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Abstract

Stochastic Models and Linkage Disequilibrium:
Estimating the Recombination Coe�cient

by

Vernon Shane Pankratz

By studying the rate of recombination between genetic markers and disease

genes with linkage analysis, scientists have successfully mapped the locations of

disease-inuencing genes to within one centiMorgan. However, one centiMorgan

corresponds to a sequence of about one million base pairs of DNA, which is pro-

hibitively large for a physical search for a speci�c gene. Therefore, other genetic

mapping techniques are needed to de�ne search regions that are small enough for

physical mapping techniques to be feasible. One such method is called linkage dis-

equilibrium mapping. Linkage disequilibrium can serve as a complement, or even

an alternative, to linkage analysis. It is capable of estimating genetic distances

that are as small as tens of kilobases of DNA, a great improvement over the res-

olution of linkage analysis. However, one must describe the joint transmission of

disease genes and linked marker loci through many generations in order to use link-

age disequilibrium for genetic mapping purposes. This thesis examines two classes



iii

of population models, Galton-Watson branching processes and Moran/Coalescent

models, within the framework of linkage disequilibrium. That is, it uses moments

of allele frequencies derived from these models to form approximate likelihood func-

tions for the recombination rate. These likelihoods make it possible to estimate

the location of a disease-inuencing mutation, particularly when the likelihoods

from several markers within a small region of DNA are combined to form a com-

posite likelihood. Application of this composite likelihood methodology to both

simulated and published data demonstrates that linkage disequilibrium mapping

can be successfully used for �ne-scale mapping purposes.
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Preface

In the nineteenth century, Gregor Mendel performed his famous experiments in

which he formed crosses of several varieties of peas and observed the resulting

o�spring. The experimental results led him to propose that genes govern heritable

characteristics and that these genes are transmitted from parents to o�spring in a

predictable way.

We now know that one of Mendel's hypotheses was not entirely correct. He

postulated that the transmission of alleles from di�erent genes is independent. We

now know that the alleles of genes, or loci, that are close together on the same

chromosome are often passed on in tandem. In fact, the alleles of di�erent loci on

the same chromosome are transmitted as a unit unless the two homologous strands

exchange DNA through a process called recombination.

While we do not fully understand the mechanisms that govern recombination,

we know that the average number of recombination events occurring in an interval

is inversely proportional to the physical length of that interval. This preliminary

knowledge has proven to be very useful in establishing genetic maps of the chro-

mosomes of various organisms. Since these genetic maps compare favorably with

physical maps, it is possible study the process of recombination to search for genes

that govern speci�c traits.
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This search is traditionally executed using a technique called linkage analy-

sis. The concept of linkage analysis is simple; one collects genetic pedigrees and

\counts" the number of recombinations that occur between the disease gene and

various marker loci. This method has been successful in mapping genes that in-

uence a variety of diseases to regions as small as one million base pairs (1 Mb) of

DNA.

Researchers would like to be able to map genes to regions smaller than 1Mb,

however in practice it is very di�cult to do so using linkage analysis. The limitation

arises from the estimation procedure used in linkage analysis: one \counts" recom-

bination events within extended families. In order to estimate recombination rates

of less than one recombination in one hundred meioses, one must examine at least

several hundred meioses. Hence, obtaining samples of su�cient size to perform

�ne-scale mapping with linkage analysis is very di�cult, and often impossible.

Many researchers are looking to population-based methods in a search to ob-

tain �ner resolution in genetic maps. These population-based methods depend on

linkage disequilibrium, a term from population genetics that refers to the situation

that exists when two loci do not pass on their alleles independently. The di�-

culty that arises with linkage disequilibrium is that its behavior depends on the

properties of the population under consideration.

The intent of this thesis is to use models of population genetics to obtain

information about linkage disequilibriumas it relates to the distance between linked
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loci. The models provide this information when they are adapted to describe

the joint behavior of loci in real populations. Moments from these models make

it possible to obtain approximations to likelihoods which can estimate genetic

distances as small as tens of thousands of base pairs. These distances are orders

of magnitude less than the minimal distances that linkage analysis can provide.
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Chapter 1

Introduction

The purpose of this thesis is to study the use of linkage disequilibrium for the

�ne-scale mapping of disease genes. Modeling the distribution of marker alleles as

they evolve within the disease population is of particular interest, as this makes it

possible to obtain maximum-likelihood estimates of the recombination coe�cient.

Chapter 2 begins the study by introducing the topic of genetic mapping. It �rst

discusses some basic genetic concepts by reviewing issues dealing with Mendelian

inheritance and recombination. It then introduces the topics of linkage analysis

and linkage disequilibrium. Its concluding section introduces several models that

describe the perpetuation of genetic populations.

The third chapter goes into more detail about the use of linkage disequilib-

rium in the area of �ne-scale mapping. It discusses various measures of linkage

disequilibrium before moving on to mention current methods for genetic mapping

with linkage disequilibrium. The most important of these are maximum-likelihood

based procedures that estimate the position of disease genes within maps consisting

of one or more marker loci.

After a description of Galton-Watson branching processes and the Moran/Co-

alescent model in the �rst part of the fourth chapter, the thesis contains original
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work. It discusses progress that can be made by modeling the expansion of the

disease population within a larger population.

The remainder of Chapter 4 demonstrates how to obtain the moments from each

of the two classes of models. It also presents a general framework for modeling the

joint behavior of a disease gene linked to a marker locus, with or without mutations

at the disease and marker loci.

Chapter 5 applies the methods in Chapter 4. It presents methods for forming

approximate likelihoods that estimate the recombination rate between the disease

gene and a single marker locus.

Chapter 6 provides information about linkage disequilibrium mapping with

respect to more than one genetic marker. It makes some headway for the case where

there are two markers, but primarily relies on composite likelihood methodology

to combine single-marker likelihoods.

Chapter 7 contains evaluations of the methodology developed in previous chap-

ters. Simulation results indicate that the methods can be used to successfully map

disease genes. Application of the methods to published data from Cystic Fibrosis

and Huntington's Disease verify the simulation results. The estimated locations

of the disease genes were less than 100 kb away from known mutations within the

disease genes. If fact, the estimate for the location of the Huntington's Disease

gene was only 5 kb from the truth.
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Chapter 8 summarizes the work of this thesis and presents several possible

areas for future work.
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Chapter 2

Genetic Mapping

This chapter introduces the use of genetic data to locate genes within a genome.

First, it describes basic principles of Mendelian inheritance. Second, it addresses

issues arising when two or more genes are linked. It �nally outlines the two major

tools used to map human genetic diseases: linkage analysis and linkage disequilib-

rium.

2.1 Mendelian Inheritance

Gregor Mendel studied the transmission of features from parents to o�spring by

crossing various varieties of peas that were pure for speci�c traits. The results

from his experiments led him to propose that an organism has distinct hereditary

units that govern speci�c characteristics and that those units do not blend within

the parents, but rather are discrete items that segregate during the formation of

sex cells, or gametes.

Many multicellular organisms such as peas and humans are diploid, that is,

they have two sets of genes. The speci�c forms of the gene, known as alleles,

govern the expression of di�erent traits. The pairs of alleles for a single gene, or

a collection of genes, constitute the genotype. The genotype for a single gene is
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homozygous if the diploid pair consists of two identical alleles and heterozygous if

it has two di�erent alleles. The phenotype is the physical trait expressed by the

genotype. A phenotype is recessive if expression of the trait occurs only when the

gene is homozygous for the allele. A trait is dominant if it can be expressed when

only one copy of the allele is present.

Genes are not scattered haphazardly throughout the cell. Rather, they reside

within the nucleus within organelles called chromosomes. The collection of all

chromosomes within a single cell of an organism constitutes the organism's genome.

It is assumed that the genome of multi-cellular organisms does not vary from cell

to cell.

The genome of diploid organisms consists of two complete sets of chromosomes,

one receivedfrom each of their parents. The elements of a pair of chromosomes are

called homologous since they are similar but not identical. Genes, in principle,

are arrayed in linear sequences on chromosomes, occupying approximately the

same position for individuals from the same species. The word locus refers to the

position of a gene, or any sequence of DNA, in the genome. A haplotype is the

ordered vector of alleles at a collection of loci on one homolog, and represents the

genetic information contributed by one parent.

Homologs segregate to separate sex cells in meiosis. Prior to meiosis, the

chromosomes replicate so that each homolog consists of two identical strands of

DNA, called chromatids. This bundle of four strands of DNA maintains a primary
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point of contact at the centromere. The chromatids become entangled at other

locations as well. As the chromatids separate, some of these points of contact are

conserved and form what are known as chiasmata (see e.g. [1]). At these chiasmata,

homologous chromatids exchange genetic material. The chromatids experiencing

such a crossover or recombination event no longer consist of the original sequence of

DNA, but of combined fragments of the two ancestral strands, called recombinant

DNA (see e.g. [58]). Figure 2.1 shows a schematic representation of the events

leading to the placement of chromosomes into gametes. First, the two homologous
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Figure 2.1 Schematic representation of a single recombination event
between two homologous chromosomes carrying three genes.
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strands replicate. As they separate, one or more chiasmata form. As the haploid

strands of DNA segregate into separate sex cells, some of the chiasmata force

an exchange of DNA between the strands to produce recombinant, or recombined

DNA.

2.2 Recombinatorial Distance

The study of recombination events has led to a technique known as genetic map-

ping, which positions loci on chromosomes based on the frequency of crossovers

that occur between them. This technique is possible because the physical distance

between two loci is a good predictor of the rate of genetic recombination. The

main idea is that crossovers between two loci occur at a rate that is inversely pro-

portional to the length of DNA separating them. Therefore, if two loci are close

together, we will rarely observe a recombination event between them. One way to

justify this is to consider the rate of crossovers in human meioses. For example,

the human genome consists of approximately 3 � 109 base pairs of DNA and the

average number of recombination events per meiosis is about 33 [61]. Therefore, if

recombination events occur at random throughout the genome, then on average,

108 base pairs separate each recombination event.
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2.2.1 Map Distances

When recombination events between two loci on the same chromosome occur at

a rate of 50 percent, the segregation pattern of the two loci is identical to that

expected when two loci occupy positions on separate chromosomes. This is so

because only one-half of the recombined genes are observable within families when

recombinations occur freely. If recombinations occur between two loci in fewer

than half of all meioses, then the loci are said to be linked. The degree of linkage

is parameterized by the recombination fraction, or the percentage of meioses with

recombinations between two loci. Henceforth, we will use r to represent this pa-

rameter, although we note that � is also frequently used (see it e.g. [58]). Since r

is a parameter for the degree of linkage, its support is the interval [0; 0:5].

The recombination rate between two loci can serve as a stochastic measure of

distance between two loci. The genetic map distance between two loci is de�ned

as the expected number of crossovers occurring between them on a single chro-

matid [58]. This expectation is scaled in units of Morgans. One Morgan measures

a length of DNA that, on average, experiences one crossover per meiotic event.

The recombination fraction can be thought of as the probability of experiencing

a recombination event in a sequence of DNA, with one-half lost due to segrega-

tion. Therefore, it is possible to translate the recombination fraction into units

of Morgans. This can be done in a variety of ways, as we discuss in the next

section. For the simplest case we observe that one centiMorgan (cM), is approx-
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imately equivalent to a recombination fraction of one percent, as it measures a

length of DNA that has an average of one recombination event per one hundred

meioses. Once we have veri�ed both the linear order of loci on a chromosome and

the distances between the loci, we have de�ned a genetic map.

We can use a genetic map to approximate a physical map. There are on average

33 crossovers per human meiosis. Hence the human genome is approximately 33

Morgans in length. The physical length of the human genome is approximately

three billion base pairs. Equating these two quantities, we discover that one centi-

Morgan, or a recombination fraction of r = 0:01, corresponds to about one million

base pairs.

2.2.2 Mapping Functions

Genetic maps do not correspond directly to physical maps. At least two factors

inuence the discrepancy: multiple crossovers and interference. The �rst factor

inuences genetic map distances because multiple crossovers in an interval may be

indistinguishable from fewer recombination events. The second factor comes into

play if recombination events do not occur independently throughout the genome.

An important parameter in the description of interference is the coe�cient

of coincidence, c, which is de�ned as the ratio of observed to expected double

recombination events. In order to obtain a parameterization of c, consider three
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loci in the order A-B-C, with the pairwise recombination rates rAB, rBC and rAC.

We now examine the recombination in the intervals A-B and B-C jointly.

With respect to the joint recombination in A-B and B-C, we can observe four

classes of o�spring: double recombinants with recombination in A-B and B-C,

single recombinants with recombination in A-B but not B-C, single recombinants

with recombination in B-C but not A-B and nonrecombinants. If we denote the

probabilities of these events occurring as g11, g10, g01 and g00 respectively, then we

can estimate the pairwise recombination events as

rAB = g11 + g10;

rBC = g11 + g01;

rAC = g10 + g01:

(2.1)

Using these equations, we can obtain an estimate of the probability of observing a

double recombinant:

g11 =
rAB + rBC � rAC

2
: (2.2)

This leads to the parameterization of c proposed by Muller [56] in 1916,

c =
rAB + rBC � rAC

2 rAB rBC
; (2.3)

since the probability of observing a double recombinant under independence is

rAB rBC. The possible range of c can be shown to be

max

 
0;

rAB + rBC � 1=2

2rABrBC

!
� c � min

�
1

rAB
;

1

rBC

�
; (2.4)
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(see it e.g. [58]).

Interference, or the extent to which a recombination events inuence the occur-

rence or nearby recombination events, is related to the concept of coincidence. It

is mathematically de�ned as I = 1� c [1]. From this relationship, we can see that

interference is absent when c = 1, and can be either positive or negative depending

on the amount of coincidence. In most species, interference seems to be positive,

so that one usually assumes c � 1, with c = 0 implying complete interference [58].

Mapping functions make it possible to obtain better information concerning

genetic distance by accounting for the factors mentioned above. Three mapping

functions are commonly used for human genetic maps. They are the Morgan,

Haldane and Kosambi mapping functions.

The Morgan map function [54] is the simplest of the three. If m is the map

distance and r is the recombination coe�cient, we can write the Morgan map

function as

m =

8>>><
>>>:

r; 0 � r < 1
2
;

1; otherwise:

(2.5)

This equation is appropriate when multiple crossovers between two loci do not

occur. Therefore, it is appropriate to use this mapping function for tightly linked

loci.

Multiple crossovers can occur between two distant loci, however. In 1919,

Haldane [18] assumed that crossovers in di�erent intervals occur according to a
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Poisson point process. This assumption leads to the Haldane map function,

m =

8>>><
>>>:
�1

2
ln(1 � 2r); 0 � r < 1

2
;

1; otherwise;

(2.6)

whose inverse is

h(r) =
1

2
(1 � exp(�2m)) : (2.7)

This mapping function is used extensively later in this thesis, in keeping with

conventions set by others (see it e.g. [58]).

