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In this paper we present a novel wavelet-based Bayesian nonparametric regression model for the analysis of
functional magnetic resonance imaging (fMRI) data. Our goal is to provide a joint analytical framework that al-
lows to detect regions of the brain which exhibit neuronal activity in response to a stimulus and, simultaneously,
infer the association, or clustering, of spatially remote voxels that exhibit fMRI time serieswith similar character-
istics. We start by modeling the data with a hemodynamic response function (HRF) with a voxel-dependent
shape parameter.Wedetect regions of the brain activated in response to a given stimulus by usingmixture priors
with a spike at zero on the coefficients of the regression model. We account for the complex spatial correlation
structure of the brain by using a Markov random field (MRF) prior on the parameters guiding the selection of
the activated voxels, therefore capturing correlation among nearby voxels. In order to infer association of the
voxel time courses,we assume correlated errors, in particular longmemory, and exploit thewhitening properties
of discrete wavelet transforms. Furthermore, we achieve clustering of the voxels by imposing a Dirichlet process
(DP) prior on the parameters of the long memory process. For inference, we use Markov Chain Monte Carlo
(MCMC) sampling techniques that combine Metropolis–Hastings schemes employed in Bayesian variable selec-
tionwith sampling algorithms for nonparametric DPmodels.We explore the performance of the proposedmodel
on simulated data, with both block- and event-related design, and on real fMRI data.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Statistical methods play a crucial role in the analysis of fMRI data
(Lazar, 2008; Lindquist, 2008; Poldrack et al., 2011), due to their com-
plex spatial and temporal correlation structure. Common modeling ap-
proaches rely on general linear models formulations, as first proposed
by Friston et al. (1994). In this paper, we propose a novel wavelet-
based Bayesian nonparametric approach for modeling brain connectiv-
ity. More specifically, our goal is to provide a joint analytical framework
that allows us to detect regions of the brain which exhibit neuronal ac-
tivity in response to a stimulus and, simultaneously, infer the associa-
tion, or clustering, of spatially remote voxels that exhibit fMRI time
series with similar characteristics.

In fMRI experiments, neuronal activation in response to an input
stimulus occurs in milliseconds and it is not observed directly. Instead,
the blood oxygenation level dependent (BOLD) signal contrast is mea-
sured on the entire brain, since the metabolic process increases blood
flow and volume in the activated areas following neuronal activation.
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In the formulation we adopt, the stimulus pattern is convolved with
a Poisson hemodynamic response function (HRF), with a voxel-
dependent shape parameter that characterizes the delay between the
onset of the stimulus and the arrival of blood to the activated brain re-
gions. In addition, we assume correlated errors, in particular longmem-
ory, to take into account the time course structure of voxel responses,
and then exploit the whitening properties of discrete wavelet trans-
forms. Zarahn et al. (1997) and Aguirre et al. (1997) first suggested
modeling the noise in fMRI data using a 1/f process. Fadili and
Bullmore (2002) employed linear models assuming fractional
Brownian motion (fBm) as the error term and derived wavelet-based
approximate maximum likelihood estimates (MLE) of the model pa-
rameters. Meyer (2003) applied generalized linear models with drifts
and errors contaminated by long-range dependencies. Jeong et al.
(2013) employed a more general fractal structure for the error term
and proposed a wavelet-based Bayesian approach for the estimation
of the model parameters. When applied to data from a long memory
process, discrete wavelet transformations result in wavelet coefficients
that are approximately uncorrelated, leading to a relatively simple
model in the wavelet domain that aids statistical inference, see Tewfik
and Kim (1992), Craigmile and Percival (2005) and Ko and Vannucci
(2006), among others. Bullmore et al. (2004) provide a nice review of
wavelet-based methods for fMRI data.
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A novel feature of our model is that we allow clustering the time
course responses of distant brain regions via a Dirichlet process (DP)
prior. In the fMRI literature, Thirion et al. (2007) and Jbabdi et al.
(2009) have modeled fMRI profiles via an infinite mixture of multivari-
ate Gaussian distributions with a Dirichlet process prior to cluster
the model parameters, inducing a connectivity-based parcellation of
the brain. In our approach, the DP prior model induces a clustering of
the voxels that exhibit time series signals with similar variance and
long-memory behavior. The induced spatio-temporal clustering can be
viewed as an aspect of “functional” connectivity, as it naturally captures
statistical dependencies among remote neurophysiological events
(Friston, 1994, 2011). In addition, we detect activation in response to
a stimulus by usingmixture priorswith a spike at zero on the coefficients
of the regressionmodel characterizing the association between response
and stimulus. The selection of activated voxels takes into account the
complex spatial correlation structure of the brain through aMarkov ran-
dom field (MRF) prior, thus capturing correlation among nearby voxels.
For inference, we use Markov Chain Monte Carlo (MCMC) sampling
techniques that combine Metropolis–Hastings schemes employed in
Bayesian variable selection with sampling algorithms for nonparametric
DP models (Neal, 2000; Savitsky et al., 2011).

Bayesian spatiotemporal model approaches that incorporate spatial
correlation among brain responses have recently found successful appli-
cations in the analysis of fMRI data (Bowman et al., 2008; Flandin and
Penny, 2007; Gössl et al., 2001; Harrison and Green, 2010; Kalus et al.,
2013; Penny et al., 2005; Quirós et al., 2010; Smith and Fahrmeir,
2007; Woolrich et al., 2004). Gaussian Markov random field priors
were imposed by Penny et al. (2005) on the regression coefficients of
a general linear model, while Flandin and Penny (2007) used sparse
spatial basis functions and Harrison and Green (2010) a conditional
autoregressive (CAR) prior. Smith and Fahrmeir (2007) investigated spa-
tial Bayesian variable selection linear regression models with an Ising
prior for latent activation indicators, while Kalus et al. (2013) used a spa-
tial probit prior of the CAR type. Gössl et al. (2001) and Woolrich et al.
(2004) investigated spatio-temporal hierarchical Bayesian approaches
incorporating the estimation of the HRF. Quirós et al. (2010) also param-
eterized theHRFwith voxel-varying parameters and used GaussianMar-
kov randomfield priors on the activation characteristic parameters of the
voxels. All these authors assumed independent structures for the error
terms in their models, with the exception of Woolrich et al. (2004) and
Penny et al. (2005), who imposed an autoregressive structure.

With respect to existing Bayesian approaches for the analysis of fMRI
data, our modeling strategy combines several of the features of such
approaches into a single modeling framework. In the time dimension,
we allow for correlated errors and then employ wavelet transforms.
Furthermore, we describe patterns of similar neuronal dynamics via
the clustering of the voxel time courses induced by the DP. In addition,
we account for the estimation of a voxel dependent delay parameter of
the hemodynamic response function. In the spatial dimension, we cap-
ture dependence amongnearby voxels via theMRFprior. Our inferential
strategy results in the detection of activated regions of the brain and
clustering of similar time courses. We show performances of our pro-
posed model for both block and event-related design with simulated
data, and for block design with synthetic data. We also consider a case
study on a real fMRI experiment.

