .1 × q/ we assume the model analogous to
model (1),

Y f − α′ − Xf B ∼ N .1;Σ/;

where Xf is 1×p. Here, since it is assumed that Xl has been mean centred, then the same centring
(by X̄l) must be applied to Xf . Independently, we assume that, given a p×p covariance matrix Ω,
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Xl − 1nµ
′ ∼ N .In;Ω/;

Xf − µ′ ∼ N .1;Ω/;

µ′ − µ′
0 ∼ N .hx;Ω/;

and marginally

Ω ∼ IW.ν; P/;

where typically hx is allowed to tend to ∞, equivalent to mean correction of Xl: Also perhaps
P = kxIp will be an adequate choice with ν small (e.g. ν = 3/ so that the prior distribution of
Ω is quite vague. The necessary manipulations for the conditional distribution of Xf given Xl

may be obtained as in the development of Brown and Mäkeläinen (1992) by stacking Xf .1×p/

above Xl .n × p/, obtaining the matrix variate Student distribution of this, and then using the
form of the conditional distribution of Xf given Xl, namely with hx → ∞ given Xl,

Xf ∼ T {ν + n; 1 + 1=n; P + .Xl/′Xl}: .9/

The matrix T uses the notation of Dawid (1981) alluded to in Section 2.1. Hence we may obtain
the marginal distribution of Xf

.m/ and the conditional distribution of Xf
.m̃/ given Xf

.m/ where .m̃/

denotes the selection of variables with mi = 0. In particular,

Xf
.m/ ∼ T .ν + n; 1 + 1=n; Vmm/; .10/

Xf
.m̃/|Xf

.m/ ∼ Xf
.m/V

−1
mmVmm̃ + T .ν + n + pm; a; Vm̃m̃:m/: .11/

Here

Vmm = Xl′
.m/X

l
.m/ + P.m/.m/;

Vm̃m̃ = Xl′
.m̃/X

l
.m̃/ + P.m̃/.m̃/;

Vm̃m = Xl′
.m̃/X

l
.m/ + P.m̃/.m/;

Vm̃m̃:m = Vm̃m̃ − Vm̃mV −1
mmVmm̃; .12/

a = 1 + 1=n + Xf
.m/V

−1
mmXf ′

.m/; .13/

where Vmm̃ = V ′
m̃m. The linear regressions of the multivariate normal distribution are used to

impute X-variables corresponding to omitted variables in the development of Section 4.1. We
first consider aspects of stochastic simulation for the computation of expression (7).

3. Markov chain Monte Carlo sampling

The posterior for γ is directly computable through expression (7). However, the right-hand side
of expression (7) must be computed for all 2p values of the latent vector γ: This becomes pro-
hibitive even for modern computers and fast updating when p is much greater than around 20.
Sequences of models which differ successively in only one variable (Gray codes) can be used to
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speed up computations substantially but will still only allow up to around p = 25 variables. Our
applications have generally involved much larger numbers of variables; see Section 5. In such
circumstances it is possible to use MCMC sampling to explore the posterior distribution. One
can quite quickly identify useful variables which have high marginal probabilities of γj = 1: It is
also possible to find promising γ-vectors even though one has explored a very small fraction of
the space of 2p possibilities. In our example we would not claim to have achieved convergence,
even though marginal distributions from very disparate starting-points look similar. We do,
however, find some models that predict very well. In the context of the spectroscopic applica-
tion there is a considerable degree of local wavelength interchangeability, so similar but different
models may have the same predictive value.

To sample γ from distribution (7) we used a Metropolis algorithm that was suggested for
model selection by Madigan and York (1995) and applied to variable selection for regression by
Brown et al. (1998b), George and McCulloch (1997) and Raftery et al. (1997). We generate a
candidate new selection vector γÅ from the current γ by one of two possible moves: either, with
probability φ; add or delete a variable chosen at random or, with probability 1 − φ; swap two
variables by choosing independently at random a 0 and a 1 in γ and changing both of them.
The new candidate model coded as γÅ is accepted with probability

min
{

g.γÅ/

g.γ/
; 1

}
; .14/

with g.γ/ given by expression (7). There is considerable flexibility in how we design the sequence
of random moves. Within the scheme above the φ-parameter needs to be chosen. We chose
φ = 1

2 , but it might be desirable to have more additions or deletions through a higher value of
φ: Furthermore we could have chosen moves that added or subtracted or swapped two or three
or more at a time, or a combination of these, or to focus also on adjacent swaps as in Sha et al.
(2002).