The Morgan and Haldane map functions represent two extremes. The Morgan

map function essentially assumes complete interference and the Haldane map func-

tion assumes interference to be absent. It is possible to derive di�erent mapping

functions by assuming di�erent levels of interference. In 1944, Kosambi [45] built

a mapping function built on the premise that one recombination event must occur

on a chromosome, and that no interference exist among subsequent recombination

events. This assumption led to what we now call the Kosambi map function:

m =
1

2
tanh�1(2 r): (2.8)

Each of these map functions conform to a di�erential equation �rst obtained

by Haldane [18]:

dr

dm
= 1� 2 c r; (2.9)

where c is de�ned in Equation 2.3. The distinct map functions arise by changing

the form of c in the di�erential equation. For example, if c = 0 we obtain the
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Morgan mapping function and if c = 1 we obtain the Haldane mapping function.

Likewise, if we set

c = 2
rAB + rBC

1 + 4rAB rBC
; (2.10)

we obtain the Kosambi mapping function. Other researchers, such as Carter and

Falconer [6], have obtained di�erent map functions by modeling c in various ways.

Rao et al. [60] made a valuable contribution by incorporating existing map func-

tions into a family of models, making it possible to estimate the map function from

data.

2.3 Linkage Analysis

The purpose of linkage analysis is to estimate the recombinatorial distance be-

tween two loci, often a marker locus and an unknown disease gene. In its simplest

form, linkage analysis estimates the recombination coe�cient by dividing the total

number of observed recombinations by the total number of possible recombina-

tions in a pedigree or set of pedigrees. However, recombined DNA is not always

recognizable, so more sophisticated estimation techniques are needed [69].

Researchers use maximum-likelihood methods to overcome the problems that

present themselves in linkage analysis. The likelihood function contains informa-

tion concerning the probability of a phenotype given its genotype (penetrance), as

well as information concerning the probability of the genotype given the recom-

bination coe�cient and the genotypes of all ancestors (see e.g. [58]). Once the
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mode of inheritance, penetrance, allele frequencies and other genetic information

have been speci�ed, it is possible to explicitly write a formula for the probability

of a disease/marker haplotype that depends on the recombination coe�cient. The

formulae thus obtained are then aggregated for all the data to form a likelihood

equation that can be used to obtain an estimate of r.

Linkage analysis has been used with great success to obtain coarse genetic maps.

The granularity of these maps is on the order of centiMorgans, or millions of base

pairs (see it e.g. [58]). As noted earlier, a genetic distance of 1 cM corresponds

to a recombination fraction of approximately 0.01. This recombination rate is

essentially a lower limit on the resolution of linkage analysis. This limitation

arises due to the fact that linkage analysis estimates r by counting, or inferring,

recombination events. It is very di�cult to collect enough family-based data to

reliably observe recombinations that occur with a frequency lower than one out of

one hundred (see it e.g. [11]). For instance, if r = 0:001 and we wish to observe at

least one recombined haplotype with 90% probability, we must observe more than

2300 meioses where recombination events are identi�able.

2.4 Linkage Disequilibrium

Since linkage analysis su�ers from resolution constraints imposed by sample size

considerations, it is necessary to use other techniques for �ne-scale mapping. One

of the alternatives is linkage disequilibrium. Linkage disequilibrium, or allelic as-
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sociation, refers to the situation where di�erent loci do not pass on their alleles

independently. Many genetic factors can inuence this. Some of these factors

are physical distance between loci, population admixture, nonrandom mating and

mutation (see it e.g. [22]). Since physical proximity has an e�ect on linkage disequi-

librium, it can provide information about the recombination coe�cient. However,

one must be cautious when using linkage disequilibrium to form genetic maps, since

linkage disequilibrium can be caused, and maintained, by more than just linkage.

To illustrate the concept of linkage disequilibrium, consider two loci: locus

A with ka alleles and locus B with kb alleles. Assume that allele i of locus A

occurs with frequency pi, and that allele j of locus B has a population frequency

of qj. Also, let Pij denote the joint frequency of allele i of locus A and allele j

of locus B. The two loci are in a state of linkage disequilibrium if the joint allele

frequencies do not equal the product of the marginal allele frequencies, i.e. if

Pij 6= pi qj for some i 2 f1; : : : ; kag; j 2 f1; : : : ; kbg. Hence, we can test for linkage

disequilibrium using the methologies of classical contingency table analysis.

We often wish to measure the magnitude of linkage disequilibrium, or the de-

viation from independent transmission of alleles. In the situation where there are

two loci, each with two alleles, the amount of disequilibrium is commonlymeasured

by some function of

D = P11 P22 � P21 P22: (2.11)
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Note that D is a function of the odds ratio, a measure that is often used in

categorical data analysis (see it e.g. [3]).

One of the appealing features of linkage disequilibrium is that recombination

causes it to behave in a predictable manner as populations evolve from generation

to generation. In fact, recombination events decay disequilibrium by a factor of

1 � r per generation.

We can establish this result for the measure de�ned in Equation 2.11 if we

make additional assumptions. If we assume that individuals mate at random and

that there is no mutation at either locus, we �nd that the joint frequencies after

one generation are

Pij(t+ 1) = Pij(t) � r[Pij(t) � pi qj]: (2.12)

Using this identity, we obtain the long-known result [35] [63] that after t genera-

tions,

Dt = (1 � r)tD0: (2.13)

Thus we see that allelic associations are greatly inuenced by the recombi-

natorial distance between loci. Although recombination diminishes the degree of

linkage disequilibrium, many population e�ects can also play a signi�cant role in

the existence of linkage disequilibrium (see it e.g. [22]). For this reason, many

researchers are hesitant to utilize it to map disease genes.
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However, if we are careful in our application of linkage disequilibrium, it can be

a powerful tool for mapping disease genes. It can be especially useful in re�ning

the location of disease genes whose position has been roughly identi�ed through

linkage analysis. In fact, linkage disequilibrium mapping has successfully localized

genes for a variety of diseases in spite of its shortcomings (see it e.g. [11]).

2.5 Population Models

The behavior of linkage disequilibriumwithin a population depends on the manner

in which the population evolves. Therefore, if we are to successfully utilize linkage

disequilibrium as a tool for mapping disease genes, we must consider the evolution

of populations. This can be a very di�cult problem. However, we can turn to the

�eld of population genetics, where many models of population behavior exist that

capture various features of human population dynamics. In this section, we will

discuss several of these.

2.5.1 Wright-Fisher Model

The Wright-Fisher (or Fisher-Wright) model was studied concurrently by Wright

[75] and Fisher [16] in the �rst part of the 20th century. Figure 2.2 is an illustration

of the behavior of the model as it evolves through time. This model requires

three primary assumptions. First, it assumes that time is counted by generations.

Second, it assumes that the population of chromosomes maintains a �xed size
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Figure 2.2 Illustration of the Wright-Fisher model of
evolution for a population with N diploid individuals.
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through time. The third feature deals with the production of o�spring from one

generation to form the next. In the reproductive step, each chromosome produces

a large number of gametes. The chromosomes in the next generation are drawn

at random from the total pool of gametes. This mechanism is equivalent to a

multinomial sampling scheme, where chromosomes in one generation are sampled

with replacement from those in the previous generation.

We now point out two issues that arise in considering this model. First, each

chromosome is treated identically. Hence, when applying the Wright-Fisher model

to a diploid population with N individuals, one must consider 2N chromosomes,

with no reference to the diploid nature of the individuals in the population. This

is only an approximation to the actual biological process of reproduction, but if

the population is large enough this approximation works well.

The second feature is the �xation of chromosomes, or alleles. Because not all

chromosomes in the population in one generation produce o�spring in the gener-

ation, due to multinomial sampling, eventually a single chromosome will be �xed

in the population. This implies that one can look backward in time and trace the

genealogy of the current population to a single ancestor chromosome. This idea

led to the proposal of an object called the coalescent. It was �rst suggested by

Ewens [13] and developed by Kingman [41] [42] and Tajima [67].

To understand the reasoning behind the idea of the coalescent, consider two

chromosomes randomly sampled from a population of size 2N . The probability
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that they both share a common ancestor in any preceding generation is 1=2N due to

the multinomial sampling mechanism. Repeating this argument for more than one

generation, we can �nd the probability of coalescence in t generations. This proba-

bility is (1=2N)[1� (1=2N)]t, or the probability that one common ancestor existed

t generations in the past multiplied by the probability that there were no common

ancestors more recent than t. Note that this probability can be approximated by

the exponential distribution with mean 2N since [1� (1=2N)]t � exp(t=2N).

2.5.2 Time-Continuous Moran Model

As an alternative to the Wright-Fisher model, we now mention a generalization of a

discrete-time model proposed by Moran [53]. The original Moran model describes

the evolution of 2N haploid individuals. It di�ers from the Wright-Fisher model

in its description of the reproduction process. Rather than assuming that the

population reproduces in non-overlapping generations, it assumes that population

changes occur at �xed time points t = 0;�t; 2�t; : : :. At these points, one new

element is added to the population and one element is lost. The genetic makeup

of the new member is obtained by randomly sampling from the already-existing

population. The individual who leaves the population is chosen at random from

those present immediately prior to the most recent birth. Therefore the probability

that any of these elements dies is equal to 1=2N . This has the e�ect that the
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lifetimes of the particles in the population follow a geometric distribution with a

mean of 2N time units.

One can extend the Moran model to operate in continuous time by allowing

a random length of time to pass between the times of birth/death and by using

the same birth/death scheme as in the time-discrete version. The most direct

translation from to discrete to continuous time is to let time between deaths follow

the exponential distribution, the time-continuous analog to the geometric distri-

bution. This allows us to describe the time points with a Poisson point process,

and facilitates the study of the time-continuous version.

The Moran model has some features that make its use appealing. First, as we

have previously noted, we can construct the model so that it operates in continuous

time. Second, since we can specify the population at a randomly chosen time based

on the makeup of the population at the most recent known point in the past, the

Moran model is a Markov process. Third, since a single birth occurs at each time

point, one can study the model by running time in reverse [13]. This allows us to

derive results from this model using the coalescent.

2.5.3 Galton-Watson Branching Process

Another class of models can be applied within the framework of population genet-

ics. These models are purely stochastic and are referred to as branching processes.

A Galton-Watson process is the simplest type of branching process, which we can
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describe as follows. A population begins at generation 0 with a single particle.

At the commencement of the �rst generation, this original particle splits into a

number of identical o�spring. The number of o�spring is governed by a probabil-

ity density on the non-negative integers. Each of the progeny then independently

splits into a number of o�spring at the inception of the next generation. The num-

ber of o�spring produced by each particle is determined by the same probability

density as the one corresponding to the founder of the population (see it e.g. [62]

or [21]).

The properties of the o�spring distribution govern the behavior of the branch-

ing process. The simplest characterization is the average behavior of the process.

Branching processes are called subcritical, critical or supercritical if the means

of their o�spring distributions are less than, equal to, or greater than one, re-

spectively. Subcritical and critical processes become extinct with probability one.

Supercritical processes exhibit exponential growth on average, and have a non-zero

probability of extinction.

One model useful for linkage disequilibrium mapping is due to Kaplan et al.

[36]. They used a branching process model with Poisson o�spring distributions to

model the propagation of disease genes within a larger population. This model can

be viewed as an approximation to the propagation of a rare disease gene through

genetic drift within the Wright-Fisher model.
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2.5.4 Generalizations

A common way to apply these models for �ne-scale mapping with linkage dise-

quilibrium is to consider a large population of normal chromosomes, within which

there is a small but expanding population of disease chromosomes [36] [76]. The

distinction between normal and disease chromosomes arises from the genetic na-

ture of the disease: the disease chromosomes carry a faulty version of a gene.

Since we can treat disease chromosomes as a separate population within a larger,

stable population, we can focus our attention on modeling the behavior of the

subpopulation.

The models must be modi�ed to allow for genetic systems where the disease

gene is linked to, and at disequilibrium with, a marker locus whose location in the

genome is known. The underlying behavior of the disease population is typically

taken to be as follows [36] [76]:

1. At some time in the past, t = 0, a single copy of the disease allele appeared

in the population, on a chromosome that had a marker allele of type i.

2. Through the generations, the number of disease alleles in the population

increased until the present time.

3. The distribution of marker alleles in the disease population changed over

time through recombination events.

4. Mutation and selective pressures may also have had an impact.
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The modi�cations to the models introduced above are relatively straightfor-

ward. We can modify the Moran model to account for growing populations. Also,

we can make the populations described by branching processes grow by choosing

o�spring distributions with means greater than one. Modeling the recombination

events between the disease and marker loci is possible within the Moran model

through viewing the changes in marker allele to be a type of \mutation", the

rate of which represents the recombination coe�cient. This can be accomplished

directly within the branching process framework by considering multi-type Galton-

Watson models. In multi-type branching processes, one can explicitly model the

transitions from one type, or in this case one marker allele, to another (see it e.g.

[52]).

As these models form the basis for the results obtained in this thesis, Chapter

4 discusses them in greater detail.
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Chapter 3

Linkage Disequilibrium Mapping

The power of genetic mapping via linkage disequilibrium lies in the fact that the

disequilibrium between two loci decays at a rate that is inuenced by the distance

between them. Two questions arise before disequilibrium mapping can be used.

First, disequilibrium must be present. Second, the mechanism that induced dise-

quilibrium must be explained. The �rst issue can be addressed with the classical

techniques of contingency table analysis. Some work has been done to distinguish

between disequilibrium arising from various genetic phenomena. For instance,

Chakraborty and Weiss [8] present a method that can be used to di�erentiate be-

tween disequilibrium induced through admixture of populations from that due to

physical linkage of loci. Linkage analysis is also often used to explain linkage dise-

qiulibrium. If loci exhibit disequilibrium with a disease gene and are in a region of

known linkage, then their allelic association is likely to be due to physical linkage.

Once the existence of linkage disequilibrium is veri�ed, it can be used to localize

disease genes within a background map of marker loci in one of two ways. The

�rst option is to use the relative magnitudes of association to de�ne a search

region for the disease gene. The second possibility is to make assumptions about
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the population and use the resulting model to obtain a direct estimate of the

recombination coe�cient.

3.1 Simple Mapping

Geneticists �rst used linkage disequilibrium in a manner that has come to be

called Simple Disequilibrium Mapping (see e.g. [11]). To use simple disequilibrium

mapping, the researcher computes a measure of disequilibrium for each marker

locus in the region of interest and plots the measures against the positions of the

loci. The subregion that shows the greatest degree of disequilibrium becomes the

�rst portion of DNA to be searched for the disease-inuencing gene.

In order to utilize this technique, one must employ a measure of disequilib-

rium. We have already seen one possibility in the measure D from Equation 2.11.

However, many measures of linkage disequilibrium exist. Some of them are much

likeD in that they treat the marker alleles as categories. Others rely on data from

marker loci whose alleles can each be assigned a meaningful integer value.

3.1.1 Categorical Measures

The simplest categorical measures of allelic association are for two loci, each with

two alleles. The measure D is one of these. Devlin and Risch [11] studied the

behavior of the most commonly used simple disequilibrium measures of this type.