The rest of the paper is organized as follows.Model and prior distribu-
tions are presented in the Statistical methods section. Results obtained by
applying the proposedmodel to simulated data and real fMRI data are ex-
amined in the Results section. TheDiscussion section concludes the paper.

Statistical methods

Regression model with correlated errors

Functional magnetic resonance imaging (fMRI) is a common tool for
detecting changes in neuronal activity. It measures blood oxygenation
level-dependent (BOLD) contrast that depends on changes in regional
cerebral blood-flow. In an fMRI experiment, the whole brain is scanned
at multiple time points and a time series of BOLD response is acquired
for each voxel of the brain while the subject performs a set of tasks.
Let Yν = (Yν1, …, YνT)T be the Τ × 1 vector of the response data, with
Yνi the BOLD image intensity at time i = 1, …, T, for voxel ν, with ν =
1,…, V. We model the BOLD response for a single subject with a linear
regression model of the type

Yν ¼ Xνβν þ εν ; εν∼NT 0;Σνð Þ; ð1Þ

whereXν is a known T× p covariatematrix andβν=(βν1,…,βνp)T a p×1
vector of regression coefficients.Without loss of generality, we center the
data at 0, and hence no intercept is needed in the model. In the applica-
tions,we consider the case p=1, that is, only one regressor for one exper-
imental condition is included in the model. Single-subject scanning is
receiving renewed interest in the fMRI field, due to its use for presurgical
purposes. In addition, single-subject posterior maps can be used in meta
analyses for inter-subject investigations, similarly in spirit to other Bayes-
ian approaches to fMRI modeling (Bowman et al., 2008; Jbabdi et al.,
2009).

When measuring the change in the metabolism of BOLD contrast
due to outside stimuli, the fMRI signal gets delayed hemodynamically
(Buxton and Frank, 1997). The complete relationship between the neu-
ronal activity and the vascular response is not fully known yet. A widely
usedmodel, to account for the lapse of time between the stimulus onset
and vascular response, looks at an fMRI signal as the convolution of re-
gional cerebral blood-flow response to stimulus with a hemodynamic
response function. Here we model the covariate Xν as the convolution
of the stimulus pattern with a Poisson HRF, that is,

Xν ¼
Z t

0
x sð Þhλν

t−sð Þds; ð2Þ

where x(s) represents the time dependent stimulus and hλν
tð Þ ¼ exp

−λνð Þλt
ν=t! (Friston et al., 1994). The parameter λν can be interpreted

as the delay of the response with respect to the stimulus onset, and it is
modeled as anunknownvoxel-dependent parameter (Quirós et al., 2010).

The temporal dependence between observations for a given voxel is
taken into account by exploring the structure of the Σν's, i.e. the error
terms in model (1). These are typically assumed autocorrelated and
capture instrumental noise, such as head movement in the scanner.
More specifically, two types of autocorrelation structures for fMRI
signals have been typically assumed in the literature: first-order
autoregressive and 1/f long memory structures (Smith et al., 1999). As
estimation procedures for time series with autocorrelated residuals
are computationally expensive, discrete wavelet transforms have often
been used, as a tool to decorrelate fMRI data, see Fadili and Bullmore
(2002), Meyer (2003), Turkheimer et al. (2003), and, more recently,
Sanyal and Ferreira (2012) and Jeong et al. (2013). Let us write Σν as
Σν(i, j) = [γ(|i− j|)] with γ(h) the auto-covariance function of the pro-
cess generating the data. Here, we model εν as a long memory process,
characterized by an autocovariance function with a slow decay, i.e.

γ hð Þ∼Ch−α
; ð3Þ

with C N 0, 0 b α b 1 and h large.We then employ discretewavelet trans-
formations (DWT) as a tool to “whiten” the data and simplify the dense
covariance structure of the long memory process.

Wavelets are families of orthonormal basis functions that can be
used to represent a generic function f(x) as

f xð Þ ¼
X
m∈ℤ

X
n∈ℤ

dm;nψm;n xð Þ; dm;n ¼
Z ∞

−∞
f xð Þψm;n xð Þdx; ð4Þ

with dm,n coefficients describing features of the function f(x) at loca-
tions indexed by n and scales indexed by m. The wavelet basis
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functions ψm,n(x) are defined as dilations and translations of a
mother wavelet ψ(x) as

ψm;n xð Þ ¼ 2m=2ψ 2mx−n
� �

: ð5Þ

Wavelets have been successfully applied to the analysis of time se-
ries data. Discrete wavelet transforms (Mallat, 1989) can be used to re-
duce the data to a set of wavelet coefficients. Let y= (y1, y2, …, yT)T be
an observed time series, T = 2J with J a positive integer. The DWT of y
can be written as d = Wy, where W is an orthogonal T × T matrix
representing the wavelet transform. Furthermore, the covariance ma-
trix of the wavelet coefficients d can be calculated as Σd = WΣyW
with Σy(i, j) = [γ(|i − j|)] (Vannucci and Corradi, 1999).

After applying a DWT on both sides of model (1) we obtain the fol-
lowing model in the wavelet domain

Y�
ν ¼ X�

νβν þ ε�ν ; ε�ν∼NT 0;Σ�
ν

� �
; ð6Þ

where Yν
∗ =WYν, Xν∗ =WXν, and εν∗ =Wεν. As emphasized in the liter-

ature, wavelet coefficients tend to be less correlated than the original
data. For longmemory processes, in particular, such decorrelation prop-
erties are well documented (Craigmile and Percival, 2005; Ko and
Vannucci, 2006; Tewfik and Kim, 1992). In our model (6) we can there-
fore assume the covariance matrix Σν

∗ as a (T × T) diagonal matrix. We
also write its diagonal elements as ψνσmn

2 , indicating the variance of
the nth wavelet coefficient at the mth scale. We follow Jeong et al.
(2013) and adopt the variance progression formula for the covariance
structure of wavelet coefficients of Wornell and Oppenheim (1992),
that is,

ψνσ
2
mn ¼ ψν 2αν

� �−m
; ð7Þ

with ψν the innovation variance and αν ∈ (0, 1) the long memory pa-
rameter. This structure encompasses the general fractal process of
type (3), including long memory processes.

Priors

One of the goals of ourmodeling approach is to detect regions of the
brain that show activation to a given stimulus. In addition, we want to
cluster the individual voxel time series and thus describe the patterns
of association, or correlation, of neuronal activity in separate, possibly
remote, voxels in the brain (Friston, 1994). We achieve both tasks via
the choice of appropriate prior models.