As usual we seek the stationary distribution of the Markov chain. The standard procedure
is that after a suitable burn-in period the realizations are monitored to see that they appear
stationary. For our work we have adopted a strategy of running the chain from four different
starting-points and looking at the four marginal distributions provided by the computed g.γ/

values of the visited γ. Because we know the relative probabilities we do not need to worry about
creating a burn-in period: early low probability visited γ will not make any sizable contributions
and we do not need to rely on equal sampling rates for visited models as, for example, in the
MC3 algorithm of Madigan and York (1995).

3.1. Fast forms of updating
The posterior distribution of γ was given in expression (7) in terms of an augmented least
squares regression. The QR-decomposition of .X̃l

.γ/; Ỹ l/ is given, for example, by Seber
(1984), chapter 10, section 1.1b, and avoids squaring as in expressions (7) and (8). Updating
qrdelete and qrinsert algorithms are then available within many computing environ-
ments, removing or adding a column. These require the number of rows to be fixed for an
efficient implementation. This has meant that our original algorithm described in Brown et al.
(1998a) required the setting up of an original .n + p/ × pγ matrix, formed by taking all the
original regressors and augmenting by Ip the p×p identity matrix. In our earlier applications p

has been as high as 350 and p = 700 in our later example, so the X-matrix would have 700 extra
rows. In applications that we are now contemplating with deoxyribonucleic acid microarrays
and expression data on genes the number of regressors may be as high as p = 7000; see for
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example West et al. (2000). Clearly this approach is impractical and involves many unnecessary
computations especially as generally the models being searched will involve only a small subset
of the regressors, perhaps 20 or 30, and the vast majority of the rows will be zero and will not
contribute to the estimation. The key insight is that all that is required of the augmenting matrix
is that there is at most a single 1 in a row. This means that we can set a modest maximum di-
mension which can be dynamically altered if it becomes necessary. Suppose that this maximum
dimension is denoted as pÅ; it might for example be 20, although it would be wise initially to
set it much higher for higher starting values. Suppose that our initial model involves pγ < pÅ

variables. This fast form of the algorithm works when Hγ is diagonal. We have the following
steps in outline.

Step 1: initialization—augment Y with pÅ × q 0s. Set up IRESERVE as the pÅ × pÅ identity
matrix. Take the pγ chosen X-variables in the form of an n × pγ matrix. Augment with any
pγ columns taken from IRESERVE to create an .n + pÅ/ × pγ augmented X-matrix, leaving
pÅ − pγ columns in IRESERVE. Perform a QR-decomposition.
Step 2: decide whether to delete, or insert or swap (achieved by a delete operation followed
by an insertion or vice versa).
Step 3: if we insert then take the new n × 1 X-column and augment with a column taken
from IRESERVE. Use qrinsert as in MATLAB or its equivalent in other computing
environments based on LINPACK.
Step 4: if we delete, note the identity of the variable chosen, use qrdelete to remove it and
return its pÅ × 1 augmenting vector to IRESERVE.
Step 5: repeat the last three steps. If at any time the process wishes to include more than
pÅ variables, then pÅ will need to be reset to a larger value and reinitialized at step 1 with a
QR-decomposition. Conversely if pγ is substantially less than pÅ then the latter should be
reduced.

This algorithm is available in MATLAB at http://stat.tamu.edu/˜mvannucci/
webpages/codes.html.

4. Choice of subset

4.1. Folding back the decision tree
The decision theory approach involves working backwards to the first decision node encoun-
tered. In the right-hand square node in Fig. 1 we need to choose the optimum Bayes predictor
given an earlier optimum chosen subset m. We chooseŶ

f
m to minimize

E{.Y f − Ŷ f
m/L.Y f − Ŷ f

m/′|Xl; Y l; Xf
.m/; m}; .15/

where E is an expectation over Y f and L is a q × q matrix of constants determining the weights
of the various responses in the loss. Often we would take L to be diagonal, or equivalently L = I

after a suitable scaling.
Returning to expression (15), by adding and subtracting E.Y f |Xl; Y l; Xf

.m/; m/ from Y f and
squaring out we see that the loss is minimized by

Ŷ
f
m = E.Y f |Xl; Y l; Xf

.m/; m/

= EXf |Xf
.m/;X

l;Y l;m{E.Y f |Xl; Y l; Xf ; m/}
= E.Ȳ l + Xf B̃Γ|Xl; Y l; Xf

.m/; m/;
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with B̃Γ .p×q/ formed by filling out with 0s the pγ ×q posterior mean B̃γ of B for given γ given
by equation (6). The last expectation is over both Xf and γ denoted as the random variable Γ.