These measures are listed in Table 3.2, using the notation de�ned in Table 3.1.
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Note that each of the measures may be written as di�erent scalings of D. This is

true for D0, however, only when the alleles are arranged in the table so that D is

positive and the disease is rare relative to the associated marker allele frequency

[70]. The actual formula is

D0 =

8>>><
>>>:

p11p22�p12p21

min(p1�p�2;p�1p2�)
if D > 0;

p11p22�p12p21

min(p
�1p1�;p2�p�2)

otherwise:

(3.1)

Devlin and Risch [11] conclude that the best of these measures of disequilibirum

is �. They arrive at this conclusion after studying the their behavior through time,

letting Dt represent the value of D at time t. By assuming that the relative

frequency of the disease allele remains constant for all t and that when t = 0 a

single marker allele is associated with the disease allele, they conclude that the

best estimate of D0 is p1�p22. This allows them to exploit the relationship shown

in Equation 2.13 and conclude that

� =
p11p22 � p12p21

p1�p22
=

Dt

D0
= (1� r)t; (3.2)

M1 M2 . . . Mk Totals

Disease p11 p12 . . . p1k p1�
Normal p21 p22 . . . p2k p2�

p�1 p�2 . . . p�k 1

Table 3.1 Notation for joint and marginal
allele frequencies from a 2 � k table.
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Measure Formula

� p11p22�p12p21
(p1�p2�p�1p�2)1=2

D0 p11p22�p12p21
p1�p�2

� p11p22�p12p21
p1�p22

d p11p22�p12p21
p1�p2�

Q p11p22�p12p21
p11p22+p12p21

Note: This formulation of D0 is a special case discussed in the text.

Table 3.2 Disequilibrium measures
commonly used for two bi-allelic loci.

This result indicates that � depends directly on the recombination coe�cient.

Simulation experiments support this result in the sense that � is the least depen-

dent on other factors such as marker allele frequencies. While Devlin and Risch

[11] conclude that � is the best available measure of linkage disequilibrium, they

also note that the behavior of D0 is comparable.

The measures in Table 3.2 are appropriate only for two bi-allelic loci. As

such, they are clearly insu�cient for use with commonly used polymorphic loci.

Hedrick [26], Morton and Wu [55] and Karlin and Piazza [38] studied measures of

disequilibrium that may be used for markers with an arbitrary number of alleles.

The simplest of these are scalings of the term

D2 =
kX
i=1

lX
j=1

(pij � pi�p�j)
2 ; (3.3)
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a generalization of D. Chakraborty et al. [7] note that there are at least �ve di�er-

ent classes of measures of disequilibrium for multiallelic loci. Each of these classes

is formulated with respect to di�erent functions of the haplotype frequencies, and

each possesses distinct analytical properties.

None of the measures that have been proposed to date are entirely satisfactory.

The primary concern is that they all are inuenced by marginal allele frequencies.

Devlin and Risch claim that the expected behavior of � and D0 do not depend on

marker allele frequencies, and Hedrick makes the same claim about a generaliza-

tion of D0. However, Lewontin [48] demonstrates that, while the limits of D are

determined by the marginal allele frequencies due to the constraint that the joint

allele frequencies be positive, D itself is indeterminate given a change in marginal

allele frequencies due to the fact that there is only one degree of freedom in a 2�2

table. Since D itself is indeterminate, no measure that is a function of D and

the marginal allele frequencies can be invariant to changes in the marginal allele

frequencies.

This di�culty, along with the problem that evolutionary forces other than re-

combination can inuence disequilibrium, has led some to try to measure associa-

tions from familial data. There are two methods for this. They are called Haplotype

Relative Risk (HRR) [14] and the Transmission Disequilibrium Test (TDT) [65].

The aim of these family-based measures of association is to utilize genetic informa-

tion from pedigrees to obtain estimates of the probabilities in Table 3.1 that will
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produce measures of disequilibrium that reect only linkage, and not sampling or

population e�ects.

In the case of HRR, one attempts to calculate the risk of contracting a disease,

given the presence of a speci�c marker allele in linkage with the disease gene,

relative to the risk of disease in the group that does not have that allele. For the

case where there are two marker alleles, this is formulated as [74]

RR =

p11
p
�1

1 � p11
p
�1

1� p12
p
�2

p12
p
�2

=
p11

p�1 � p11

p�2 � p12
p12

=
p11 p22
p12 p21

: (3.4)

The pij are estimated as though individuals were randomly selected from the pop-

ulation, or that the disease and normal samples were obtained in the same manner,

which is rarely the case. In order to overcome this, Falk and Rubenstein propose

the HRR statistic as an adaptation of the RR statistic, with modi�cations on how

the pij are estimated. As an illustration of how this is done, consider a reces-

sive disease completely linked to a known marker locus. If we can unambiguously

identify the disease/marker haplotype that was passed on from each parent to the

a�ected o�spring, the parental haplotypes not transmitted by the parents can be

viewed as a random sample from the population of such haplotypes. Thus, we can

use the non-transmitted parental haplotypes as the sample from which we estimate

the p2j and allele frequencies. Likewise, we can use the haplotypes transmitted to

the a�ected o�spring to estimate the p1j.
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In the original formulation, the behavior of the HRR was only known for sys-

tems where the probability of recombination was zero. Further modi�cations have

been shown to be informative even when r is greater than zero [44]. Also, by taking

into account the non-independence of transmitted and non-transmitted parental

marker alleles, Knapp et al. [44] obtained the standard error of the estimator of

HRR.

The TDT is quite similar to the HRR. It also uses familial information to

construct the control sample, ensuring that the disease sample is compared against

the proper population. The purpose of the TDT is to test for linkage between a

marker and a disease locus that show population association [65]. The test is

formulated by considering the 2n parents of n a�ected individuals. The parents

are then classi�ed by the joint behavior of the transmission of their marker alleles

to their child. For example, consider the situation where there are two marker

alleles, M1 and M2. We then classify the parent's transmission of alleles. The data

Non-transmitted

Transmitted M1 M2 Total
M1 a b a+ b
M2 c d c+ d

Total a+ c b+ d 2n

Table 3.3 Transmitted and non-transmitted alleles from 2n
parents for the transmission-disequilibrium test.



32

from such considerations can be tabulated as in Table 3.3, where, for example, b

represents the number of parents that passed on an M1 allele and did not pass

on a M2 allele to the a�ected child. The TDT test statistic is then de�ned as

McNemar's test statistic

�2
tdt =

(b� c)2

(b+ c)
; (3.5)

which follows the �2 distribution with one degree of freedom (see e.g. [3]).

The families eligible for use with this method consist of at least one a�ected

o�spring and one heterozygous parent. Statistical properties of the test built from

evaluation of the transmission of alleles from heterozygous parents to a�ected

o�spring were �rst considered by Spielman, McGinnis and Ewens [65], who found

that it is a valid test for linkage in the presence of population association. Further

considerations have been made. For example, the test can be generalized to the

case when there are more then one a�ected o�spring [65]. Others extended the

TDT to marker loci with more than two alleles [64].

Both TDT and HRR are valid tests for association, and in the case of TDT,

even linkage. Therefore they provide measures of linkage disequilibrium. Because

they are family-based, they are not of primary interest for this work.
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3.1.2 Moment Measures

General Markers

It is also possible to derive moment estimators that are related to population

association. As one example, consider a sample of n gametes which have been

sequenced at a given locus. Then, if we let kij be the number of sites at which

gametes i and j di�er within the locus, we can de�ne an estimate of the variance

of the number of site di�erences between pairs of sequences in the sample as

S2
k =

1

n2

nX
i

nX
j

 
kij �

Pn
i=1

Pn
j=1 kij

n2

!2

(3.6)

In 1968, Sved [66] suggested that it should be possible to use S2
k as a measure of

multilocus association. More than a decade later, Brown et al. [5] were able to

express the estimator as a function of the pairwise linkage disequilibria between the

sites. Chakraborty [9] [10] utilized the distribution of the number of heterozygous

loci in an individual to further study the population associations. The results of

these studies indicated that variations of S2
k could be used to test for nonrandom

association of alleles.

Using the results of Brown et al., [5] Hudson [31] derived an estimator of the

parameter 4Nr, where N is the e�ective population size. Using pji to denote the

sample frequency of the ith allele at site j, hj = 1 �
P
p2ji to denote the sample

estimate of heterozygosity at site j and � to denote the mutation rate, he showed
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that

E[S2
k �

X
j

hj +
X
j

h2j ] = 4N�g(4Nr; n); (3.7)

where g(4Nr; n) is of the form

g(4Nr; n) =
2

(4Nr)2

Z c

0
f(z)(4Nr � z)dz: (3.8)

This equation led Hudson [31] suggest that an estimator for 4Nr could be the value

that satis�es Equation 3.7, with sample values replacing the parameters. Wakeley

[73] later proposed a modi�cation in which he used

S2
� =

2

n(n� 1)

n�1X
i=1

nX
j=i+1

0
@kij � 2

n(n� 1)

n�1X
i=1

nX
j=i+1

kij

1
A

2

(3.9)

in place of S2
k to obtain an estimating equation similar to that in Equation 3.7.

Both Hudson [31] and Wakeley [73] veri�ed that their estimates were valid via

simulations. Wakeley [73] demonstrated that his estimator was somewhat better

than that of Hudson [31].

The value of r estimated by these measures represents the average recombina-

tion rate per base pair within a length of DNA for which the nucleotide sequence is

known for each homolog in the sample. Hence, these measures do not seem to be

useful for genetic mapping. While it may be possible to modify these procedures

to make them applicable to the problem of genetic mapping, we do not pursue that

possibility in this thesis.
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Microsatellite Markers

Another possible approach involves deriving moment measures for explicit use

with microsatellite loci. Microsatellite loci belong to a broader class of Variable

Number of Tandem Repeat (VNTR) loci [57]. These loci consist of tandem repeats

of short DNA motifs, and their alleles are characterized by the number of observed

repeats. Speci�cally, microsatellites consist of repeats of one to �ve nucleotides.

For example, the sequence CAGCAG consists of two copies of the trinucleotide

sequence CAG.

Microsatellite loci have come to be widely used in genetic mapping studies for

several reasons. First, the human genome contains a large number of such loci

[19] [20] [33]. Second, microsatellite loci usually exhibit a high number of alleles

and are highly polymorphic, due to their high mutation rates [57] [25]. Third, it is

reasonable to assume that many of these loci are not a�ected by selective pressures

[34].

Another bene�t of this class of loci is the fact that their alleles can be described

by nonnegative integers. This simpli�es mathematical modeling as alleles can be

labeled with a meaningful integer: the number of repeats.

Kimmel et al. [40] take advantage of the properties of microsatellite loci and

propose a model of their evolution. The model addresses the joint evolution of two

microsatellite loci in two individuals drawn at random from a population. Using
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this population model, the authors derive the following moment measure

� =
Cov[(X1 � Y1)2; (X2 � Y2)2]

V ar[X1]V ar[X2]
;

where [X1, X2] and [Y1, Y2] are the haplotypes of two individuals. The expected

value of � is equal to 2� r when the population model is evaluated at large values

of the age parameter. For smaller values of the age parameter, �'s expected value

is one.

Application of this measure to data from several tightly linked microsatellite

loci resulted in estimates of � that were close to one. Hence, other measures

are required to be able to achieve estimates of r for microsatellite loci. Also, as

measures from this model are for two microsatellite loci, it is inappropriate to use

them to estimate the recombination rate between one microsatellite locus and a

disease locus with discrete alleles.

3.2 Maximum Likelihood Mapping

The traditional approach to disequilibrium mapping is to choose some measure

of disequilibrium, using it to identify regions in the genome demonstrating the

greatest amount of allelic association. While it is possible to modify this simple

mapping approach to obtain point estimates of the recombination fraction between

a given marker locus and the unknown disease gene, the simple modi�cations are

incapable of providing con�dence bounds for the estimate. H�astbacka et al. [24]
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took a �rst step by applying the classical methods of mutation assay initially

proposed by Luria and Delbr�uck [50] to the propagation of a disease mutation

within a population of chromosomes. Using Luria-Delbr�uck methodology, they

were able to obtain both point estimates and approximate con�dence limits for

the recombination coe�cient between a marker locus and a disease gene.

Another large class of methods has been proposed since the work by H�astbacka

et al. [24]. This class consists of applying maximum likelihood methods to sam-

pled data via various population models. The remainder of this section will discuss

the use of maximum likelihood concepts in genetic mapping using linkage disequi-

librium data. It will �rst present methods for single markers and conclude with

techniques relating to the use of more than one marker.

3.2.1 Single Marker

Several methods for likelihood-based linkage disequilibrium mapping exist. These

methods fall into two classes. The techniques from the �rst class develop like-

lihoods that are based on linkage disequilibrium measures. Those in the second

class develop likelihoods for r directly by modeling the behavior of the disease

population. This subsection will describe both types of methods.

Hill and Weir [29] were the �rst to try to utilize likelihood methods to map

disease genes with linkage disequilibriumdata. They devised a method bymodeling

the measure �2 (see Table 3.2) through the parameter � = 4Nr, where N is the
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e�ective population size. This choice was based on the fact that �2 is a function

of �, rather than r alone (see e.g. [28]) The reason for this is that �2 decays as

recombination events occur through the history of a population, and the number

of recombination events in a population depends on the size of the population: a

large population has more recombination events than a small one. Hill and Weir

modeled this relationship through formulae for the probability density functions

of the haplotype counts, conditional on � as well as other genetic e�ects, such

as selection. Simulation studies showed that that the resulting likelihood is not

highly inuenced by the degree of selection at the loci. However, their results also

indicated that their likelihood for r did not peak sharply for values of r near the

maximum. This suggested that linkage disequilibrium may not provide precise

genetic maps.

The second likelihood method to be based on a measure of linkage disequilib-

rium was proposed by Terwilliger [68]. The primary purpose of his method was to

provide a single degree of freedom test for genetic markers with k alleles. Rather

than calculating the Pearson chi-squared statistic from a 2� k contingency table,

Terwilliger made the assumption that a single unknown marker allele was associ-

ated with the disease. This allowed him to use a parameter, �, to represent the

proportion by which the associated allele is increased over its population frequency.
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Using this formulation, he constructed the likelihood

L =
kX
i=1

[pi�fpi� + �(1 � pi�)g
n1i fpi� � �(1 � pi�)pD=(1 � pD)g

n2i

�
Y
j 6=i

fpj�(1 � �)gn1j fpj� + �pj�pD=(1 � pD)gn2j ];

(3.10)

where pD is the population frequency of the disease, and the pij and nij represent

the allele frequencies and sampled allele counts, following the notation established

in Table 3.1.