The task of selecting activated voxels is equivalent to a problem of
variable selection, that is the identification of the nonzero βν in model
(6). Bayesian variable selection in linear regression models can be
achieved by employing mixture priors with a spike at zero on the re-
gression coefficients (Brown et al., 1998; George and McCulloch, 1993,
1997; Sha et al., 2004). A binary random variable γν is introduced
to identify whether a given voxel is activated or not, that is, γν = 0 if
βν = 0 and γν = 1 otherwise, and a mixture prior (commonly called
spike-and-slab prior) is imposed on the coefficients βν as

βν∼γνN 0; τð Þ þ 1−γνð Þδ0; ν ¼ 1;…;V ; ð8Þ

with δ0 a pointmass at zero and τ a relatively large variance term for the
non-null component. In the brain network, neighboring voxels tend to
be active or inactive together. Several authors have looked into Bayesian
spatiotemporal models that incorporate spatial correlation structure
into the priors (Flandin and Penny, 2007; Harrison and Green, 2010;
Kalus et al., 2013; Penny et al., 2005; Quirós et al., 2010; Smith and
Fahrmeir, 2007). In our model, we account for spatial correlation by
placing a Markov random field (MRF) prior on the selection parameter
γν of the mixture prior model. We follow Li and Zhang (2010) and
Stingo et al. (2011, 2012) and parameterize the conditional probability
of γν as

P γν jd; e;γk; k∈Nνð Þ∝ exp γν dþ e∑k∈Nν
γk

� �� �
ð9Þ

with Nν the set of neighboring voxels of voxel ν. According to the prior
(9), a voxel has a greater probability of being activated if more of the
neighboring voxels are activated. The parameter d∈ (−∞,∞) represents
the expected prior number of activated voxels and controls the sparsity
of themodel, whereas e N 0 affects the probability of identifying a voxel
as active according to the activation of its neighbors and therefore acts
as a smoothing parameter. Posterior inference may be very sensitive
to the choice of d and e; thus, some care is needed. Indeed, it is a general
experience that allowing e to vary widely can lead to a phase transition
problem, i.e. the expected number of variables equal to 1 can increase
massively for small increments of e. This problem arises since Eq. (9)
can only increase as a function of the number of γν's equal to 1. Thus,
phase transition may lead to a drastic change in the proportion of
detected activations, especially since the number of voxels is large. An
empirical estimate of the phase transition value can be obtained using
the algorithm proposed by Propp and Wilson (1996) and the values of
d and e can then be chosen accordingly. In this paper, we follow Li and
Zhang (2010) and Stingo et al. (2012), and treat d and e as fixed
hyperparameters. More specifically, we first note that if a voxel does not
have any neighbor, then its prior distribution reduces to an independent
Bernoulli, with parameter exp(d)/[1 + exp(d)], a prior often adopted in
the Bayesian variable selection literature. This constitutes a lower bound
on the prior probability of activation, and therefore, we set d to a small
value that reflects our belief in a sparse model. As for e, any value of e
below the phase transition point can be considered a good choice, with
values closer to the phase transition point leading to higher prior proba-
bilities of activations in a neighborhood of activated voxels.

We capture the association of neural activity over time by clustering
voxels that exhibit fMRI time series signals with similar characteristics.
More specifically, we impose a Dirichlet process (DP) prior on the pa-
rameters of the residual term of the model. The DP is a stochastic pro-
cess commonly used in Bayesian nonparametric models. Here we use
it as a tool to obtain simultaneous inference on the clusters of the
voxel time courses aswell as on the values of the parameters that define
the specific long term process in each such cluster. The formal definition
of a DP has been given in Ferguson (1973). Hjort et al. (2010) and
Rodriguez andMüller (2013) provide exhaustive discussion of its prop-
erties and applications. For our purposes, it suffices to look at the
Dirichlet process as a prior on a class of probability distributions. Let G
indicate such random probability measure on the space of distributions.
Then, we write G ∼ DP(η, G0) to indicate that the model depends on the
specification of two parameters, the base measure G0 and the total mass
parameter η. The basemeasure G0 is the priormean, E(G)=G0. Typically,
in Bayesiannonparametric inference, the unknownG is centered arounda
known parametric model. The total mass parameter determines, among
other important properties, the variation of the randommeasure around
the priormean. Small values of η imply high uncertainty. In the following,
we exploit a key property of the DP. Any realization G from a DP almost
surely defines a discrete distribution. Let θi |G ∼ G, i = 1,…, n be an i.i.d.
sample from a distribution G, where G ∼ DP(η, G0). Then, G can be al-
most surely written as a mixture of point masses G ¼ ∑∞

h¼1whδθ�h ,
with wh = Vh ∏ j = 1

h − 1 (1− Vj), Vj ∼ Beta(1, η), j = 1,…, h, and atoms
θh∗ ∼ G0, h = 1, …. The discreteness of the DP is best appreciated by
looking at the predictive distribution of θi conditional on all the other
values θ− i = {θj : j ≠ i}

θi j θ−i∼
ηG0 þ

X
j≠i

δθ j

V−1þ η
: ð10Þ
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Eq. (10) show that there is a positive probability of ties, that is the θi's
can assume a common value. Thus, the discreteness of the DP plays a
crucial role in its use for clustering purposes, since the θi's can form clus-
ters. The larger the frequency of data assigned to a cluster, thehigher the
probability that the cluster will grow. In this representation, the param-
eter η acts as aweight; the larger is η, the higher is the probability that θi
is sampled from the base measure G0 and does not coincide with any of
the other values, thus creatingmore clusters. In ourmodel, we impose a
DP prior on the parameters of the longmemory process (7), (ψν, αν), as

ψν ;ανð ÞjG∼G
Gjη;G0∼DP η;G0ð Þ

G0 ¼ IG a0; b0ð Þ � Beta a1; b1ð Þ
ð11Þ

where the basemeasureG0 is specified as the product of inverse gamma
(IG) and beta distributions. Escobar and West (1995) discuss prior dis-
tributions on η. In practice, the impact of such prior typically decreases
with V. Hence,whenV is large, η is oftenfixed so to favor a parsimonious
representation of the data or some other prior beliefs on their clustering
behavior.