Thus

Ŷ
f
m = Ȳ l + E.Xf |Xl; Xf

.m/; m/ E.B̃Γ|Xl; Y l/; .16/

since Xf and γ are a priori and a posteriori independent given Xl and Yl and where the second
expectation is over the posterior distribution of γ.

In what follows we shall temporarily suppress the conditioning on the training data, so that
throughout conditioning is on Xl and Yl as well as the selection m. Now Ŷ

f
m from equation

(16) can be computed by using expression (11) for E.Xf |Xf
.m// and E.B̃Γ/ approximated by

averaging over the normalized posterior probabilities of visited γ: Now returning to loss (15)
with Ŷ

f
m given by equation (16), going back in time to the next node in the decision tree in

Fig. 1, we need to average over Xf
m: We require

E.ZLZ′|Xl; Y l; m/; .17/

where

Z = Y f − E.Xf |Xf
.m// E.B̃Γ/

= Y f − Xf B + Xf B − E.Xf |Xf
.m// E.B̃Γ/: .18/

Squaring out expectation (17) using the pairs of terms in equation (18) we obtain the expected
loss as

E{.Y f − Xf B/L.Y f − Xf B/′} + E.ULU ′/ .19/

with U = Xf B−E.Xf |Xf
.m// E.B̃Γ/, the expectation of the cross-product being 0. The first term

of expression (19) is just E{tr.LΣ/}. The second term can be expanded and squared again as
three terms:

U = {Xf − E.Xf /}{B − E.B̃γ/} + E.Xf /{B − E.B̃Γ/} + {Xf − E.Xf |Xf
.m//} E.B̃Γ/:

Just the three squared terms remain since the cross-products have expectation 0. It is only the
last of these squared terms that involves m; the choice of variables, so for selecting m we may
ignore the other terms and evaluate this. Using the fact that the trace of a scalar is scalar this
may be seen to be

tr.E[{Xf − E.Xf |Xf
.m//}′{Xf − E.Xf |Xf

.m//}] E.B̃Γ/ L{E.B̃Γ/}′/: .20/

The first term is the conditional covariance of Xf given Xf
.m/ which from expression (11) is equal

to

aVm̃m̃:m=.ν + n + pm − 2/; .21/

with a a quadratic form in Xf
.m/ given by equation (13) and V = P + Xl′Xl from expression (9).

Averaged over Xf
.m/ using expression (10), since

E.Xf ′
.m/X

f
.m// =

(
1 + 1

n

)
Vmm

ν + n − 2
and hence
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E.a/ =
(

1 + 1
n

) {
1 + tr.Im/

ν + n − 2

}
;

then the required average of expression (21) equals dVm̃m̃:m, where the scalar d is given as

d = 1 + 1=n

ν + n − 2
:

This is independent of m and may be ignored. Thus the first term of expression (20) is seen to
be 0 for variables that are not chosen by m and to be otherwise proportional to Vm̃m̃:m given by
expression (12). The criterion for the choice of subset becomes choose that m which minimizes
(with all conditioning reinstated)

tr{E.B̃m̃Γ|Xl; Y l/′[Vm̃m̃ − Vm̃mV −1
mmVmm̃] E.B̃m̃Γ|Xl; Y l/L}; .22/

where the suffix m̃ in B̃m̃Γ extracts those coefficients corresponding to variables not selected,
giving a .p − pm/ × q matrix.

The form of expression (22) is fairly natural. The optimum is to use all variables. However, if
we have an implicit additional cost of including variables we may be willing to inflate expression
(22) slightly if it means including substantially fewer variables. The criterion consists of expect-
ed coefficients for omitted variables combined with Vm̃m̃:m in the square brackets, the residual
covariance matrix for the prediction of x-variables not included from those included. It says
that a subset m does not penalize if either

(a) the coefficients expected are near 0 for the variables omitted or
(b) the omitted variables are well predicted by the included variables although these omitted

variables have sizable coefficients.