This likelihood is essentially the product of the multinomial likelihoods obtained

for the disease and normal samples. To observe this, note that if we assume the

ith marker allele to be associated with the disease allele, then pi� + �(1 � pi�)

is the proportion of the disease chromosomes that contain the associated allele,

pi���(1�pi�)pD=(1�pD) is the proportion of normal chromosomes containing the

associated allele, pj�(1 � �) is the proportion of disease chromosomes containing

the jth (unassociated) allele and pj�+�pj�pD=(1� pD) is the proportion of normal

chromosomes that contain the jth (unassociated) allele. Since we do not know

which allele is associated, the full likelihood is the weighted sum of the likelihoods

where a single allele is �xed as the one associated with the disease. This likelihood

can be utilized to construct a test for association. Simulations show that the

resulting likelihood ratio test is more powerful than the standard Pearson statistic

against the alternative that a single allele is associated with the disease [68]. Once

association has been established, one may use the formula for the decay of linkage

disequilibrium (Equation 2.13) to de�ne the relationship � = �(1 � r)t, where
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� is the initial degree of linkage disequilibrium. This formulation then yields an

estimate of the recombination fraction.

Devlin et al. [12] propose a third approach, using the measure � in Table 3.2.

Since �(1=t)log� is approximately equal to r in large populations [27], they mod-

eled the random variable Y = �log� for likelihood mapping purposes. They relied

on simulation results to assert that the distribution of Y could be approximated

with a Gamma density. This made it possible to model not only mean behavior

for a marker locus, but also provided a method to allow for variability in Y .

The authors obtained a likelihood using the relationship between Y and r men-

tioned above, and assuming that Y followed a Gamma density. They recommended

that the likelihood be calculated along a grid of recombination fractions to obtain

the maximum likelihood estimate.

A �nal class of likelihood-based method disequilibrium methods is due to

Kaplan et al. [36]. Their technique involves modeling the evolution of a small

disease population within a large non-disease population. Under this scenario, one

may consider the distribution of marker alleles for normal and disease populations

separately, with that of the disease population being of primary interest since the

normal population is assumed to be large. From this setup, a sample from the

disease population can be modeled with a multinomial distribution if one assumes

the marker allele frequencies in the disease population to be known. Hence, we
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can de�ne the log likelihood with the multinomial sampling model:

l(rj p1d; p2d; : : : ; pkd) = �+
kX
i=1

nid log (pid) ; (3.11)

where pid and nid represent the allele frequencies and sampled allele counts from

the disease population. Note that the pid sum to one, unlike the p1i in Table

3.1. Note also that this is a function of r since the recombination coe�cient

inuences the marker allele frequencies. Because the marker allele frequencies are

random variables reecting the evolutionary history of the disease population, the

log likelihood for r is given by,

l(r) = �+ E

"
kX
i=1

nid log (pid)

#
; (3.12)

where the expectation must be evaluated over the entire history of the population.

Solving this expectation becomes of primary importance. The �rst step is to

model the evolution of the pid with some population genetic model. Kaplan et

al. [36] do this with a Galton-Watson branching process with Poisson o�spring

distributions. They then exploit the properties of the Poisson distribution, namely

that the sum of independent Poisson distributions is another Poisson distribution,

to obtain the stochastic recursion

Xi(t+ 1) � Poissonf(1 + �)[(1 � r)Xi(t) + rXT (t)pin]g; (3.13)

where Xi(t) is the number of disease chromosomes with the ith marker allele

in the tth generation, XT (t) is the total number of disease chromosomes in the
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tth generation and � is the growth parameter. They then propose a simulation

scheme that enables them to estimate the likelihood via Monte Carlo simulations

by assuming that the disease mutation initially occurred on a chromosome with a

speci�ed marker allele.

Xiong and Guo [76] take a di�erent approach to solve the expectation in

Equation 3.12. They use di�erential equations to approximate the �rst- and

second-order moments of the Wright-Fisher model in what is known as a di�u-

sion approximation [17]. In particular, they show that the �rst two moments of

pid satisfy the following di�erential equations if there are k marker alleles:

dE[pid(t)]

dt
= E[gi(t)]; i = 1; 2; : : : ; k; (3.14)

dE[p2id(t)]

dt
= E

"
pid(t)f1� pid(t)g

XT (t)

#
+ 2E[gi(t)pid(t)]; i = 1; 2; : : : ; k; (3.15)

and

dE[pid(t)pjd(t)]

dt
= �E

"
pid(t)pjd(t)

XT (t)

#
+E[gi(t)pjd(t)]+E[gj(t)pid(t)]; i 6= j; (3.16)

where gi(t) = E[pid(t + 1) � pid(t)jp1d(t); p2d(t); : : : ; pkd(t)]. Given a population

genetic model for the pid, it is possible to solve the equations for these moments

either analytically or numerically. For example, if we assume that p1d = 1 and

pjd = 0; j = 2; 3; : : : k and that there is no mutation at either the marker or disease

locus and also that the marker allele frequencies in the normal population (pin)
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are �xed, we solve to �nd that

E[p1d(t)] = e�rt + (1 � e�rt)p1n;

E[pjd(t)] = (1� e�rt)pjn; j = 2; 3; : : : k:

(3.17)

Using these �rst- and second-order moments, Xiong and Guo [76] construct

approximations to the likelihood based on truncated Taylor series expansions about

the mean of the process. The �rst-order approximation (FOA) is

l1(r) � �+
kX
i=1

nid log (E [pid(t)]) ; (3.18)

and the second-order approximation (SOA) is given by

l2(r) � �+
Pk

i=1 nid log (E [pid(t)]) + r E[p(t)� �(t)]

+ 1
2E
n
[p(t)� �(t)]H[p(t)� �(t)]T

o

= �+
Pk

i=1 nid log (E [pid(t)]) + 1
2
ftr[HM(t)]� �(t)H�(t)Tg;

(3.19)

where p(t) = (p1d(t) p2d(t) : : : pkd(t)), �(t) = (E[p1d(t)] E[p2d(t)] : : : E[pkd(t)])

and

r =
@

@pid(t)

kX
j=1

njd log (pjd(t))

������
p(t)=�(t)

(3.20)

are row vectors, and M(t) = E[p(t)p(t)T ] and

H =
@2

@pid(t)@pjd(t)

kX
l=1

nld log (pld(t))

�����
p(t)=�(t)

(3.21)

are square matrices. We do not need to evaluate the gradient, as its term cancels

from the equation, but performing the di�erentiation for the Hessian, we �nd that

it is a diagonal matrix with the diagonal elements equal to

Hii =
�nid

E [pid(t)]
2 : i = 1; 2; : : : ; k; (3.22)
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Both the simulation method of Kaplan et al. [36] and the approximation ap-

proach of Xiong and Guo [76] are capable of providing point estimates and con�-

dence intervals for the recombination coe�cient. However, there are several draw-

backs to each method. The branching process model used by Kaplan et al. [36]

is simplistic; it does not account for mutation, either at the marker locus or at

the disease locus. Also, their Monte Carlo method is subject to simulation vari-

ability, which can be signi�cant due to the exponential growth of supercritical

branching processes. Decreasing the e�ect of simulation error through replication

can be prohibitive due to the amount of time required to simulate the likelihood.

The method of Xiong and Guo [76] relies on a di�usion approximation to make a

discrete-time model work in continuous time. It also uses the assumption that the

frequency of the disease allele remains constant in the population, which can be

problematic if the population is not large. Other di�culties arise when applying

their methodology. Specifying the form of the model in terms of the di�erential

equations for the moments can be demanding, as can obtaining the solutions of

those equations.

3.2.2 Multiple Markers

If the data from more than one marker is available, it can provide great improve-

ment in mapping a disease gene. However, all of the methods presented in the



45

previous section are for the case when there is a single marker allele. This raises

the question of the extendibility of these techniques to more than one marker.

The methods of Kaplan et al. [36] and Xiong and Guo [76] rely on speci�c

population genetic models. Hence, they can be modi�ed to accommodate several

markers. In fact, both groups have proposed models dealing with the joint evolu-

tion of two marker loci. However, modeling haplotype data in this way becomes

combinatorially complex, as one must account for the possibility of recombination

events in many intervals. Another di�culty that arises with modeling multiple

marker loci is that the likelihoods used with these models are based on haplotype

counts, and there is currently little published haplotype data. The di�culties that

arise in models for many markers have led most researchers to rely on what are

called composite, or pseudo, likelihoods [12] [68] [76].

The composite likelihood was �rst applied to the analysis of spatial data by

Besag [2], who called it a pseudo-likelihood. The term \composite" prevailed be-

cause the log-likelihood is a composition, actually a sum, of marginal or conditional

log likelihoods. For example, if X1 and X2 are two dependent random variables,

then the complete log-likelihood could be written as logf(x1; �) + logf(x2jx1; �),

where � represents the parameters in the model. This leads to two possible com-

posite likelihoods when either one of other of the components is di�cult to obtain:

cl = logf(x1; �)+ logf(x2; �) and cl = logf(x1jx2; �) + logf(x2jx1; �). Note that
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the terms in the sum need not be independent, an important consideration when

mapping a disease gene within a map of tightly linked marker loci.

Because composite log likelihoods are sums of ordinary, or conditional, log

likelihoods they retain many of the properties of classical log likelihoods. For

instance, since the Kullback-Liebler information inequality holds for each of the

component log-likelihoods, it also does for the sum:

E�0[li(�)] � E�0[li(�0)]) sup
�

E�0 [cl(�)] = E�0 [cl(�0)]: (3.23)

Hence, composite likelihoods can be shown to provide consistent estimators under

additional assumptions about their convergence [49].

There are two additional arguments for the use of composite likelihoods. First,

they provide a method of estimation when the full likelihood is di�cult to specify.

Second, they often represent the parts of the model about which we have the

most \knowledge". This means that we either have more data for the component

likelihoods than for the full likelihood, or we are more con�dent in our model for

the component likelihoods, or both. Because of these issues, composite likelihood

methods are thus far the method of choice in linkage disequilibrium mapping.

3.3 Prospectus

Application of these methods to several diseases for which the disease gene has been

identi�ed has met with mixed success. All of the methods provide reasonable search
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regions for the genes causing Cystic Fibrosis and Diastrophic Dysplasia, based on

the maps published by Kerem et al. [39] and H�astbacka et al. [23], respectively.

However, the simpler methods do not perform satisfactorily with other diseases,

such as Huntington's disease and Friedrich Ataxia [36] [76], which has lead some

researchers to conclude that the usefulness of linkage disequilibriummapping may

be limited for diseases that are genetically complex [12] [36] [43] [51]. Xiong and

Guo have provided some evidence that this is not the case by demonstrating that

the use of appropriate population genetic models makes it possible to map the

genes even of complex diseases.

All of the applications discussed in the previous section have their drawbacks.

For example, the methods of Terwilliger [68] and Devlin et al. [12] are formulated

purely in terms of linkage disequilibriummeasures and not in terms of the assumed

population model. They are therefore di�cult to modify to allow for di�erent

population scenarios. The di�usion approximation of Xiong and Guo, as described

previously, is unwieldy due to complicated di�erential equations. In addition to

this limitation, it is only an approximation to the assumed Wright-Fisher model.

Also, the model of Kaplan et al. [36] is very simpli�ed and requires time-consuming

simulation.

The remainder of this thesis provides a framework to map disease genes via

linkage disequilibrium by expanding the work of Kaplan et al. [36] and Xiong and

Guo [76]. It utilizes the theory of branching processes to obtain approximations
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to likelihoods for r. It also obtains similar results for a time-continuous version of

the Moran model via the coalescent. After obtaining the approximations to the

likelihood ignoring all factors other than recombination, it proceeds to generalize

the model, considering the case where there are two markers and allowing for

mutation both at the marker loci and at the disease locus. It will also address

issues arising when data from more than one marker locus are available.
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Chapter 4

Population Models

Chapter 2 provided a brief introduction to three population models and their poten-

tial for use in �ne-scale mapping via linkage disequilibrium. This chapter more fully

explores multi-type Galton-Watson branching processes and Moran/Coalescent

processes. The chapter will focus on two general aspects of each model: their

descriptions and their �rst two moments.

4.1 Descriptions

This section outlines the population models used through the remainder of this

thesis. It �rst outlines the basic properties of these models for populations whose

elements are all alike. It then expands the basic notions from these models to

the case where there are several di�erent types of elements in the populations.

Throughout the discussion, recall that the elements in the populations being mod-

eled are chromosomes carrying a disease mutation. The distinguishing feature that

separates the chromosomes into several classes is the marker allele present on each

chromosome.



50

4.1.1 The Galton-Watson Process

The information presented below is well known. As such, the discussion of this

section will not contain speci�c references. However, the majority of the material

was obtained from texts written by Harris [21], Mode [52] and Resnick [62].

The simplest Galton-Watson branching process considers a population of ob-

jects evolving in discrete time. That is, it tracks the size of the population in

successive generations, not the actual ancestry or the speci�c times that individ-

ual objects are born. Hence the focus is the number of objects present in the tth

generation, which we denote by X(t). The behavior of X(t) as time progresses is

governed by the basic assumptions underlying the Galton-Watson process.

The fundamental concept that drives the evolution of a Galton-Watson branch-

ing process is the notion that all of the elements in the population are alike. Two

explicit assumptions are required to describe this idea. The �rst is that the ele-

ments in the process all produce o�spring according to the same probability law.

The second is that each of the elements in the population produce o�spring inde-

pendently of one another.

The consequence of this model is that the sequence consisting of the number

of elements in the population at each generation, X(1), X(2), : : :, forms a Markov

chain. That is, the probability law that governs the number of elements in genera-

tion (t+1) depends only on the number of elements in generation t. In fact, given
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X(t), the number of particles in the next generation can be written as

X(t+ 1) =
X(t)X
i=1

xit; (4.1)

where xit is a realization of the random variable Xit, the number of o�spring pro-

duced by the ith element from the tth generation. Since the o�spring distributions

are independent and identically distributed for all i � 1 and t � 1, they can be

described by a single probability generating function (pgf). This pgf can be written

as

f(s) =
1X
k=0

pks
k; jsj � 1; (4.2)

where pk is the probability that a element will produce k o�spring, and s is a

complex variable. Note that the expected number of o�spring is given by

E[Xit] =
d

ds
f(s)

�����
s=1

= �; i = 1; : : : ;X(t); t = 1; 2; : : : (4.3)

and the variance is

Var[Xit] =
d2

ds2
f(s)

�����
s=1

+ ���2 = �2; i = 1; : : : ;X(t); t = 1; 2; : : : : (4.4)

The pgf of X(t + 1) is derived by forming functional iterates of Equation 4.2,

or

ft+1(s) = f [ft(s)] ; t = 1; 2; 3; : : : ; (4.5)

where f1(s) = f(s). This form arises from the fact that the number of particles

in the population at time t+ 1 is the sum of o�spring from a random number of
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particles. While explicit expressions for such objects seldom exist, they can still be

used to study the process. Speci�cally, they make it possible to compute moments

of the number of elements in the population at any time t. For instance, if a single

element existed in the population at time t = 0, the �rst two moments are

E[X(t)] = �t; (4.6)

and

Var[X(t)] =

8>>><
>>>:

�2�t(�t�1)
�2��

; � 6= 1;

t�2; � = 1:

(4.7)

These moments are obtained by applying Equations 4.3 and 4.4 to the iterated pgf

in Equation 4.5.