Finally, we complete our prior model by considering a uniform dis-
tribution on the interval (u1, u2) as a prior distribution for the delay pa-
rameter λν in the hemodynamic function, as suggested by Quirós et al.
(2010),

λν∼U u1;u2ð Þ; ν ¼ 1;…;V : ð12Þ

A graphical representation of our full model is shown in Fig. 1.
1

2
a)
Posterior inference

The posterior distribution of all parameters of interest can be obtain-
ed by combining the prior information and the likelihood function via
the Bayes theorem. For inference, we use Markov Chain Monte Carlo
(MCMC) sampling techniques that sample the individual parameters
conditional upon the others. Our algorithm combines Metropolis–
Hastings schemes that use add–delete–swap moves, as employed in
Bayesian variable selection (Savitsky et al., 2011), with sampling algo-
rithms for nonparametric DP models (Neal, 2000). We give full details
of the full conditional distributions and our implementation of the
MCMC in the Appendix.
Fig. 1.Graphical representation of themodel. Each node in a circle refers to a parameter of
the model, nodes in squares are observables. The link between two nodes represents a
direct probabilistic dependence.
Results

Simulation from the model

In this section we use simulated data generated from our model to
investigate the performance of our strategy for posterior inference on
the model parameters. We look at both block and event-related exper-
imental designs and generate the data from model (6), that is directly
in the wavelet domain. In all simulations presented below we consid-
ered T = 256 images of 30 × 30 voxels.

In the block design two different conditions, activity and rest, are
alternating over time. For this, we generated a square wave signal as

x tð Þ ¼ 1; kP b t b kPþ P
2
; k ¼ 0;1;2;…

0; otherwise

(
ð13Þ

with P the period of the signal, which we fixed at P = 16. In the event-
related design the stimulus consisted of short discrete events whose
timing and order were randomized. We set the number of stimuli to
20 and the duration of each event to 10. We obtained the covariate Xν
in model (1) by convolving the stimulus pattern with a Poisson hemo-
dynamic function with delay parameter λν. We sampled the λν

parameters from a uniform distribution between 0 and 8. We applied
discretewavelet transformswithDaubechiesminimumphasewavelets,
(Daubechies, 1992), with 4 vanishing moments, to obtain the covariate
Xν
∗ in model (6). We then set the selection parameters γν's in (8) as a

30 × 30 lattice with five rectangular active regions, see Fig. 3(a). Voxels
inside the regions were assigned the value of 1, whereas voxels outside
were assigned the value 0. This resulted in 296 active voxels and 604 in-
active voxels. We simulated the βν parameters for the active voxels by
sampling from a N(0, τ) with τ=1, and set those for the inactive voxels
to 0. Finally, we set the values of (ψν, αν) at (0.1, 0.2), (0.5, 0.5), and
(1, 0.8), leading to three different clusters of voxels. We consider the
signal-to-noise ratio in logarithm decibel scale, defined as a function
of the variance of the regression parameters versus the innovation var-
iance of the error term, i.e. SNRdB= 10log10(τ/ψ). Thus, SNRdB increases
when the signal is allowed to vary more than the noise; SNRdB ≈ 0
corresponds instead to cases where the signal and the noise are
0 20 40 60 80 100 120 140 160 180 200 220 240
−1

0

0 20 40 60 80 100 120 140 160 180 200 220 240
−1

0

1

2
b)

0 20 40 60 80 100 120 140 160 180 200 220 240
−1

0

1
c)

Fig. 2. Simulated data: Time series fitting for one active voxel under (a) block and (b) event-
related designs and for (c) one inactive voxel, with (ψ, α) = (1, 0.8). The continuous black
curves represent the simulated time series and the dashed black curves the fitted responses.
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approximately of the samemagnitude. Thus, the three clusters are char-
acterized by decreasing values of the signal-to-noise ratio (respectively,
10, 3, and 0). The continuous black curves in Fig. 2 represent examples
of simulated time series for active and nonactive voxels, obtained by ap-
plying the inverse wavelet transform to obtain Yν =WTYν

∗ , for the clus-
ter (ψν, αν) = (1, 0.8).

In the simulation described in this section, we specified τ=5 and
u1 = 0, u2 = 8 for model fitting purposes. We also fixed the concen-
tration parameter of the DP prior to η=1and set the base distribution as
the product of an non-informative distribution on α, that is a Beta(a1= 1,
b1 = 1), and a vague prior on ψ, that is an IG(a0 = 3, b0 = 2). We set the
MRF prior parameters to d=−2.5 and e=0.3. We discuss sensitivity to
these choices below. At everyMCMC iterationweapplieddiscretewavelet
transforms with Daubechies minimum phase wavelets with 4 vanishing
moments. We ran MCMC chains with 10,000 iterations, discarding the
a)
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Fig. 3. Simulated data with block design: (a) truemap of the activation indicators γ; (b) posteri
value 0 otherwise; (c) posterior mean map of β; (d) scatter plot of posterior mean estimates v
first 5,000 iterations as a burn-in. We assessed convergence by using the
Raftery–Lewis diagnostic (Raftery and Lewis, 1992), as implemented in
the R package “coda”.

We obtained posterior activation probability maps by setting the
posterior probability threshold at 0.8, that is, an individual voxel was
categorized as active if the posterior probability p(γν = 1|y) N 0.8, and
categorized as inactive otherwise. This type of thresholds canbe justified
as the optimal rules in a Bayesian decision theory setting on the basis of
loss functions that minimize a combination of false negative and false
discovery counts or rates (see, among others, Bogdan et al., 2008;
Guindani et al., 2009;Müller et al., 2004, 2007). Fig. 3(b) reports thepos-
terior activation map for the block design obtained by assigning value 1
to those voxels with p(γν = 1|y) N 0.8 and value 0 otherwise. Our
method does a good job at detecting the active voxels. In particular, a
small number of active voxels are falsely identified as inactive, and all
b)
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or activationmap obtained by assigning value 1 to those voxels with p(γν =1|y) N 0.8 and
s. true values for β; (e) posterior mean map for λ;(f) same as (d) for λ.



Table 1
Simulated data: Accuracy, precision, false positive rates (FPR) and false negative rates
(FPR) for different choices of the variance structure of the error term and different
priors, for block design (B) and event-related design (E). The choice ψνIT corresponds to
a model with an uncorrelated error. Results are percentages averaged over 30 replicated
datasets.

Σν ψν 2αν
� �−m

IG(3, 2) × Be(1, 1)
ψν 2αν

� �−m

IG(3, 2) × Be(2, 3)
ψνIT
IG(3, 2)

B Accuracy 93.24 93.33 87.09
Precision 99.82 99.83 75.64
FPR 0.07 0.07 14.19
FNR 20.42 20.15 10.30

E Accuracy 91.54 91.50 86.77
Precision 99.90 99.94 73.89
FPR 0.04 0.02 16.07
FNR 25.64 25.80 7.43
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inactive voxels are correctly identified in both designs. Results are over-
all comparable across clusters, although, as expected, the accuracy
slightly decreases when the noise level increases. Fig. 3(c)–(f) reports
the posteriormean estimates for the parameters β and λ in the block de-
sign. Ourmethod produces good estimates, close to the true values of all
parameters. We refer the reader to the supplementary materials for the
analogousmaps in the event-related design.We also investigated the fit
of the response time series obtained by ourmodel. Fig. 2 shows the fit of
the time series as dashed black curves under either the block and the
event-related design. Once again,we notice the goodfit of our estimates.