For comparison purposes it may be desirable to standardize expression (22) by dividing by the
value that would result from no variables chosen, i.e. the same form but with V replacing Vm̃m̃:m

and B̃m̃Γ → B̃Γ.
It may be noted that criterion (22) has the same form under many other multivariate normal

model formulations, not just the mixture prior structure of expression (3) with equation (5).
Indeed models without any sort of stochastic selection (e.g. ridge regression) could incorporate
variable selection for prediction through a form analogous to expression (22).

4.2. Computation
One way of choosing the subset is to start with all variables included or some fairly natural
maximal set of variables. This could just be all variables involved in models visited or all those
variables that appear with probability at least some small amount, obtained from the marginal
distribution of visited models. The algorithm would work as follows: reduce the variables, per-
haps by backward elimination, successively plotting expression (22) for the minimizing subset
for each size of variable subset until the plot starts to increase substantially. This ‘elbow’ gives
the ‘optimum’ subset. Of course if we have explicit costs on variables then a strict optimum
can be obtained, balancing an increase in expression (22) against the cost of variables, perhaps
linear in the number of variables. Some judgment will need to be made about what constitutes
an unacceptable increase in criterion (22). We have avoided explicit costs of variables as used by
Lindley and subsequently in Brown et al. (1999).

Once an optimum m has been obtained then any prediction involving Xf
.m/ is made by using
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equation (16). This involves two expectations. The first expectation is obtained by computing
Xf

.m̃/|Xf
.m/; Xl; m by using expression (11) and with Xf = .Xf

.m̃/; Xf
.m// so that included variables

are retained, interlaced between the imputed excluded variables.
The second expectation is the model average estimated coefficients given the learning data.

The term E.B̃Γ|Xl; Y l/ can be computed for once and all. It can be approximated by the average
over the visited models from the MCMC search. We need to be cautious about such averages
when prior distributions are vague, for then Bayes factors become arbitrary. This does not strict-
ly arise with our proper priors, but see Fernández et al. (2001). For a given selection vector γ the
Bayes estimate of the coefficient matrix as given by equation (6) can be written in alternative
forms that are convenient for computation, either

.I + H.γ/X
l′
.γ/X

l
.γ//

−1H.γ/X
l′
.γ/Y

l
.γ/

or the symmetric forms of augmentation suggested in section 8 of Brown et al. (1998a) and
facilitating the use of a QR-decomposition with insertions and deletions, but with the over-
head of greatly increased dimensions. For diagonal H this overhead is reduced by the new fast
algorithm in Section 3.1.

4.3. Single-model approximations
Our approach as developed above has been to retain model averaging but to consider a reduced
set of regressors for prediction. An alternative would be to approximate the Bayes model average
E.B̃Γ|Xl; Y l/ by means of a single model. We explore this approach briefly in this section for
comparison with our main approach. The single model will in itself tend to use fewer variables
than the model averaging. The natural metric stemming from expression (22) is to seek a model
m which minimizes

tr{.E.B̃Γ/ − Bm/′V.E.B̃Γ/ − Bm/L}: .23/

Here V replaces the conditional variance since we are not intending to choose fewer variables for
prediction except incidentally through single-model selection. For an alternative formulation
where the loss is on the logarithmic scale see San Martini and Spezzaferri (1984). We make the
following observations if Xl′Xl and Hγ are diagonal.

(a) The least squares and Bayes estimates for any row of B do not change with γ, given only
that the row corresponds to a γ = 1 row.

(b) The Bayes model average for the ith row is then a weighted average of the zero vector
and the Bayes estimator for the variable included with weights the marginal posterior
probabilities of γi = 0 and γi = 1 respectively. To minimize expression (23) then choose
to include the variable if and only if the marginal posterior probability of γi = 1 is at
least 1

2 .

This has been called the median model rule by Barbieri and Berger (2002), who derived it by
geometric arguments. The orthogonal X-setting is rather artificial for our purposes, although
it would be relevant for the selection of derived variables such as principal components; see
Clyde et al. (1996) and Clyde and George (2000), who exploited orthogonality further and also
considered scale-mixed long-tailed distributions.

When orthogonality of both the prior and x-variables cannot be assumed then both least
squares and Bayes coefficients for the ith row of B depend on which other variables are included
and no explicit rule is possible. However, we can search through models to minimize expression
(23). In Section 5.2 we see how suboptimal the median model is in our general non-orthogonal
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setting by searching through a sequence of marginal models constructed from thresholding at
levels less than the median cut-off of 1

2 .