These results are not directly applicable to the problem of genetic mapping,

as they apply only to populations consisting of identical elements. In order to

use Galton-Watson processes for linkage disequilibriummapping, it is necessary to

consider models for non-identical particles. This is so because disease chromosomes

di�er through the possession of one of k distinct marker alleles. Therefore, the

discussion now turns to multi-type branching process models.

Like the simple Galton-Watson process, the multi-type version focuses on the

number of elements in the population in each generation. The distinction between

the two processes is that the multi-type process must track the number of ele-

ments in each class. For instance, the Galton-Watson process with one class of

elements is capable of modeling the number of disease chromosomes in successive
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generations. The multi-type process can track not only the total number of dis-

ease chromosomes, but also the number of disease chromosomes carrying each of

k speci�c marker alleles. Like the process with one state, the multi-type process

is a Markov process. However, its states are vectors, X(t), whose components are

nonnegative integers, Xi(t) for i 2 f1; 2; : : : ; kg.

As with the Galton-Watson process of a single type, the o�spring distributions

can be de�ned with probability generating functions (pgfs). In this case, the pgfs

must be vector-valued. For instance, the pgf for the o�spring distribution of a

single chromosome with the ith marker allele is

f i(s1; s2; : : : ; sk) =
1X

n1;:::;nk

pi(n1; n2; : : : ; nk)s
n1
1 sn22 : : : snkk ;

js1j; js2j; : : : ; jskj � 1;

(4.8)

where pi(n1; n2; : : : ; nk) is the probability that an element of type i has n1 children

of type 1, n2 children of type 2, and so on up to nk children of type k. The

probability generating function of X(t) is obtained through forming functional

iterates of the component o�spring distributions. In particular, the pgf for elements

of type i is

f it+1(s) = f i
h
f1
t (s); f

2
t (s); : : : ; f

k
t (s)

i
; t = 1; 2; 3; : : : : (4.9)

As with the branching process of a single type, speci�cation of the pgfs makes

it possible to obtain expressions for the moments of the vector-valued distribu-

tions generated by multi-type processes. The moments obtained from single-type
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Galton-Watson branching processes are scalars. Those of multi-type branching

processes are matrices, whose elements depend on both the parental and o�spring

type. For instance, the elements of these matrices, �ij , represent the expected

number of o�spring of type j from a parent of type i. This quantity can be written

mathematically for the case where the parent is an element of type i in generation

zero as

�ij = E[Xj(1)jX(0) = ei] =
@

@sj
f i(s)

�����
s=1

; i; j = 1; 2; : : : ; k; (4.10)

where ei is a vector whose ith entry is a one, and whose other components are zero.

The matrix of �rst moments is then de�ned as M = (�ij). A vector generalization

of Equation 4.6 results in

E[X(t)jX(0)] = X(0)Mt; t = 0; 1; 2; : : : ; (4.11)

provided that all �ij are �nite and that they are not all zero.

To obtain the second moments, de�ne C(t) to be the matrix whose (i; j)th

element is E[Xi(t)Xj(t)jX(0)]. Then considering the conditional expectations

E[Xi(t+ 1)Xj(t+ 1)jX(t)], provides the result that

C(t+ 1) = MTC(t)M +
kX
i=1

ViE[Xi(t)jX(0)]; t = 0; 1; 2; : : : : (4.12)

This assumes that the entries in the one-generation covariance matrices,

Vi [j;l] = E[Xj(1)Xl(1)jX(0) = ei]

�E[Xj(1)jX(0) = ei] E[Xl(1)jX(0) = ei]; i; j; l = 1; 2; : : : ; k;

(4.13)
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are all �nite. Note that Vi is simply the covariance matrix of the number of o�-

spring produced by a single element of type i. Applying Equation 4.12 repeatedly,

gives

C(t) =
�
MT

�t
C(0)Mt

+
tX

j=1

�
MT

�t�j ( kX
i=1

ViE[Xi(j � 1)jX(0)]

)
Mt�j ; t = 1; 2; : : : :

(4.14)

With this framework to obtain the expected counts and covariances, it is now

possible to formulate speci�c branching process models for the propagation of

disease genes within a population. Estimates of these moments can then be used

to form approximate maximum likelihood estimators for the location of a disease

gene.

4.1.2 The Moran/Coalescent Process

The discussion now returns to the Moran model [53], which was briey introduced

in Chapter 2. This model considers a population of haploid chromosomes evolving

in continuous time. In the simplest case, this population is of a constant size.

However, the population size can be generalized to describe various forms of de-

terministic population growth or decline, where the population size at time t is

modeled by the function N(t). What follows is a description of a version of the

Moran model for the case where the population size is constant, and consists of

N(t) disease chromosomes which may contain one of k possible alleles at a locus
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near the disease gene. The description requires the speci�cation of three population

behaviors: birth/death, recombination and mutation.

� Birth/Death: When a chromosome leaves the population, it is immediately

replaced by another chromosome. The epochs of each chromosome's death

and rebirth constitute a homogeneous Poisson process with an intensity of

one \generation" on [0;1). Hence, a chromosome's lifetime is exponentially

distributed with a mean of one generation.

� Recombination:

{ Moran Model: At times of birth/death, the o�spring chromosome is

sampled from the pool of chromosomes with the same marker allele

with probability 1�r (no recombination). The o�spring chromosome is

sampled from the entire population with probability r (recombination

occurs).

{ Coalescent Version: The time lines of the chromsomes contain time

points where recombinations between the marker and disease loci oc-

cur. These recombination epochs constitute independent homogeneous

Poisson processes on [0;1) with intensities equal to r.

� Mutation: The lifetimes of the chromosomes contain epochs where mutations

occur at the marker locus. These epochs form independent homogeneous
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Poisson processes on [0;1), with intensities �. When a mutation occurs, a

marker allele of type j replaces one of type i with probability �ij.

The birth/death, recombination and mutation processes of each chromosome are

assumed to be mutually independent.

Forward equations can be written to describe the behavior of the population

process. These forward equations are based on the behavior of the process as it

proceeds through a in�nitesimal time interval, conditioning on the process being

in a given state prior to the time interval. The result of using this approach is

that the behavior of the population can be studied through di�erential equations,

as can be done with any time-continuous Markov chain.

However, as noted previously, the Moran model can be directly studied by

running time backwards [13]. This makes it possible to utilize the coalescent to

simplify the process of obtaining the results. To use the coalescent with the Moran

model, it is necessary to superimpose the basic behaviors of the model on the

construct of a coalescent. What is needed is to proceed as with any with time-

continuous Markov chains, and obtain the generator matrix, otherwise known as

the matrix of intensities,Q. This matrix de�nes the behavior of recombination and

mutation such that the transition probabilities among marker alleles are obtained

through the operation

P(t) = eQt: (4.15)



58

These transition probabilities can then be superimposed on a coalescent process

with branch lengths that are independent and exponentially distributed.

Figure 4.1 provides a schematic representation of this coalescent process. This

�gure represents two disease chromosomes, one with marker allele j and the other

with marker allele l, sampled at time t. Under the Moran/Coalescent model, these

two chromosomes are descended from an ancestral chromosome that existed at

time t � � in the past, where � is an exponentially distributed random variable

with mean proportional to the population size, N(t). If this ancestral chromosome
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Figure 4.1 Representation of a coalescent
tree for a sample of two chromosomes.
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was of type i, then for j and l to be its descendents, they must have either under-

gone mutation or recombination events. The quantities Pij(� ) and Pil(� ) represent

the probabilities that a disease chromosome of type i will transit, through recombi-

nation or mutation, to a chromosome of type j or l, respectively, in a time interval

of length � .

As with the Galton-Watson process, the �rst two moments of the distribution

of marker allele frequencies, given initial conditions and other assumptions can be

used to form approximations to the likelihood for r. In this case, let p(t) be a

row vector containing the relative frequencies of the marker alleles in the disease

population at time t. By assuming the form of p(0), the �rst moments are obtained

from the transition probabilities through the relationship

�(t) = E[p(t)] = p(0)P(t): (4.16)

Obtaining the second moments is more involved. First, let

Rjk(t) = Pr[X1 = j;X2 = k]; (4.17)

where X1 and X2 are randomly selected chromosomes. If the common ancestor

of X1 and X2 was type i and lived at a �xed time, � units in the past, then

independence assumptions give that

Rjk(t)j�;i = Pij(� )Pik(� ): (4.18)
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Since i and � are not �xed, but random quantities, the conditioning needs to be

removed by applying the law of total probability to obtain

Rjk(t) =
Z 1

0

mX
i=1

�i(t� � )Pij(� )Pik(� )
1

N(t� � )
e
�
R �

0
du

N(t�u) d�; (4.19)

or after a change of variables

Rjk(t) =
Z t

�1

mX
i=1

�i(�)Pij(t� �)Pik(t� �)
1

N(�)
e�
R t

�
du

N(u) d�: (4.20)

In matrix form, this is

R(t) =
Z t

�1
PT (t� �) �(�) P(t� �)

1

N(�)
e
�
R t
�

du
N(u) d�; (4.21)

where �(t) = diag[�(t)] is the diagonalized expected distribution. Separating out

the initial conditions provides the expression

R(t) =
R 0
�1 PT (t)PT (��)�(�)P(��)P(t) 1

N(�)
e�
R 0
�

du
N(u) e�

R t
0

du
N(u) d�

+
R t
0 P

T (t� �) �(�) P(t� �) 1
N(�)

e
�
R t

�
du

N(u) d�

= PT (t) R(0) P(t) e�
R t

0
du

N(u)

+
R t
0 P

T (t� �) �(�) P(t� �) 1
N(�)e

�
R t

�
du

N(u) d�:

(4.22)

The solution of the integral in Equation 4.22 yields only the joint probabilities

of marker allele sharing for two randomly sampled disease chromosomes. More

work must be done to obtain the covariances.

Equation 4.16 contains the expected probabilities of sampling a disease chromo-

some with a given marker allele are contained in. To obtain the second moments,

consider E[p2i (t)] and E[pi(t)pj(t)], where i and j index speci�c marker alleles. The
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population contains N(t) elements of distinct types, with their relative frequencies

given by the vector p(t). This information can be used to obtain estimates of the

second-order moments. Namely, examining all chromosomes from the population,

Xi(t); i 2 f1; 2; : : : ; N(t)g, and letting Ii(Xj) be the indicator function for disease

chromosome Xj having a marker allele of type i, produces the result that

E[p2i (t)] = E
h

1
N(t)

PN(t)
j=1 Ii(Xj)

1
N(t)

PN(t)
k=1 Ii(Xk)

i

= 1
N2(t)

PN(t)
j=1

PN(t)
k=1 E [Ii(Xj)Ii(Xk)]

= 1
N2(t)

PN(t)
j=1 E [Ii(Xj)] +

1
N2(t)

X
j 6=k

E [Ii(Xj)Ii(Xk)]

= 1
N(t) pi(t) + N(t)�1

N(t) Rii(t);

(4.23)

and

E[pi(t) pj(t)] = E
h

1
N(t)

PN(t)
k=1 Ii(Xk)

1
N(t)

PN(t)
l=1 Ij(Xl)

i

= 1
N2(t)

PN(t)
k=1 E [Ii(Xk)Ij(Xk)] + 1

N2(t)

X
k 6=l

E [Ii(Xk)Ij(Xl)]

= N(t)�1
N(t) Rij(t);

(4.24)

where Rij(t) represents the [i; j]th entry in R(t) (see Equation 4.22). Therefore,

the entries in the covariance matrix for this version of the Moran model are given

by

Var[pi(t)] = Rii(t) � p2i (t) +
1

N(t)
[pi(t)�Rii(t)] ; (4.25)

and

Cov[pi(t); pj(t)] = Rij(t) � pi(t) pj(t) �
1

N(t)
Rij(t): (4.26)
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It is now possible to form speci�c models, based on various assumptions con-

cerning the behavior of the marker alleles in the population of disease chromosomes.

These models provide methods that allow for the estimation of the moments of the

marker allele frequencies. The moments, in turn, make it possible to form like-

lihoods that can be used to estimate the location of a disease gene relative to a

marker locus.

4.2 Descriptions of Speci�c Models

Past sections provided information about the �rst two moments of two distinct

classes of models. This section discusses speci�c forms of each model that can be

used for �ne-scale mapping. It �rst describes several global assumptions required

by the population models and concludes with the spec�cation of a variety of models

useful for linkage disequilibrium mapping.

The assumptions required by both the Galton-Watson and Moran/Coalescent

models are:

1. The population of normal chromosomes is larger than the subpopulation

carrying a disease mutation.

2. The frequencies of the alleles at the linked marker are �xed quantities in the

general population.
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3. At some time in the past, a single disease chromosome existed in the entire

population.

4. The ancestral disease chromosome carried the marker allele that is the most

common marker allele in the disease population at present.

5. The marker locus is linked to the disease locus, with a recombination rate of

r, with 0 � r � 0:5.

6. The subpopulation of disease chromosomes is growing exponentially, at a

rate of 1 + �, with � > 0.

7. Chromosomes pair at random during the reproductive process.

Assumption 2 is not overly restrictive, since the allele frequencies in a large pop-

ulation change slowly with time, especially relative to those in a much smaller

population (see it e.g. [76]). Assumption 4 is due to the fact that the most fre-

quent disease allele is most likely to be the ancestral allele.

M1 M2 . . . Mk Totals

Disease p1d p2d . . . pkd 1
Normal p1n p2n . . . pkn 1

Table 4.1 Notation for marker allele frequencies in
populations of disease and normal chromosomes.
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This paragraph establishes some notation. Table 4.1 contains the notation

for the marker allele frequencies used hereafter for both the disease and normal

populations. Equation 4.27 displays the mutation matrix, U, where

U =

0
BBBBBBBBBBBBB@

�11 �12 : : : �1k

�21 �22 : : : �2k

...
...

. . .
...

�k1 �k2 : : : �kk

1
CCCCCCCCCCCCCA
; (4.27)

and �ij equals the probability that marker allele i mutates to marker allele j in

one generation. Note that �ii is the probability that the ith marker allele does not

mutate. The constant �d represents the probability that a new disease mutation

occurs during the reproductive process. For ease of notation, de�ne the matrix P

as

P =

0
BBBBBBBBBBBBB@

p1n p2n : : : pkn

p1n p2n : : : pkn

...
...

...

p1n p2n : : : pkn

1
CCCCCCCCCCCCCA
: (4.28)

With the notation rede�ned, it is now appropriate to discuss models for the

joint evolution of a marker locus and a disease locus. The next section will focus

on models for multi-type branching processes. The �nal section in the chapter

will discuss models based on the time-continuous Moran model. Three types of

models are of interest. The �rst model considers only recombination. It is the most
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tractable, but the least realistic. The second allows for mutation at the marker

locus. The third model allows for mutations at both the marker and disease loci.