Our approach also allows us to infer a clustering of the time course
responses of distant voxels via the DP prior on the parameters of the re-
sidual term of the model, ψ and α. For example, a single estimate of the
sample clustering allocations can be obtained from those configurations
visited during the MCMC as follows (Tadesse et al., 2005). First, an esti-
mate of the number of clusters is computed as the value, say K, most fre-
quently visited by the MCMC sampler, then all MCMC configurations
with K clusters are relabeled, for example by using the algorithm of
Stephens (2000). Finally the sample allocations are estimated by com-
puting, for each sample, the posterior probability that the sample be-
longs to cluster k, for k = 1, …, K, and assigning the sample to the
cluster with largest posterior probability. Fig. 4(a) shows the resulting
clustering of the voxels for the block design. In order to formally com-
pare our results with the ground truth, we consider the Normalized
Mutual Information (NMI), an information theoretic based measure of
clustering comparison proposed by Strehl and Ghosh (2002), which is
defined as follows. Let C and C′ denote two alternative clustering alloca-
tions of size K and L, respectively, and let fr(i, j′) denote the relative fre-
quency of voxels commonly assigned to cluster Ci in C and to cluster Cj′ in
C′. Similarly, let fr(i) denote the frequency of voxels assigned to cluster
Ci in C, and fr(j′) the frequency of voxels assigned to cluster Cj′ in C′.
Thenwe can define themutual information between the two clustering
allocations as

I C;C0� � ¼ XK
i¼1

XL
j0¼1

fr i; j0
� �

log2
fr i; j0
� �

fr ið Þfr j0ð Þ ;

and, correspondingly, the NMI as

NMI C;C0� � ¼ I C;C0� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H Cð ÞH C0ð Þp ;

withH(C)= I(C, C). It follows that 0≤NMI(C, C′)≤ 1withNMI(C, C′)=1
for C ≡ C′. In our simulation, the NMI for the block design and the event-
related design are 0.9068 and 0.9552, respectively. Both values are close
to 1, indicating a strong similarity between the estimated clustering allo-
cation and ground truth. We notice that the DP prior model allows us to
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Fig. 4. Simulated datawith block design: (a) posterior clusteringmap—different colors correspo
of α.
mostly recover the true clustering of the voxels, with the map showing
three large clusters and a few misclassified voxels. As for the inference
on the parameters ψ and α, voxel-wise estimates can be calculated by av-
eraging over theMCMC samples after burn in, at each voxel. The resulting
posterior mean maps for the block design are shown in Fig. 4. Again, we
refer to the supplementary material for the posterior mean maps of α
and ψ in the event-related design. We notice that our estimates well re-
cover the true values of the parameters.

In order to further assess the performance of our estimationmethod,
we repeated the simulation 30 times. Table 1 reports results in terms of
accuracy (i.e. the percentage of voxels that are correctly identified), pre-
cision (i.e. theproportion of active voxels correctly identified against the
number of all those identified as active), false positive rate (FPR) (i.e. the
proportion of active voxels falsely identified against all the inactive
voxels) and false negative rate (FNR) (i.e. the proportion of nonactive
voxels falsely identified against all the active voxels), for both block
and event-related design, averaged over the 30 replicates. Results are
reported for two choices of the joint base prior distribution on (ψ, α)
in (11). In the same table we compare results with those obtained by
fitting our model with a simpler choice of the variance structure of the
error term, i.e., Σν = ψνIT that, unlike (7), ignores the temporal correla-
tion of the data. As it should be expected, this model shows worse per-
formances, with lower accuracy, precision and false negative rate, and a
higher false positive rate.

Data simulated with different noise levels, that is different values of
α andψ, gave similar results to those reported here, though, as expected,
the accuracy lowers when the noise level increases.

We also evaluate the performance of our model assuming that the
true HRFs are different than the Poisson HRF used in model fitting.
Table 2 reports accuracy, precision, FPR and FNR for one simulated
data set where we considered the canonical HRF (Worsley et al.,
2002) as well as the inverse logit HRF proposed by Lindquist and
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Table 4
Simulated data: sensitivity analysis on the parameter d (keeping fixed η = 1, e =
.3, τ = 5, a0 = 3, b0 = 2, a1 = b1 = 1), for block design (B) and event-related design
(E). Results are in percentages.

d = −4.0 d = −2.5 d = −1.5 d = −1.3

B Accuracy 91.78 93.78 94.44 94.22
Precision 100.00 100.00 100.00 98.80
FPR 0.00 0.00 0.00 0.50
FNR 25.00 18.92 16.89 16.55

E Accuracy 89.44 91.00 92.67 92.44
Precision 100.00 100.00 100.00 98.31
FPR 0.00 0.00 0.00 0.66
FNR 32.09 27.36 22.30 21.62

Table 2
Simulated data: accuracy, precision, FPR, and FNR for different choice of true HRFs for
block design (B) and event-related design (E).

True HRF Poisson Canonical Inverse logit

B Accuracy 95.67 95.78 95.22
Precision 100.00 100.00 100.00
FPR 0.00 0.00 0.00
FNR 13.18 12.84 14.53

E Accuracy 95.33 91.33 90.22
Precision 100.00 100.00 100.00
FPR 0.00 0.00 0.00
FNR 14.19 26.35 29.73
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Wager (2007) in addition to the Poisson HRF. The canonical HRF is
defined as the difference of two Gamma densities,

h tð Þ ¼ t=d1ð Þa1exp − t−d1ð Þ=b1ð Þ−c t=d2ð Þa2exp − t−d2ð Þ=b2ð Þ; ð14Þ

with a1= 6, a2= 12, b1= 0.9, b2= 0.9, c= 0.35, d1= a1 ∗ b1, d2= a2 ∗
b2 (Glover, 1999). The inverse logit HRF is generated as a superposition
of three separate inverse logit functions, which describe, respectively,
the rise following activation, the subsequent decrease and undershoot,
and the stabilization of the HRF,

h tð Þ ¼ α1L t−T1ð Þ=D1ð Þ þ α2L t−T2ð Þ=D2ð Þ þ α3L t−T3ð Þ=D3ð Þ; ð15Þ

with L(x) = 1/(1 + e−x), α1 = 1, T1 = 15, D1 = 1.33, α2 =−1.3, T2 =
27, D2 = 2.5, α3 = 0.3, T3 = 66, D3 = 2. For the Poisson HRF, we set the
delay parameter λ= 4 as in Jeong et al. (2013). The data are generated
so to obtain comparable SNRs, despite the three HRFs have different re-
sponse amplitudes. Table 2 shows an overall good performance of our
model evenwhen the true HRFs are different from the assumed Poisson
HRF.