5. The application

The sugars data consisted of three sugars each at five levels in aqueous solution making 125
observations in a full 53-factorial. Each of these was presented to a near infra-red spectrometer,
and the second difference absorbance spectra were recorded from 1100 to 2498 nm at 2 nm
intervals. The data set is described in Brown (1993). Predictive ability was judged on a separate
validation data set of 21 observations. The data can be attained from

http://www.blackwellpublishers.co.uk/rss/

5.1. Hyperparameter settings
Our philosophy here is to rely on variable selection to provide the regularization, and conse-
quently to ‘make do’ with very weak prior assumptions in terms of hyperparameter settings.
The sugars data have previously been analysed in Brown et al. (1998a). Here for the first time we
utilize the full 700-variable spectrum, which is now feasible with our new algorithm of Section
3.1.

The regularization of the X′X matrix for imputation did not enter previous work. We take
ν = 3 the smallest integer value such that the prior mean exists. This means that the specification
of the scale matrix P is not too critical. We assumed P = kxIp to regularize X′X and chose a
small value for kx: The size of kx is judged relative to the non-zero eigenvalues of X′X: There are
g = min.n − 1; p/ of these non-zero eigenvalues with probability 1. We ordered the eigenvalues
from largest, λ.1/, to smallest, λ.g/, and took the lower decile of these, i.e. kx = λ.[0:9g]/, where
[·] indicates the integer part. The other hyperparameters are Hγ from the prior assumption
on the coefficients conditional on γ in equation (3) and δ and Q from the prior for the error
covariance specified by distribution (4). We also take δ = 3, with the same argument as for ν
above, and Q = keIq: The coefficient prior scale matrix is such that H.γ/ = c[I.γ/] rather than
the diagonalized g-prior in Brown et al. (1998a). For a further general discussion of the form
of H see Section 6. We take ke = 0:01 after response standardization, corresponding to a prior
expectation of 99% variation explained. Because of the low prior degrees of freedom the value
of ke is unlikely to be critical. Also c was chosen by marginal maximum likelihood inflated by
700/20 where 20 is the prior expected number of included variables out of the full 700. This
empirical Bayes estimate of c is derived in Brown et al. (2001).

5.2. Results
We ran four Metropolis chains of 100000 iterations each. Initial numbers of variables were

(a) 350,
(b) 100,
(c) 50 and
(d) 10

variables selected in wavelength order (from 1100 nm). These were regarded as sufficiently dis-
parate and different from the prior expectation of 20 variables to explore very different regions
of space initially, in line with the philosophy of Gelman and Rubin (1992). The probability of
moves by either adding, or deleting or swapping was φ = 1

2 . Graphs of marginal probabilities
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Fig. 2. Normalized marginal probabilities of the components of γ for four starting values of (a) 350, (b) 100,
(c) 50 and (d) 10 variables randomly selected
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Fig. 3. Renormalized marginal probabilities of the components of γ: results for four runs pooled

for the wavelengths of visited models for the four runs are given in Fig. 2 and show reasonable
consistency. The pooled plot is shown in Fig. 3.

The top 500 visited models in the pooled four runs had 164 distinct variables and accounted
for 99.8% of the total visited probability. Starting with these 164 variables we applied crite-
rion (22) with L = I3 (and no scaling) to the learning data to select a subset of variables,
eliminating variables one at a time, each time removing the variable which did least to in-
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Fig. 4. Elbow plot of selection loss (22) against number of variables for the first 20 retained

crease the criterion. Plotted in Fig. 4 an elbow suggests around six variables; this choice results
in mean-square errors (MSEs) using predictor (16) of .0:43; 0:11; 0:32/ for the three sugars
(sucrose, glucose and fructose), compared with the unrestricted approximate Bayes model aver-
age MSE of .0:23; 0:39; 0:27/; so there was very little penalty for restricting to six variables; in
fact there is an improvement for glucose. The six variables from the 700 in total were (2078 nm,
2114 nm, 2252 nm, 2272 nm, 2298 nm, 2316 nm) from the range 1100–2498 nm in steps of 2 nm.
The highest probability model among those visited by the MCMC algorithm had a comparable
prediction MSE of .0:30; 0:52; 0:19/ but used 12 variables.