4.2.1 Galton-Watson Processes

This section outlines the systems of probability generating functions that describe

the behavior of disease chromosomes, when a disease gene is linked to a marker

locus. The discussion includes descriptions of the properties the models should

possess, and how these features are incorporated into probability generating func-

tions.

Recall that the branching processes in use here are branching processes with

independent Poisson o�spring distributions, which serve as approximations to the

Wright-Fisher population model. Because the o�spring distributions are Poisson,

they are completelly speci�ed by their mean behavior. The remainder of this

section describes the desired average behavior of the branching process o�spring

distributions, and incorporates these features in explicit systems of probability

generating functions

Recombination Only

Here it is assumed that two phenomena uniquely govern the average behavior of

the o�spring distributions: transitions from one allele to another through recom-

bination and the growth rate of the disease. As mentioned earlier, the population
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of disease chromosomes exhibits an exponential rate of growth on average, with

a growth rate of 1 + �. Modeling the recombination process is somewhat more

involved. Its description is presented below.

Assumptions 1 through 7, supply enough information to derive the marker allele

transitions. Consider the situation where a disease chromosome with marker allele

i gives birth to a disease chromosome with marker allele j. If i 6= j, the transition

probability is equal to the probability that the disease chromosome recombines with

a chromosome with a marker allele of type j, or rpjn. Likewise, the probability

that a disease chromosome with marker allele i gives birth to a disease chromosome

with the same marker allele is equal to 1 � r + rpin, since the chromosome either

does not recombine or it recombines with a chromosome carrying the same marker

allele. This transition matrix can be compactly expressed as [(1� r)I + rP ], where

I is a k � k identity matrix and P is de�ned in Equation 4.28.

This transition matrix assumes that a disease chromosome produces a single

o�spring chromsome. Multiplying the transition matrix by the growth rate pro-

vides a description of the matrix of �rst moments with the desired behavior. This

matrix is

Mr = (1 + �) [(1 � r)I+ rP ] : (4.29)

This matrix can now be used to de�ne the o�spring distributions.
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The mean matrix in Equation 4.29 de�nes the system of pgfs for this model as

f i(s) = e(1+�)(1�r+rpin)(si�1)
Y
j 6=i

e(1+�)rpjn(sj�1); i = 1; 2; : : : ; k; (4.30)

where s is a vector containing s1; s2; : : : ; sk. We can verify that this system of pgfs

has the speci�ed mean behavior by di�erentiating, and evaluating at s = 1 as in

Equation 4.10. The system of pgfs also yeilds the single-generation covariance ma-

trices as de�ned in Equation 4.13. Because the o�spring process have independent

Poisson distributions, the variances are equal to the mean and the covariances are

equal to zero. Hence, if X(0) = ei, the covariance matrix is

Vri = diag[ei Mr]; i = 1; 2; : : : ; k: (4.31)

When mutation rates are low, this model may su�ce. However, allowing for

mutations to occur at the marker locus should provide additional mapping power.

This is especially true if the marker loci have a relatively high probability of mu-

tation, as do at least one class of commonly-used markers: microsatellite loci.

Recombination plus Mutations at the Marker Locus

Accommodating mutations at the marker locus �rst requires the same basic as-

sumptions needed in the case where only recombination is allowed. Therefore, it

is possible to expand the recombination-only model to allow for mutations at the

marker locus. In addition to the assumptions required by the recombination-only

model, this model assumes that mutation events occur independently of recombina-
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tion events, with the probabilities of mutating from one allele to another contained

in the mutation matrix U, as listed in Equation 4.27.

One issue remains in de�ning the process including mutations. Do mutations

occur before or after recombination? Mutations are most likely to occur in the

process of DNA replication, and replication precedes recombination, it seems plau-

sible that mutations take place prior to recombination. This is the case studied in

most detail. However, for completeness, both cases are condisered here.

If mutations occur before recombination, and mutations and recombinations

are independent, then the joint recombination/mutation matrix is the product of

the mutation and recombination transition matrices. Multiplying the transition

matrix by the growth rate yields the matrix of �rst moments

Mmr = (1 + �)U [(1� r)I+ rP ]

= (1 + �) [(1� r)U + rUP ]

= (1 + �) [(1� r)U + rP ] :

(4.32)

The simpli�cation arises because the rows of U sum to one and the entries in the

columns of P are all equal. The result also has a reasonable biological explanation:

if no recombination event occurs, then a mutation event will persist in the o�spring.

However, if a mutation event is followed by recombination between the disease and

marker loci, then the mutation is lost from the disease chromosome and replaced

by a randomly chosen marker allele.
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Modeling this mean behavior with Poisson o�spring distributions leads to the

system of generating functions

f i(s) =
kY

j=1

e(1+�)(1�r)�ij(sj�1) e(1+�)rpjn(sj�1); i = 1; 2; : : : ; k: (4.33)

This system of pgfs has the mean behavior speci�ed in Equation 4.32. Also, the

covariance matrices are similar to those in Equation 4.31, namely

Vmri = diag[ei Mmr]: (4.34)

Furthermore, note that if there is no mutation (U = I), then the pgfs reduce to

those given in Equation 4.30.

If the mutation mechanism operates after recombination, then the moment

matrix is

Mrm = (1 + �) [(1� r)I+ rP ]U

= (1 + �) [(1� r)U + rPU] :

(4.35)

In this case, there is no simpli�cation. In fact,

PU =

0
BBBBBBBBBBBBB@

Pk
i=1 pin�i1

Pk
i=1 pin�i2 : : :

Pk
i=1 pkn�ik

Pk
i=1 pin�i1

Pk
i=1 pin�i2 : : :

Pk
i=1 pkn�ik

...
...

. . .
...

Pk
i=1 pin�i1

Pk
i=1 pin�i2 : : :

Pk
i=1 pkn�ik

1
CCCCCCCCCCCCCA
: (4.36)

This leads to the system of pgfs

f i(s) =
kY

j=1

exp [(1 + �)(1 � r)�ij(sj � 1)]

� exp
h
(1 + �)r

Pk
l=1 pln�lj(sj � 1)

i
; i = 1; 2; : : : ; k:

(4.37)



70

As with the pgfs in Equation 4.33,

Vrmi = diag[ei Mrm]; (4.38)

and if U = I then the system reduces to Equation 4.30.

As mutations at marker alleles are typically more common than new disease

mutations, this model should be reasonable for a variety of diseases. However,

there may be cases where it is of interest, and even necessary, to allow for the

possibility of mutations at the disease locus.

Recombination plus Mutations at the Marker and Disease Loci

Allowing for mutations at the disease locus is a simple extension of the previous

models. The updated model adds a new mutation process that is independent

of the recombination and marker mutation processes. This mutation mechanism

adds new disease alleles at a rate of �d on a randomly chosen disease chromosome.

Adding this process to the model where mutation occurs prior to recombination,

de�nes the moment matrix

Mmrd = (1 + �) [(1� r)U+ rP + �dP ]

= (1 + �) [(1� r)U+ (r + �d)P ] :

(4.39)

This leads to the Poisson system of pgfs

f i(s) =
kY

j=1

e(1+�)(1�r)�ij(sj�1) e(1+�)(r+�d)pjn(sj�1); i = 1; 2; : : : ; k; (4.40)
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whose matrix of �rst moments is given in Equation 4.39 and whose one-step co-

variance matrices are

Vmrdi = diag[ei Mmrd]: (4.41)

This systemmodels recombination between a disease and a marker locus in tandem

with possible mutations at either the marker or the disease loci, or at both of them.

The simpli�ed models are recovered by setting appropriate mutation terms to zero.

The pgfs above de�ne a variety of evolutionary models: recombination only, re-

combination with mutations at the marker locus and recombination with mutations

possible at both the marker and disease loci. These probability generating func-

tions, and their functional iterates de�ne the behavior of our branching processes

and will be used in the next chapter to derive estimators of the recombination

fraction.

4.2.2 The Moran/Coalescent Model

This section describes the generator matrices that de�ne the time-continuous

Markov chains corresponding to various versions of the Moran model. Because the

recombination probabilities can be viewed as mutation intensities, the o�-diagonal

entries of the generator matrices are equal to the transition probabilities. Since

the row sums of generator, or intensity, matrices must be zero (see it e.g. [62]),

the diagonal elements negate the sum of the o�-diagonal entries.
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The same assumptions for the recombination and mutation processes apply to

both the branching process models and the Moran/Coalescent models. Therefore,

the o�-diagonal entries in the generator matrices are equal to the o�-diagonal

entries in the transition matrices presented in the previous section. The discus-

sion below describes these generator matrices for the three speci�c cases discusses

previously.

Recombination Only

When transitions are only possible through recombination, the elements of the

intensity matrix come from the matrix Mr in Equation 4.29 when � = 0. In this

case, the o�-diagonal entries are exactly the o�-diagonal elements of the matrix

rP . Therefore, the generator matrix is

Qr = r

0
BBBBBBBBBBBBB@

p1n � 1 p2n : : : pkn

p1n p2n � 1 : : : pkn

...
...

. . .
...

p1n p2n : : : pkn � 1

1
CCCCCCCCCCCCCA
= r [P � I ] : (4.42)

Recombination plus Mutations at the Marker Locus

If marker mutations occur prior to recombination events, the the matrix of inten-

sities can be obtained from entries inMmr=(1+�) from Equation 4.32. This leads
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to the generator matrix

Qmr = (1� r)U + rP � I: (4.43)

Likewise, if mutation occurs after recombination, modifying Equation 4.35 yields

the matrix of intensities

Qrm = (1 � r)U+ rPU � I: (4.44)

Recombination plus Mutations at the Marker and Disease Loci

Again, the intensity matrix for the Moran/Coalescent model can be obtained from

the transition matrix for the Galton-Watson model. In this case, the quantities

are shown in Equation 4.39. Placing the transition probabilities in the o�-diagonal

elements and subtracting the row sums from the diagonal entries produces the

generator matrix:

Qmrd = (1 � r)U + (r + �d)P � (1 + �d)I: (4.45)

The intensity matrices for these di�erent mechanisms of recombination and mu-

tation are su�cient to characterize the transition laws of the associated Markov

chains. These transition laws, along with a model for population growth (N(t))

provide the information we need to obtain the �rst two moments listed in Equations

4.16, 4.25 and 4.26. These moments will then make it possible to obtain approxi-

mate maximum likelihood estimators of r, which is done in the next chapter.
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Chapter 5

Mapping a Disease Gene with One Marker

The last chapter described models of population behavior to be employed in link-

age disequilibrium mapping. This chapter uses the moments from each model to

obtain approximate maximum likelihood estimates of the recombination fraction

between a marker locus and a putative disease locus. It �rst discusses estimators

based on multi-type Galton-Watson branching processes. The chapter concludes

by obtaining estimates of r from variations of the time-continuous Moran model.

For each class of models, there are three models of interest: recombination only,

recombination plus marker mutations and recombination plus marker and disease

mutations.

5.1 The Galton-Watson Model

Three pieces of information are needed to formulate estimators based on a Galton-

Watson branching process: the �rst and second moments and the Hessian as de-

�ned in Equations 4.11, 4.14 and 3.21 respectively. These quantities make it pos-

sible to calculate the log likelihoods written in Equations 3.18 and 3.19. The log

likelihoods then provide point and interval estimates of the recombination coe�-

cient.
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The form of the Hessian matrix remains constant regardless of the population

model. What di�ers from model to model are the �rst two moments of the marker

allele frequencies in the disease population. The sections that follow describe the

moments for the three models of interest, with the additional assumption that

the original disease chromosome possessed the marker allele that is currently the

most common in the disease population. If the marker alleles are labeled by their

frequency in the disease population (i.e. allele 1 is the most frequent allele), this

assumption becomes

X(0) = e1: (5.1)

These moments, once obtained, are applied to construct likelihoods for the esti-

mation of r.

The moments obtained for the branching process models represent means and

covariances of marker allele counts, rather than frequencies. As such, the appro-

priate sampling model is the hypergeometric. The appropriate likelihood should

therefore be

L(r) = E

2
4
�Pk

j=1 njd
�
!
�Pk

j=1Xjd �
Pk

j=1 njd
�
!
Qk

i=1Xid!�Pk
j=1Xjd

�
!
Qk

i=1 nid!(Xid � nid)!

3
5 ; (5.2)

rather than the multinomial model as presented in Equation 3.12. However, the

multinomial likelihood is a good approximation to the hypergeometric distribution

if the population of disease chromosomes is reasonably large (see it e.g. [15]).
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The multinomial likelihood brings with it several computational conveniences.

First, the approximations to the expected frequencies, such as

E[pid] �
E[Xjd]Pk
j=1 E[Xjd]

; i = 1; 2; : : : ; k; (5.3)

are more tractable than approximations to factorial moments like

E[Xid!] � E[Xid]!: (5.4)

Also, it is convenient to avoid di�culties that one encounters when working with

factorials. This is especially convenient as it is necessary to di�erentiate the like-

lihoods, not only to �nd maxima, but to re�ne approximations.

5.1.1 Recombination Only

This section builds the �rst- and second-order approximations to the likelihood for

r. The �rst-order approximation depends on the matrix in Equation 4.29 and the

second-order approximation depends on the matrices de�ned in Equation 4.31.

First Order Approximation

Making the assumption stated in Equation 5.1, and assuming that the disease

mutation occurred t generations in the past, makes it possible to obtain the �rst

moments of the process as described in Equation 4.11. Because P t = P (see
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Equation 4.28) and It = I,

Mt
r=(1 + �)t = [(1� r)I+ rP ]t

= rtP t +
Pt�1

i=1
t!

i!(t�i)!f(1� r)IgifrPgt�i + (1� r)tIt

= rtP +
Pt�1

i=1
t!

i!(t�i)!
(1 � r)irt�iP + (1� r)tI

= rtP + P [1� rt � (1 � r)t] + (1 � r)tI

= (1 � r)tI+ [1 � (1� r)t]P; t = 1; 2; : : : :

(5.5)

The �rst-order approximation is determined by the quantities contained in the �rst

row of Mt
r=(1 + �)t, or

�r(t) �
�
p1n + (1� p1n)(1� r)t p2n(1� (1� r)t) : : : pkn(1� (1 � r)t)

�
: (5.6)

The approximation to the likelihood is therefore

l(r) = n1d logfp1d + (1� p1d)(1 � r)tg+
kX
i=2

nid logfpid[1� (1� r)t]g: (5.7)

Di�erentiating the log-likelihood, and equating it to zero, yields the expression

nd � n1d

1� (1� r̂)t
=

n1d(1� p1n)

p1n + (1 � pin)(1 � r̂)t
; (5.8)

where nd =
Pk

i=1 nid. The resulting point estimate is

r̂ = 1 �

 
p1d � p1n
1 � p1n

! 1
t

: (5.9)

This is a simple function of what has been de�ned as pexcess [47], which is equal to

the measure of disequilibrium � (see Table 3.2) when k = 2. This result indicates

that the branching process approximation produces an estimate corresponding to
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a special case of the decay of disequilibrium noted in Equation 2.13. The values of

r where the log-likelihood is two units less than the value at the maximum de�nes

an approximate ninety-�ve percent con�dence interval. A FORTRAN program

that calculates these point and interval estimates is included in Appendix A.