Sensitivity analysis

We performed a sensitivity analysis to study how different prior
specifications affect the estimation. Tables 3–5 show results for param-
eters τ, d, and e, for both block and event-related design. In each table,
accuracy, precision, FPR and FNR are reported for one simulated data
set. Table 3 shows that setting larger values of the variance parameter
τ in the prior distribution for the β's may moderately impact accuracy
and lead to a relatively higher FNR.Wedid not notice sensitivity tomod-
erate changes of the prior specifications for the parameters ψ and α of
the error term, see Table 1 for example. As for the MRF prior on the
γ's, its role is to encourage activations to take place in regions of neigh-
boring voxels, penalizing detections in isolated voxels. As discussed in
the Priors section, the parameter d controls the sparsity of the model,
whereas e regulates the smoothness of the distribution, with higher
values encouraging the selection of voxels with neighbors already se-
lected as active. As expected, Tables 4 and 5 show sensitivity of the re-
sults to the values of those parameters. More specifically, larger values
Table 3
Simulated data: sensitivity analysis on the parameter τ (keeping fixed η = 1, d =
−2.5, e = 0.3, a0 = 3, b0 = 2, a1 = b1 = 1), for block design (B) and event-related
design (E). Results are in percentages.

τ = 1 τ = 5 τ = 10

B Accuracy 94.33 93.78 92.67
Precision 100.00 100.00 100.00
FPR 0.00 0.00 0.00
FNR 17.23 18.92 22.30

E Accuracy 92.33 91.00 90.56
Precision 100.00 100.00 100.00
FPR 0.00 0.00 0.00
FNR 23.31 27.36 28.72
of d or e generally correspond to a lower FNR, at the expense of a higher
FPR and a lower precision. We note that setting d = −2.5 implies that
the prior probability of selection is less than 10% when a voxel has no
neighbors and that e = 0.3 is a value that should allow a reasonable
power in detecting true activations, and far from the phase transition
limit. Some sensitivity to η, the parameter of the DP prior, was also ob-
served, with large values generally inducing a larger number of clusters
(result not shown).
Synthetic data

In this section we simulate a synthetic fMRI data set using data from
the study of theWelcomeDepartment of ImagingNeuroscience that we
present in the section A case study for fMRI data. Our simulation ap-
proach is similar in spirit to the one of Quirós et al. (2010). More specif-
ically, we considered a slice captured under the “no attention” condition
and then obtained synthetic data as the sum of two components, Ysyn=
Y + w, where Y denotes the component simulated from our model as
described below and w is the selected slice from the real fMRI study
(slice 27). The use of the synthetic data allows us to carry out compari-
sons of the results from our model with the popular software SPM8,
available at http://www.fil.ion.ucl.ac.uk/spm/software/spm8/.

In order to simulate Y, we first obtained the design matrix X for a
block design as before. Then, we convolved X with a Poisson hemody-
namic function and applied the wavelet transform. The true activation
map defines three rectangular active regions, obtained by setting γ =
1, as shown in Fig. 5(a). The true values of the β's in these regions
were sampled from a Uniform(−80, 80). We set the values of (ψν, αν)
at (10, 0.8), (5, 0.5), and (1, 0.2), leading to three different clusters
of voxels. Finally, we obtained Y as Y=WTY∗. Our final synthetic dataset
comprised time series data for 256 scans of 64 × 64 voxels, mirroring a
real block-design fMRI study. Fig. 5(b) shows the first scan.

We ran a MCMC for model fitting, performing 20,000 iterations and
discarding thefirst 10,000 iterations as burn-in. Again,we assessed con-
vergence by the Raftery–Lewis diagnostic test implemented in the R
package “coda”. We assigned the same non-informative priors as in
the section Simulation from the model to all the parameters of the
Table 5
Simulated data: sensitivity analysis on the parameter e (keeping fixed η = 1, d =
−2.5, a0 = 3, b0 = 2, a1 = b1 = 1), for block design (B) and event-related design (E).
Results are in percentages.

e = 0.10 e = 0.30 e = 0.50 e = 0.65

B Accuracy 92.78 93.78 94.33 94.56
Precision 100.00 100.00 100.00 99.60
FPR 0.00 0.00 0.00 0.17
FNR 21.96 18.92 17.23 16.22

E Accuracy 90.22 91.00 91.89 93.67
Precision 100.00 100.00 100.00 100.00
FPR 0.00 0.00 0.00 0.00
FNR 29.73 27.36 24.66 19.26

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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Fig. 5. Synthetic data: (a) truemap ofγ; (b) first scan of our synthetic data. (c) Overlay on slice 27 of the posterior activationmap obtained by assigning value 1 to those voxelswith p(γν=1|
y) N 0.8 and value 0 otherwise. (d) Result from SPM8; overlay on slice 27 of the posterior probabilitymap of activation obtainedwith a Bayesian analysis, as described in the text and Eq. (16),
and showing voxels with posterior probability greater than 0.999.

Table 6
Synthetic data: comparison of accuracy, FPR, and FNR of ourmodel with SMP8. Results are
in percentages.

Our model SPM (0.99) SPM (0.999)

Accuracy 99.86 96.35 97.53
Precision 100.00 85.16 98.76
FPR 0.00 1.41 0.10
FNR 1.52 25.25 25.25
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model and applied, at each iteration, discrete wavelet transforms using
Daubechies minimum phase wavelets with 4 vanishing moments.
Fig. 5(c) shows the posterior activation map, obtained by assigning
value 1 to those voxels with p(γν = 1|y) N 0.8 and value 0 otherwise.
The accuracy of our detection is 99.86%. For comparison, we looked
into the estimation results obtained from SPM8 by performing a Bayes-
ian analysis, which detects regions where the response is different
under the active and rest conditions, whether positive or negative.
More specifically, we fit a GLMmodel with a designmatrix with one re-
gressor, convolvedwith a canonical HRF, andwith a GaussianMRF prior
on the model coefficients (Penny et al., 2005). Fig. 5(d) shows the pos-
terior probability map of activation produced by the software SPM8 fol-
lowing the method of Friston and Penny (2003), which calculates the
posterior probability that a particular effect exceeds a threshold κ as

p ¼ 1−Φ
κ−wTMβjyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wTCβjyw
q

0
B@

1
CA; ð16Þ

with Mβ|y and Cβ|y the posterior mean and covariance of the parameter
β. In particular, we obtained Fig. 5(d) by applying an F-contrast with
contrastweight vectorw=[1, 0]T to the estimation of the regression co-
efficients, and using a threshold of 0.999.Wenote that in SPM the detec-
tion of the activated voxels is based on the posterior probabilities of the
beta coefficients, whereas in our model it is based on the posterior
probabilities of the γ coefficients, as described in the section
Simulation from the model. Table 6 shows comparisons of our method
with SPM8 in terms of accuracy, FPR, and FNR. Ourmethod outperforms
SPM8, showing a higher accuracy, higher precision, lower FPR and lower
FNR. Furthermore, Fig. 6 reports the posterior mean estimates, calculat-
ed from the MCMC samples, and the scatter plots of posterior mean es-
timates versus true values for the parameters β, λ, showing the
correctness of our estimation for these parameters.