Finally, in Section 4.3 we promised to illustrate the approximation to the Bayes model
average by using a single model. The ‘median’ model chose just five variables and had a much
worse MSE on validation of (0.53, 1.25, 0.19). The plot of the loss given by expression (23)
plotted for 143 models ordered by the threshold from 0.5 to 0.001 in steps of 0.00005 is given in
Fig. 5. The best model in that plot had a comparable MSE on validation of (0.35, 0.10, 0.35) but
used 12 variables. The best model according to the criterion found by searching through models
ordered by posterior probability had a comparable MSE on validation of (0.31, 0.20, 0.10) but
used 21 variables. Plots are given of the logarithm of criterion (23) in Fig. 6. Although there
may be questions about whether the original chain had converged, the relative probabilities of
models are exact irrespective of convergence.

It might be wondered whether a separate prediction for each of the three sugars would offer
greater savings. The univariate regression approach was applied to these data in Brown (1992)
both for the full 700 wavelengths and for subsets chosen by the method of Brown et al. (1991).
These do not show an improvement on the multivariate Bayes approach here.

5.3. Interpretation
One advantage of reducing the number of variables in the prediction equation is that it
increases the scope for interpretation. The wavelength range, roughly 2050–2350 nm, in which
our six selected variables lie is one where the three sugars show spectral differences. Some of
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Fig. 5. Plot of log-weighted-loss from expression (23) against marginal models ordered by the level of the
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Fig. 6. Plot of log-weighted-loss from expression (23) against visited models ordered by probability for the
sugars data

these wavelengths, or ones very close to them, have arisen before in similar investigations. For
example, Lanza and Li (1984) identified 2256, 2270 and 2314 nm (among others) as useful for
the measurement of these sugars in model mixtures and in fruit juices, and Osborne et al. (1993)
assigned a peak at 2080 nm to a bond vibration associated with sucrose, as well as reporting
that 2073 nm has been used for sucrose measurements.
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Fig. 7. Decomposition of criterion (22) showing for each wavelength the square root of the conditional vari-
ance given the six chosen variables (——) and the square root of the sum of squares of the three Bayes
model average coefficients (j): �, selected wavelength

It is possible to obtain some insight into why these six variables are chosen from the many
in the visited models by a further exploration of criterion (22). In Fig. 7 the full curve is a plot
of the square root of the diagonal elements of the conditional variance (in the square brackets
in expression (22)) given the selected six variables against the corresponding wavelengths. The
vertical lines show the size of the (full) Bayes model average coefficients at each wavelength,
the plotted quantity being the square root of the sum of squares of the three coefficients at
that wavelength. The six selected wavelengths are marked with a circle at the top of the line.
To improve the visual clarity, only the range 2050–2350 nm, which includes all the selected
wavelengths and all the visited ones of any importance, has been shown.

The relevance of the plot is that it is the square of the product of the two quantities shown at
each wavelength (the coefficient and conditional standard deviation) that contributes to crite-
rion (22). Of course the conditional variance matrix is far from diagonal, so this is only part of
the picture, but we can still obtain some insight from the plot.

It is apparent that what the variable selection is not doing is picking the largest coefficients.
Rather, it is choosing a spread of wavelengths in important regions. This ‘pins down’ the con-
ditional variance, which is 0 at an included wavelength and small in some neighbourhood of
it, over a whole region and enables the dropping of some other variables even though their
coefficients in the Bayes model average may have been sizable.

6. Scaling, invariance and proportional versus absolute shrinkage

We have applied a form of regularization, shrinking estimates towards 0. This shrinkage has
been achieved by the prior assumption of a subset model γ and by more continuous shrinkage
through the prior on B given γ; embodied in Hγ : Because our primary objective was to use
the former subset shrinkage we have generally chosen to avoid strong assumptions and have
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therefore opted in general in our examples for rather minimal continuous shrinkage. However,
several important issues are connected with Hγ , and we shall discuss them here.