Second Order Approximation

The �rst-order approximation was formed by taking approximations to the ex-

pected allele frequencies, based on the expected allele counts from the branching

process model. This section derives the covariance matrix for the allele counts from

the branching process. Using this covariance matrix and modifying the second-

order likelihood from Equation 3.19, produces a higher-order approximation to the

likelihood for r.

Equation 4.14 lists a quantity, C(t) = E[X(t)X(t)T ], which is analogous to the

matrix M(t) = E[p(t)p(t)T ] required to complete the second order approximation

to the likelihood (see Equation 3.19). Finding the form of C(t) is done in three

parts. The �rst is
�
MT

�t
C(0)Mt. Note that (Mt)T =

�
MT

�t
. This is true since

bringing the transpose inside the parentheses reverses the order of multiplication
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of matrices that are all identical (see it e.g. [4]). Also,

C(0) = E[X(0)X(0)T] =

0
BBBBBBBBBBBBB@

1 0 : : : 0

0 0 : : : 0

...
...

. . .
...

0 0 : : : 0

1
CCCCCCCCCCCCCA
; (5.10)

because of the assumption that X(0) = e1. Therefore,

�
MT

r

�t
C(0)Mt

r =
�
e1M

t
r

�T �
e1M

t
r

�
; (5.11)

where �r(t) is de�ned in Equation 5.6.

The second quantity is SV E =
Pk

i=1ViE[Xi(j � 1)jX(0)]. In this case, the

form of Vi is de�ned in Equation 4.31 and E[Xi(j�1)jX(0)] is the (1; i) element of

Mj�1
r . Since the terms in the sum are diagonal matrices, multiplied by scalars, the

resulting matrix is also diagonal. Considering the (m;m) element of the resulting

sum, reveals that

SV E[m;m] =
kX
i=1

M[i;m] M
j�1
[1;i] =

kX
i=1

Mj�1
[1;i] M[i;m]

= Mj

[1;m]:

(5.12)

Therefore,

SV E =
kX
i=1

ViE[Xi(j � 1)jX(0)] = diag[e1M
j ]: (5.13)
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What remains is Bj =
Pt

j=1

�
MT

�t�j
diag[e1Mj

r]M
t�j . Performing the matrix

multiplication, gives the result that

Bj[1;1]

(1 + �)2t�j
= [p1n + (1� p1n)(1� r)t�j ]2[p1n + (1 � p1n)(1� r)j ]

+ p21n[1� (1 � r)t�j]2 [1� (1� r)j ]
kX
l=2

pln;

(5.14)

Bj[i;i]

(1 + �)2t�j
= p2in[1� (1 � r)]2[p1n + (1 � pin)(1� r)j]

+ pin[pin + (1� pin)(1� r)t�j ]2[1� (1� r)j ]

+ fp2in[1� (1� r)t�j ]2[1� (1� r)j ]

�
X
l6=1;i

plng; i = 2; : : : ; k;

(5.15)

Bj[1;i]

(1 + �)2t�j
=

Bj[i;1]

(1 + �)2t�j
= pin[p1n + (1� p1n)(1� r)t�j]

�[p1n + (1 � p1n)(1 � r)j][1� (1 � r)t�j]

+fp1npin[1� (1� r)t�j ][1� (1 � r)j ]

�[pin + (1 � pin)(1� r)t�j ]g

+fp1npin[1� (1� r)t�j ]2 [1� (1� r)j ]

�
X
l6=1;i

plng; i = 2; : : : ; k;

(5.16)
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and

Bj[l;i]

(1 + �)2t�j
= pinpln[p1n + (1� p1n)(1 � r)j][1� (1� r)t�j ]2

+ fpinpln[pin + (1 � pin)(1� r)t�j]

�[1� (1� r)j ][1� (1 � r)t�j ]g

+ fpinpln[pln + (1 � pln)(1 � r)t�j]

�[1� (1� r)j ][1� (1 � r)t�j ]g

+ fpinpln [1� (1� r)t�j ]2[1� (1� r)j ]

�
X

m 6=1;i;l

pmng; i = 2; : : : ; k; l = 2; : : : ; k; i 6= l:

(5.17)

Simplifying the expressions for Bj[i;l], and summing j from 1 to t, produces the

covariance matrix of the counts, V(t) because of the form of Equation 5.11. The

entries in V(t) are:

V[1;1](t) = (1� p1n)
[(1�r)(1+�)]t�[(1�r)(1+�)]2t

r��(1�r)

+p1n(1� p1n)
[(1�r)(1+�)]2t�(1+�)t

�(1�r)2�r(2�r)

+[2p1n(1� p1n)(1� r)t + p21n]
(1+�)2t�(1+�)t

�
;

(5.18)

V[i;1](t) = V[1;i] = [p1n(1� 2pin)(1 � r)t + p1npin]
(1+�)2t�(1+�)t

�

�pin(1 � 2p1n)
[(1�r)(1+�)]t�[(1�r)(1+�)]2t

r��(1�r)

�p1npin
[(1�r)(1+�)]2t�(1+�)t

�(1�r)2�r(2�r) ; i = 2; : : : ; k;

(5.19)
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V[i;i](t) = p2in[1� 2(1 � r)t] (1+�)
2t�(1+�)t

�

�pin(1� 2pin)
[(1�r)(1+�)]t�[(1�r)(1+�)]2t

r��(1�r)

+pin(1� pin)
[(1�r)(1+�)]2t�(1+�)t

�(1�r)2�r(2�r)
; i = 2; : : : ; k;

(5.20)

and

V[i;l](t) = pinpil[1� 2(1� r)t] (1+�)
2t�(1+�)t

�

+2pinpil
[(1�r)(1+�)]t�[(1�r)(1+�)]2t

r��(1�r)

�pinpil
[(1�r)(1+�)]2t�(1+�)t

�(1�r)2�r(2�r)
;

i = 2; : : : ; k; l = 2; : : : ; k; i 6= l:

(5.21)

This covariance matrix is not in the correct scale to be directly useful in the

formation of a second-order approximation to the likelihood for r. It is the covari-

ance matrix of the disease allele counts while the terms in Equation 3.19 are for

disease allele percentages. In order to overcome this drawback, it is possible to

scale the elements in the likelihood so that they are of the same magnitude as the

counts.

To perform this scaling, note that

E[Xi(t)] � (1 + �)tE[pid(t)] (5.22)

(see Equations 5.3 and 5.5). Hence, multipling each element of �(t) by (1 + �)t to

produces �(t). This has the e�ect of creating a di�erent scaling of the likelihood,
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or

l(r) = �� +
kX
i=1

nid log(�i(t)) +
1

2

n
tr[HxC(t)]� �i(t)Hx�i(t)

T
o
; (5.23)

where

Hx[i;i] =
�nid

E[Xi(t)]2
; i = 1; : : : ; k: (5.24)

Using this likelihood, it is now possible to �nd second-order estimates of the

recombination fraction. The computer program for the estimation of disease gene

location with composite likelihoods found in Appendix A performs this estimation

as part of its functionality.

5.1.2 Recombination plus Mutations at Marker and Disease Loci

In order to make the branching process model more realistic, consider the case

where mutations may occur at the marker and disease loci. Note that the only

di�erence between these two models is the parameter, �d, which models the rate of

new disease \mutations" in the process (these mutations may include disease genes

added through immigration, etc.). This section discusses �rst- and second-order

approximations to the likelihood for r.

First Order Approximation

The matrix of �rst moments found in Equation 4.39 de�nes the mean behavior of

the process. In order to �nd a closed-form solution for the �rst-order approxima-

tion to the likelihood, it is necessary to �nd an expression forMt
mrd. However, this
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matrix power depends directly on the powers of the mutation matrix,U. It is pos-

sible to �nd powers of U for speci�c forms of mutation. However, in order to allow

for general patterns of mutation, we utilize a computer program to calculate the

matrix powers to obtain the �rst-order approximation. The FORTRAN program

in Appendix A for composite likelihoods includes options that allow for �rst-order

estimation with general mutation matrices and arbitrary rates of disease mutation,

even for a single marker locus.

Second Order Approximation

As does the �rst-order approximation, the second-order approximation relies in

the ability to obtain a general form of the powers of the moment matrix, Mt
mrd.

Again, in order to retain functionality for general marker mutation patterns, we use

a computer program to calculate the powers of the meanmatrix and the form of the

covariance matrix. The program for composite likelihoods included in Appendix

A is capable of performing these tasks.

5.2 The Moran/Coalescent Model

As with the Galton-Watson branching process approximations, Moran/Coalescent

approximations require the �rst and second moments of the marker allele frequen-

cies, along with the Hessian of Equation 3.21. The general form of the �rst two

moments of the Moran model, derived via the coalescent, are found in Equations
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4.16, 4.25 and 4.26. Finding the speci�c forms of these terms will make it possible

to compute likelihoods for r, and derive point and interval estimates, provided

additional assumptions are made. These assumptions are that the disease muta-

tion occurred t generations in the past, and that the ancestral disease chromosome

carried the most common marker allele in the actual disease population, or

�(0) = e1: (5.25)

This model has an advantage over the branching process model. Its moments

are in terms of the marker allele frequencies, rather than the marker allele counts.

This makes it possible to use the likelihoods in Equations 3.18 and 3.19, without re-

lying on further approximations. With these likelihoods, the Hessian is unchanged

from what is listed in Equation 3.22. The disadvantage to this model with respect

to the Galton-Watson model is that it is necessary to perform numerical integration

to obtain second-order estimates.

5.2.1 Recombination Only

This section constructs approximations to the likelihood for r. The approximations

depend on functions of the matrix shown in Equation 4.42.
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First Order Approximation

The �rst order approximation relies entirely on the time-continuous transition

matrix, P(t), de�ned in Equation 4.15. In order to �nd P(t), �rst note that

Qn = rn[P � I]n

= rn
h
(�1)nI+ P

Pn�1
i=1

n!
i!(n�i)!

(�1)n�i + P
i

= rn [(�1)nI+ Pf�1� (�1)ng+ P ]

= (�r)n [I� P ] ; n = 1; 2; : : : :

(5.26)

From this, it is clear that

P(t) = eQt = I+Qt+ Q2t2

2!
+ Q3t3

3!
+ : : :

= P + [I� P ](�rt) + [I� P ] (�rt)
2

2! + [I� P ] (�rt)
3

3! + : : :

= P + [I� P ]e�rt; t � 0:

(5.27)

This provides the result that �(t) = e1fP + [I� P ]e�rtg. Note that these are the

same expected allele frequencies as obtained with the �rst-order approximation to

the recombination-only model of Xiong and Guo [76] (see Equation 3.17). The

�rst order approximation to the likelihood can now be written as

l(r) = n1d log[p1d + (1 � p1d)e
�rt] +

kX
i=2

nid log[pid(1 � e�rt)]: (5.28)

Di�erentiating the log-likelihood, and equating it to zero, results the expression

(nd � n1d)e�r̂t

1� e�r̂t
=

n1d(1� p1n)e�r̂t

p1n + (1 � p1n)e�r̂t
; (5.29)
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where nd =
Pk

i=1 nid. Solving this for r̂, produces a point estimate for the recom-

bination fraction,

r̂ = �
1

t
log

 
p1d � p1n
1� p1n

!
: (5.30)

This estimate is very similar to the one obtained under the branching process

model. It solves the formula

e�r̂t =

 
p1d � p1n
1� p1n

!
; (5.31)

while the branching process estimate solves

(1� r̂)t =

 
p1d � p1n
1 � p1n

!
: (5.32)

Since r̂ is small, the two methods produce estimates that are almost equal. Just like

the estimate from the Galton-Watson model, this �rst-order maximum-likelihood

estimate is a simple function of a known measure of linkage disequilibrium.

Approximate con�dence intervals are derived by taking the values of r whose

log-likelihood values are two less than that of the maximum, in accordance with

maximum-likelihood theory. A computer program that calculates the point and

interval estimates for this result from the Moran model is included in Appendix A.

Second Order Approximation

It is possible to construct �rst-order approximations to the likelihood because

a closed-form expression for Qt
r exists(see Equations 5.26 and 5.27). However,

because exponential growth of the disease population is assumed, it is impossible
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to form analytic expressions for the second-order approximation, as it requires

solution of integrals of the form
R
e�e

�x
dx (see Equation 4.22).

The second-order approximations are obtained by performing numerical inte-

gration for the elements of R(t), where P(t) is given in Equation 5.27. These

results then produce the covariance structure of the allele frequencies, as listed

in Equations 4.25 and 4.26. The computer program for composite likelihoods in

Appendix A performs these tasks.

5.2.2 Recombination plus Mutations at Marker and Disease Loci

Referring to the applications of the Moran/Coalescent model in Chapter 4, it is

possible generalize to allow for mutations at the marker and disease loci. The

models generated by these assumptions are governed by the transition matrices,

which are in turn controlled by the intensity matrices in Equations 4.43 and 4.45.

This section mentions �rst- and second-order approximations to the likelihood for

r using these models.

First Order Approximation

The possibility of general mutation processes at the marker loci, make it impossi-

ble to �nd closed-form expressions for Qt
mr or Q

t
mrd. Hence, analytic versions of

the Markov transition matrices, P(t) are unavailable. Once again, the computer

makes estimation possible. The program for composite likelihoods in Appendix A
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computes the correct version of P(t), and uses the result to form the �rst-order

approximation.

Second Order Approximation

The second-order approximation relies not only on the form of P(t), but also on the

form of R(t). This su�ers from the additional complexity of requiring numerical

integration. The computer program for composite likelihood estimation included

in Appendix A performs the calculations to form the desired approximation.
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Chapter 6

Mapping a Disease Gene with Multiple Markers

The previous chapters discussed estimating the distance between a disease gene

and a single marker locus. However, data from several markers in the same region

are often available (see it e.g. [39], [23], [51]). Mapping a disease gene by consider-

ing several markers simultaneously can potentially provide more information than

relying on an aggregation of results obtained through single-marker estimation.

For example, the consideration of several markers may make it possible to jointly

estimate the location and the age of a disease mutation.

One can estimate the location of disease-inuencing mutations with multiple

markers with one of two types of data: single-marker or haplotype. An individual's

alleles are typically identi�ed one marker at at time, therefore single-marker data is

more readily available than haplotype data. However, haplotype data is becoming

increasingly available (see it e.g. [30], [72]). This chapter discusses methods for

mapping disease genes with data from multiple markers.

6.1 Composite Likelihoods

In the absence of haplotype data in the region of interest, two options present

themselves. The �rst option is to estimate the distance between the disease muta-
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tion and each marker individually. The initial search region is then de�ned as the

intersection of all single-marker search regions. If the intersection is empty, one

can start by searching the region around the marker that exhibits the most dise-

quilibrium with the disease. The second option is to de�ne a search region for the

disease mutation using data from all of the markers simultaneously. This second

approach is the more appealing of the two, but it requires additional machinery to

combine the information from all of the markers.