Fig. 7 shows the posterior clustering map of the voxels, obtained as
described in the previous simulation, and the posterior mean maps of
the estimates of the parameters ψ and α. As in the previous simulated
scenario, we are able to recover the true clustering of the voxels, with
all maps showing three large clusters and a few misclassified voxels,
and to well estimate the true values of the parameters.
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A case study for fMRI data

Here we apply our model to the data set provided by the Welcome
Department of Imaging Neuroscience, available at http://www.fil.ion.
ucl.ac.uk/spm/data/attention/. The data was original collected by
Büchel and Friston (1997). The experiment was performed on a single
subject, under 4 different conditions, and using a 2 Telsa Magnet
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Fig. 7. Synthetic data: (a) posterior clustering map—different colors correspond to
VISION (Siemens, Erlangen) whole body MRI system equipped with a
head volume coil. The subject was scanned during 4 runs, with each
run lasting 5 min and 22 s, producing 100 images for each run. This re-
sulted in 400 contiguous multi-slice (32 slices, slice thickness 3 mm,
giving 9.6 cm vertical field of view) T2∗-weighted fMRI images (TE =
40 ms, 90 ms/image, TR = 3.22 s, 64 × 64 pixels [19.2 × 19.2 cm]).
The image volume obtained covered the whole brain, except for the
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different clusters; (b) posterior mean map of ψ; (c) posterior mean map of α.
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Voxel

V
ox

el

10 20 30 40 50

10

20

30

40

50

60

Voxel

V
ox

el

10 20 30 40 50

10

20

30

40

50

60

Voxel

V
ox

el

10 20 30 40 50

10

20

30

40

50

60

d)

Voxel

V
ox

el

10 20 30 40 50

10

20

30

40

50

60

e)

Voxel

V
ox

el

10 20 30 40 50

10

20

30

40

50

60

f)

Voxel
V

ox
el

10 20 30 40 50

10

20

30

40

50

60

Voxel

V
ox

el

10 20 30 40 50

10

20

30

40

50

60

Voxel

V
ox

el

10 20 30 40 50

10

20

30

40

50

60
0

Voxel

V
ox

el

10 20 30 40 50

10

20

30

40

50

60

g) h) i)

a) b) c) 

Fig. 8.Real fMRI data: First row: structuralMRI images for (a) slice 17 (V1), containing theprimary visual cortex; (b) slice 19 (V5), containing themotion-selective cortical area; (c) slice 36
(PP), containing the posterior parietal cortex. Second row: posterior activation maps, obtained by assigning value 1 to those voxels with p(γν = 1|y) N 0.9, and value 0 otherwise. Third
row: overlay of PPMs obtained by a Bayesian analysis with SPM8, as described in the text and Eq. (16), showing voxels with posterior probability greater than 0.999.
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lower half of the cerebellum and the most inferior part of the temporal
lobes. Thefirst 10 scans in each runwere discarded in order to eliminate
magnetic saturation effects. The four conditions were “Fixation”,
“Attention”, “No Attention”, and “Stationary”. Each condition lasted
32.2 s, giving 10 multi-slice volumes. The subject was asked to look at
a fixed point (size 0.3∘) in themiddle of a transparent screen. During vi-
sual motion conditions, 250 white dots (size 0.1∘) moved radially from
the fixation point in random directions at a constant speed (4.7∘/s) to-
ward the border of the screen where they vanished. During “Attention”
and “No Attention” conditions, the subject fixated centrally while the
white dots emerged from the fixation point toward the edge of the
screen. During the “Attention” condition, the subject was asked to
detect changes of speed, and during the “No Attention” condition the
subject was asked to just look at the moving points. During “Fixation”
condition the subject sawonly dark screen except for the visible fixation
dot. During “Stationary” condition, the fixation point and 250 stationary
dots were presented to the subject.

The data set comprises smoothed, spatially normalized, realigned,
slice-time corrected images, on which we applied our wavelet-based
Bayesian nonparametric model. We excluded the images obtained dur-
ing “Stationary” condition, and grouped the other three conditions into
two categories: a vector was defined with elements set to 1 for the im-
ages obtained during the “Attention” and “NoAttention” conditions and
to 0 during “Fixation”. This vector, representing the stimulus pattern
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Fig. 9. Real fMRI data: First row: posterior mean maps of β for (a) V1, (b) V5 and (c) PP. Second row: posterior mean maps of λ for (d) V1, (e) V5 and (f) PP.
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over time, was convolved with a Poisson hemodynamic function with
voxel-dependent parameter λν, according to our model (1), to obtain
the covariate Xν. We set τ = 100, and η = 1, a1 = 1, b1 = 1, a0 = 3,
b0 = 2, d = −2.5, e = 0.3, as in the simulation studies. We set u1 =
0, u2 = 5 in the prior for λ, to model the on-set delay of the HRF in ac-
cordance to the characteristics of the specific experimental design. We
ran the MCMC with 20,000 iterations, discarding the first 10,000 as
burn-in. At each iteration the Add, Delete, Swap steps for activation de-
tection were repeated 12 times. As in Büchel and Friston (1997), we
show results for slices containing the primary visual cortex (V1), the
motion-selective cortical area (V5) and the posterior parietal cortex
(PP), since neuroimaging studies have shown that these brain regions
are activated by a stimulus with visual motion (Bushnell et al., 1981;
Mountcastle et al., 1981; Treue andMaunsell, 1996). Structural MRI im-
ages of the slices are shown in the first row of Fig. 8. We have obtained
automatic graymatter segmentation on the structural images for V1, V5
and PP with SPM8, and applied ourmodel only on the resulting images,
comprising voxels likely to correspond to grey matter. Our matlab code
performed 1000 MCMC iterations in 64 min for V1, 61 min for V5, and
30 min for PP, on a desktop computer with CPU 3.10 GHz, and 4 GB of
RAM.