Broadly two forms of continuous shrinkage are popularly adopted, which we choose to call
absolute and proportional. Proportional shrinkage has its roots in Stein minimax estimation; see
also Copas (1983) and Breiman and Friedman (1997), with Bayesian versions through g-priors
(Zellner, 1986). Absolute shrinkage has roots in ridge regression (Hoerl and Kennard 1970a, b).
An earlier insightful exposition is given by Dempster (1973). Ridge forms of regression cannot
be minimax for estimation of the regression coefficients when the matrix X is ill conditioned; see
for example Brown and Zidek (1980). But this should not be viewed as a drawback especially
in the context of fewer observations than variables with its inevitable ill conditioning. Even in
the context of prediction rather than parameter estimation absolute ridge shrinkage became
beneficial in the development of Breiman and Friedman (1997) when p > n:

For simplicity consider univariate multiple regression .q = 1/, with B → β. When p > n the
x-variables lie in an .n − 1/-dimensional subspace of Euclidean p-space. To gain more insight
we use the singular value decomposition of Xl: with T and V orthonormal,

T ′XlV = diag.
√

λ1; : : :;
√

λs; 0; : : :; 0/;

with s = n − 1. Thus we may write U = T ′Yl and θ = V ′β so our univariate model for the part
that depends on θ reduces to

Ui = √
λiθi + "i; i = 1; : : :; s:

The prior for θ is such that θi are independent N.0; cσ2=λi/ for the g-prior but N.0; cσ2/ for
the ridge prior. For the g-prior the posterior distribution of θi has expectation {c=.c + 1/}θ̂LS

i

whereas the ridge expectation is {λi=.λi + c/}θ̂LS
i . Thus for any fixed c the ridge estimator

shrinks greatly in directions of small eigenvalues, whereas the proportional estimator retains
much more of the least squares estimator in ill-conditioned directions. The g-prior is suspect
from a fundamentalist Bayesian viewpoint also, since it depends on the data. This might be mit-
igated by the ancillarity of Xl, but to specify a weak prior on ill-conditioned directions where
prior information is important and a strong prior on those well-estimated directions where a
strong prior is not needed is perhaps perverse.

Even for prediction, especially when p > n; the proportional shrinkage does too little to
reduce the instability of small eigenvalues, the point being that

E{.Y f − Ŷ f /′.Y f − Ŷ f /} = E{.θ − θ̂/′VXf ′Xf V ′.θ − θ̂/}
and that Xf ′Xf will with probability 1 be different from Xl′Xl and training regressors and have
features outside the space spanned by Xl. It is the basis of minimax and invariance arguments
that the matrices Xl and Xf are the same, which they are not.

A further facet of this is the issue of scaling and autoscaling. The use of autoscaling has an
effect that is similar to the Bayesian use of a g-prior. Many of the modern technologies that
generate almost unlimited explanatory variates do so on a common scale of measurement. In the
case of infra-red spectroscopy the common scale is that of absorbance or reflectance at a range
of wavelengths. Autoscaling then blows up variates that vary little over the data and scales down
variates that vary greatly. The corresponding parameters are reduced or increased respectively,
since the product of the variable and coefficient is unchanged. The consequence is vulnerability
to blowing up noise; see for example the degradation in predictions of nitrate levels in waste
water that is shown in Karlsson et al. (1995) as also discussed by Sundberg (1999). This also
argues against our historic use of Hγ proportional to diag.[Xl′Xl]−/. It argues more for our
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use of a prior of the form Hγ.i; j/ = σ2ρ|i−j| in the wavelet regression application of Brown
et al. (2001). In this same application the empirical Bayes approach in the form of marginal
maximum likelihood was used to estimate the hyperparameters σ2 and ρ.

A final comment links model averaging to the ridge form of shrinkage. Leamer and
Chamberlain (1976) showed that the ridge form of shrinkage is equivalent to a weighted average
of all 2p subsets of models fitted by least squares. They also gave the explicit form of the weights.

7. Commentary

This subset selection procedure provides an attractive justifiable way of choosing those variables
that influence prediction while retaining the robustness of model average predictions. It has a
different motivation from that of Occam’s window that was advocated by Madigan and Raftery
(1994). It extends the notion of model averaging while restricting to a subset of variables, op-
timally chosen. In many substantive applications the reduction in the number of variables and
the identity of these chosen variables can offer highly interpretable insight into the informative
predictors.

We have also shown how this model average may be approximated by a single model and
illustrated this and other choices. The data set involved 700 explanatory variables on 125 ob-
servations. The fast form of updating algorithm that was developed should be able to cope
with many more variables than this, even the several thousand variables in many current gene
expression data sets. A further application to a spectroscopic analysis of biscuits data using
wavelets is presented in Vannucci et al. (2001).

Finally we have given a critique of standard proportionate shrinkage in favour of more ridge-
like regularization.

Many standard classic text-books in statistics would baulk at the excess of variables over
observations, but clearly good predictions can be achieved in such circumstances. Although it
is a truism that you are always better off with more information, how it is used is crucial.
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