Fig. 8 shows the posterior activation maps, obtained with our
method, for the three slices under consideration. Fig. 9 shows the poste-
riormean estimates of theβ and λ parameters. In both figures, images in
the first column refer to slice 17 (V1), containing the primary visual cor-
tex, those in the second column to slice 19 (V5), containing themotion-
selective cortical area and those in the third column to slice 36 (PP),
containing the posterior parietal cortex. Brighter regions in the images
denote higher probabilities, that is regions that are activated in response
to the given “Attention” and “No Attention” visual stimulus. Activations
appear to emerge mainly in the occipital lobe, which is known to be in-
volved in the perception of visual motion. The positive values of the β
coefficients are consistent with the hypothesis that the BOLD response
in that region should increase upon presentation of a visual stimulus.
Fig. 8 reports, for comparison, results from SMP8 obtained by fitting a
GLMwith anAR(1) noise, inwhich the regressor is convolvedwith a ca-
nonical HRF, and by carrying out the estimation via a two-sided Bayes-
ian analysis with a GMRF prior. All methods appear to detect relevant
activations in the designated areas, with activations that are mostly lo-
calized. We notice however that the detection is much sharper in our
Bayesian maps, whereas the Bayesian analysis with SPM8 identifies
wider areas as active.

Fig. 10 shows the posterior clusteringmaps of the three slices under
study and the posterior mean maps of the parameters ψ and α. These
maps capture association of neural activity over time as a spatio-
temporal clustering of distant voxels. Patterns of similar neuronal dy-
namics are clearly visible. A close inspection of the results suggests
that the use of the long memory process to model the error term and
the clustering induced by the DP prior improve the deconvolution of
the signal and the noise and explain, at least partially, the sparser activa-
tion observed in our model with respect to the SPM8 fit. In addition, the
estimates of the variance parameter ψ and the decay parameter α in the
middle and bottom row of Fig. 10 indicate that active voxels are charac-
terized by relatively lower variance and increased auto-correlation of
the time series. On the contrary, non-active voxels appear to be charac-
terized by increased noise and are less dependent over time.
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Fig. 10. Real fMRI data: posterior clustering maps of (a) V1, (b) V5, and (c) PP—different colors correspond to different clusters. Posterior mean maps of ψ for (d) V1, (e) V5 and (f) PP;
posterior mean maps of α on (g) V1, (h) V5 and (i) PP.
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Discussion

In this paper we have introduced a novel wavelet-based Bayesian
nonparametric regressionmodel for the analysis of fMRI data. Our infer-
ential strategy detects regions of the brainwhich exhibit neuronal activ-
ity in response to a stimulus, while simultaneously inferring the
association, or clustering, of spatially remote voxels that exhibit fMRI
time series with similar characteristics. Our model combines several
features into a single framework. In the time dimension, we allow for
correlated errors and then employwavelet transforms.We also account
for the estimation of a voxel dependent delay parameter of the hemody-
namic response function. Furthermore, we describe patterns of similar
neuronal dynamics via the clustering of the voxel time courses induced
by a Dirichlet process prior model. In the spatial dimension, we capture
dependence among nearby voxels via a Markov random field prior. Our
results on simulated data have shown that theproposedmodeling strat-
egy works well for both block and event-related experimental design.

Our results on real fMRI data have confirmed the autocorrelated
nature of the data, as many of the cerebral responses have shown
small estimated values of the long memory parameter α. Other authors
have compared estimation performances of models for fMRI data that
make different assumptions on the error structure and have pointed
out that models ignoring autocorrelation in the errors result in standard
errors of the estimates that are inflated, see for example Friston and
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Penny (2003). In our approach, we have exploited the decorrelation
properties of discrete wavelet transforms, well studied in the literature,
to aid the inferential task. In all applications in the paper we have applied
discrete wavelet transforms with Daubechies minimum phase wavelets
with 4 vanishing moments. Ko and Vannucci (2006) and Jeong et al.
(2013) have shown that wavelets with higher degrees of regularity pro-
duce slightly better estimates of the longmemory parameter, as they en-
sure wavelet coefficients approximately uncorrelated. On the other hand,
the support of the wavelets increases with the regularity and boundary
effects may arise in the DWT, so a trade-off is often necessary.

Our model has employed a MRF prior distribution on the detection
indicator, as a way to encourage activations to take place in regions of
neighboring voxels, penalizing detections in isolated voxels. MRF priors
have been successfully used in a variety of applications, particularly for
the analysis of genomic and imaging data. Care is needed in the specifi-
cation of such priors, as allowing the smoothness parameter to vary can
lead to the so-called phase transition, a situation in which the expected
number of variables equal to 1 increasesmassively for small increments
of the parameter, as described for example by Stingo et al. (2011). Phase
transition has consequences such as the loss of model sparsity, and con-
sequently a critical slow down of the MCMC, together with a higher
number of falsely detected activations.

All the analyses have been conducted fitting our model on each sepa-
rate slice, thus assuming a two-dimensional lattice. Slice-by-slice analyses
are known to suffer from several limitations. For example, interpretation
might be hard as it may be difficult to combine the results from separate
slices as well as relate the slices to meaningful regions of the brain. Fur-
thermore, themagnitude of the estimatesmight vary largely across slides.
In real studies, the voxels overlay a three-dimensional lattice. However,
theuse of a 3D Isingmodel presents itselfwith furthermodeling and com-
putational challenges, in terms of hyper-parameter selection and posteri-
or computation. See, for example, Risser et al. (2009) and Vincent et al.
(2010). Future work may consider extending our framework to the 3D
analysis of a few specific brain regions. Further computational benefits
may result by considering scalable approximate Bayesian inference, for
example by resorting to Variational Bayes approaches as in Penny et al.
(2003) and Roussos et al. (2012), and by exploring parallel computing,
in particular by taking advantage of the Matlab built-in support for GPU
computation, which will allow us to substantially speed-up expensive
operations within a single MCMC iteration. Similarly, our approach can
be extended to consider multiple signal coefficients per voxel by using
priors that promote sparsity and allow to couple the regression parame-
ters in space and/or time (see, for example, Babacan et al., 2014;
Hernandez-Lobato et al., 2013; van Gerven et al., 2010).

A novel feature of our model is that we allow clustering of the time
course responses of distant brain regions via a Dirichlet process (DP)
prior. In our approach, the DP prior model induces a clustering of the
voxels that exhibit time series signals with similar variance and long-
memory behavior, as a way of capturing statistical association of neural
activity over time. An interesting future direction is to explore exten-
sions of ourmodeling strategy to multi-subject data, by using hierarchi-
cal Dirichlet process priors that capture the correlation of voxel time
courses across multiple subjects, therefore linking the same anatomical
regions across subjects (see, for example, Sanyal and Ferreira, 2012).
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