Composite likelihood methods provides a mechanism to form search regions

using the second option. As mentioned in Chapter 3, composite log likelihoods

combine information from several, possibly dependent, sources by adding together

conditional or marginal log likelihoods. Previous chapters developed marginal log

likelihoods for single markers. The sum of these log likelihoods produces an instru-

ment that estimates the location of disease genes through the combined information

from several markers. What follows illustrates how to form a composite likelihood

with data from a collection of markers.

Suppose that disease and normal chromosomes have been typed at K marker

loci that are ordered on a chromosome as lm1; lm2; : : : ; lmK, with distances in

Morgans between markers i � 1 and i given by mi for i = 2; 3; : : : ;K. The

Haldane map function translates these map distances into recombinatorial dis-

tances, h(mi) for i = 2; 3; : : : ;K (see Equation 2.7). If xd represents the map

distance between marker locus lm1 and the disease locus, the recombinatorial dis-
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tance is h(xd). Similarly, the recombination fraction between the disease gene and

any marker other than the �rst is given by

ri =
1

2

2
41 � exp

0
@�2

������xd �
iX

j=2

mi

������
1
A
3
5 ; i = 2; 3; : : : ;K: (6.1)

If we let Li denote the marginal likelihood function of ri, obtained from any of

the models in Chapter 5, then the composite log likelihood is de�ned as

cl =
KX
i=1

log(Li): (6.2)

Using the recombination fractions ri from Equation 6.1 in the marginal log likeli-

hoods, and combining the log likelihoods as in Equation 6.2, produces the value

of the composite log likelihood for any hypothetical position of the disease locus.

Repeating this procedure on a grid of points along the genetic map produces a

numerical representation of the composite likelihood. Evaluation of the composite

likelihood along a grid provides several bene�ts. The most apparent is the numer-

ical ease of computation. It also allows the researcher to consider local, as well as

global, maxima when determining a region to begin the physical search for disease

genes.

Because composite log likelihoods share some of the properties of ordinary

log likelihoods they can be used to obtain approximate con�dence regions. An

approximate con�dence interval is therefore the region where the composite log

likelihood is greater than the maximal value of the composite log likelihood minus

two, just as with traditional likelihoods. However, at times it is instructive to form
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more conservative con�dence bounds. One very conservative approach is to de�ne

the search area as the region where the composite log likelihood is greater than

the maximal value of the composite log likelihood minus two times the number of

markers.

As an illustration, consider a subset of the data collected in the search of a gene

for Diastrophic Dysplasia [24] (Chapter 7 presents estimates based on all of the

data). In this example, a composite likelihood is used to de�ne a re�ned search

area for the disease gene in the region bounded by D5S372 and CSF1R/CCT.

This region spans 0.00866 Morgans, or about 866 kb. Applying Equation 6.2

to the data in Table 6.1 along a grid of possible locations of the disease gene,

Marker Morgans to Disease Normal
Next Marker Counts Counts

D5S372 0.00775 93 16
61 103

BT1 0.00045 139 5
13 117

CSF1R/EcoRI 0.00046 150 12
8 116

CSF1R/CCT - 97 5
27 125

Table 6.1 Data from a selection of markers found to be associated with
presence of Diastrophic Dysplasia, taken from H�astbacka, et al. (1992).
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Figure 6.1 Example composite likelihood for four markers associated
with Diastrophic Dysplasia, including the marginal log likelihoods.



95

and assuming that the disease mutation occurred 100 generations in the past,

produces the composite log likelihood. The �rst graph in Figure 6.1 displays the

composite likelihood, based on the �rst-order approximation to the Galton-Watson

recombination-only model, and computed along a grid with a mesh size of 1 kb.

The second shows the contribution from each marginal log likelihood. Note that

all of the component marginal log likelihoods have relatively high values in the

region where the composite log likelihood achieves its maximum.

The initial search region, as de�ned by an approximate 95% con�dence interval,

occupies a stretch of DNA beginning about 653 kb from the D5S372 locus, and

ending about 723 kb from it. The disease gene was located by H�astbacka et al.

[23] at a distance of about 750 kb from the D5S372 marker locus. The disease gene

was outside the con�dence region, but only by about 30 kb.

6.1.1 Smoothing the Composite Likelihood

The composite log likelihood in Figure 6.1 demonstrates a complication that arises

when summing likelihoods of the types derived in Chapter 5. Those likelihoods

are constructed assuming that the marker locus is not the disease locus and that

the location of the marker is precisely known. The di�culty that arises from these

assumptions is that each marginal log likelihood must go to negative in�nity at

the position of the marker locus. The composite log likelihood therefore can have

very small values near marker loci, especially if several markers are close together.
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To illustrate this, assume that the disease is very near to the marker locus lmi.

Even if all of other the marginal log likelihoods indicate that the region is likely to

contain the disease mutation, the composite log likelihood may not be maximized

in that region, due to the extremely small values of the likelihood near lmi.

One way to overcome this is to smooth the composite log likelihood. This

smoothing can be achieved in a variety of ways, some of them statistical and some

more intuitive or ad hoc.
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Figure 6.2 A range-restricted view of the composite likelihood,
both smoothed and unsmoothed, from Figure 6.1.
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The graph in Figure 6.2 depicts a region of the composite likelihood in Figure

6.1. In addition to showing the composite likelihood, it gives the results from three

possible \smoothing" schemes. The mutation \smooth" was obtained by setting

the mutation matrix for each of the marker loci equal to

0
BBB@

0:9995 0:0005

0:0005 0:9995

1
CCCA : (6.3)

The spline smooth is representative of other classical smoothing techniques, where

one must over-smooth considerably to diminish the e�ects of the small values near

the marker. The restrictive smooth reects an intuitive way to smooth the marginal

log likelihoods. The reasoning behind it is as follows.

1. Consider a marker that is extremely close to the disease mutation.

2. The proximity of the marker to the disease locus will precipitate small log

likelihood values near the true location of the disease mutation.

3. In order to eliminate the small values near the marker, set all values of the

log likelihood between the marker locus and the maximizer that are less than

some speci�ed value equal to that value.

In the examples given in Figures 6.2 and 6.5, all values of the log likelihood be-

tween the marker locus and the maximizer are set equal to the maximum value.

With this smoothing technique, it becomes di�cult to obtain lower limits to the
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search relative to a single marker. However, the consequences arising from this are

diminished when more than one marker is used.

It is interesting to note that allowing for the occurence of marker mutations

results in a smoothed composite log likelihood. The explanation for this is that

mutations are highly confounded with recombination events. In other words, it is

di�cult to distinguish between mutation and recombination events in models for

a single marker locus. Therefore, if mutations are possible, then fewer recombi-

nations are needed to explain the distribution of allele frequencies. This causes

the component log likelihoods to peak nearer to the marker loci, diminishing the

problem of hugely negative values near marker loci.

Smoothing the composite log likelihood is appropriate in the current example,

where the disease mutation is about 25 kb from the BT1 marker locus. However,

smoothing produced mixed results. The spline smooth produced an estimate that

was even farther away from the marker than the unsmoothed version (104, rather

than 59 kb away). The mutation and restrictive smooths provided good improve-

ments, missing the truth by only 12 and 5 kb respectively. It would seem that

smoothing, if done appropriately, can improve estimates. The obvious choice based

on the example presented here is to smooth by imposing a mutation mechanism

on the marker loci. However, one successful attempt is not enough to establish the

general usefulness of this technique. Chapter 7 further examines the the e�ect of
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smoothing by applying the mutation and restrictive smoothing techniques to other

data sets.

6.1.2 Joint Estimation of the Age and Location of a Disease Mutation

Since the composite likelihood utilizes data from more than one marker locus, it

may be possible to estimate the age of the disease mutation jointly with its location.

This can be done quite simply with methods previously mentioned. In the work

already presented, the age is assumed to be a constant. In order to estimate the age

of a disease mutation jointly with its location, all that must be done is to compute

the composite log likelihood along a grid of disease ages in tandem with the grid

of disease gene locations. Computing the value of the composite log likelihood at

the points of the two-dimensional grid produces a likelihood surface that jointly

estimates the age and the location of a disease mutation.

To illustrate this, consider again the data in Table 6.1. Rather than �xing the

age parameter at 100 generations, the calculations were carried out along a grid of

values, ranging from 10 to 300 in steps of 10 generations. Figures 6.3 through

6.6 contain contour plots of the joint composite log likelihood for age and location,

produced by di�erent smoothing mechanisms. The �rst contour in each plot de�nes

an approximate ninety-�ve percent con�dence region for the parameters, except in

the restrictive smooth plot, where the second contour de�nes the con�dence region.

The point identi�ed as truth on the plots is approximate for both the location and
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Figure 6.3 Contour plot of a joint composite log likelihood for location
and age. The maximum likelihood estimate is marked with +, and the
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the age of the disease mutation. First, chromosomes of di�erent individuals are

not exactly identical. Also, the \true" age of the disease is itself only an estimate

obtained through other means [24].

This brief study shows that it might be possible to jointly estimate the age

and location of a disease mutation through use of joint composite log likelihoods.

However, when the maximal restrictive smooth produces contours that are not

closed, making it impossible to estimate the age of the ancestral disease mutation.

This is probably due to an over-smoothing e�ect that blurs the locations of the

marker loci, making it di�cult to use recombinations between them to count the

generations that have passed.

The results from the other joint log likelihoods are varied. They produce 95%

con�dence contours that are closed, but only when the surface is smoothed via mu-

tation does the contour contain the truth. This reinforces the results obtained via

smoothing when the age was �xed. It suggests that including mutation processes

at the marker loci is the preferred course to take when using composite likelihood

methods.

The usefulness of composite log likelihoods will be examined later in Chapter

7 by applying them to data. This will shed some light on the capability of this

methodology to correctly identify both the age and location of a disease-inuencing

mutation.
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6.2 Haplotype Models

If true haplotype data is available, then composite likelihoods do not utilize all of

the possible information found in the data. Hence, estimation techniques that are

geared directly to haplotype data should provide better results than are possible

with single-marker and composite likelihood methods.

However, it can be di�cult to form estimation procedures based on haplotype

data using the methodology presented in this thesis for single markers. This is

because the moment and intensity matrices require that the transition probabilities

from one haplotype to another be speci�ed. For example, if the map consists of nine

marker loci, each having two alleles, it is necessary to account for 512 haplotypes.

Further, a speci�c transition law must be obtained for each possible location of

the disease mutation. For example, if the disease mutation lies between markers

3 and 4, the transition probabilities di�er from those induced when the mutation

occurred between markers 4 and 5. The next section clari�es these problems by

considering the two-marker haplotype transition probabilities.

6.2.1 Two-Marker Transitions

This section describes how to obtain haplotype transition probabilities in the situ-

ation when mutation e�ects are absent. The list below enumerates several required

assumptions.
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1. A disease-inuencing mutation is located in a region near two markers, A,

possessing a alleles, and B, with b alleles.

2. The linked markers are ordered on chromosomes as A-B.

3. The population of normal chromosomes is larger than the subpopulation

carrying the disease mutation.

4. The A-B haplotype frequencies are �xed quantities in the general population.

5. At some time in the past, a single disease chromosome existed in the entire

population.

6. The ancestral disease chromosome carried the haplotype that is the most

common haplotype within the current disease population.

7. Both markers in the haplotype are linked to the disease mutation. The recom-

bination rate between the disease gene and marker A is rA, the recombination

rate between the disease gene and marker B is rB and the recombination rate

between the two marker loci is rAB.

8. The subpopulation of disease chromosomes is growing exponentially, at a

rate of 1 + �, where � > 1.

Applying these assumptions in tandem with the assumption of random mating,

either in a Wright-Fisher or Moran sense, produces the transition matrices. Since
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the transition probabilities depend on the location of the disease gene relative to the

marker loci, one must consider three possible two marker-plus-disease haplotypes.

These are D-A-B, A-D-B and A-B-D, where D represents the disease gene. Let's

assume that if there are a alleles at marker A and b alleles at marker B, then the

haplotypes are ordered as A1B1, A1B2, : : :, A1Bb, A2B1, : : :, AaBb.

The following matrices will be needed to specify the transition matrices. They

are analogous to the matrix expressed in Equation 4.28.

PA =

0
BBBBBBBBBBBBB@

pA1n pA2n : : : pAan

pA1n pA2n : : : pAan

...
...

...

pA1n pA2n : : : pAan

1
CCCCCCCCCCCCCA
; (6.4)

PB =

0
BBBBBBBBBBBBB@

pB1n pB2n : : : pBan

pB1n pB2n : : : pBan

...
...

...

pB1n pB2n : : : pBan

1
CCCCCCCCCCCCCA

(6.5)

and

PAB =

0
BBBBBBBBBBBBB@

pA1B1n pA1B2n : : : pA1Bbn pA2B1n : : : pAaBbn

pA1B1n pA1B2n : : : pA1Bbn pA2B1n : : : pAaBbn

...
...

...
...

...

pA1B1n pA1B2n : : : pA1Bbn pA2B1n : : : pAaBbn

1
CCCCCCCCCCCCCA
: (6.6)
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In these equations, pAin are the normal allele counts for marker A, pBjn are the

normal allele counts for marker B and pAiBjn are the haplotype counts for the

normal population.

Considering the order D-A-B, and allowing only recombination events to change

the type of the disease chromosomes, produces the simplest version of the transition

matrix. Consider the haplotype Ai-Bj . The probabilities for the Ai-Bj ! Ai-Bj

and Ai-Bj ! Ak-Bl transitions are

pi!i;j!j = (1 � rA)(1� rAB) + (1� rA)rABpBjn + rA(1� rAB)pAiBjn

+rArABpAinpBjn; i = 1; : : : ; a; j = 1; : : : ; b;

(6.7)

and

pi!k;j!l = (1 � rA)rABpBln + rA(1� rAB)pAkBln

+rArABpAknpBln; i = 1; : : : ; a; j = 1; : : : ; b; (k 6= i) [ (l 6= j);

(6.8)

respectively. Combining these expressions to form a matrix, produces the compact

expression of the transition law,

TDAB = (1� rA)(1� rAB)Iab + (1 � rA)rAB fJa 
 PBg

+rA(1� rAB)PAB + rArAB fPA 
 PBg ;

(6.9)

where Iab is an identity matrix of dimension ab � ab, Ja is a matrix of ones with

dimension a�a and 
 represents the Kronecker product. Recall that the Kronecker
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product of two matrices, A and B, is de�ned as

A
B =

0
BBBBBBBB@

A11B : : : A1aB

...
...

Aa1B : : : AaaB

1
CCCCCCCCA
: (6.10)

The transition matrices for the other orders are obtained similarly. In particu-

lar, if the haplotype has the order A-B-D, the transition matrix is

TABD = (1 � rAB)(1� rB)Iab + (1 � rAB)rBPAB

+rAB(1� rB) fPA 
 JBg+ rABrB fPA 
 PBg :

(6.11)

Likewise, the transition matrix for haplotypes of order A-D-B is

TADB = [(1 � rA)Ia + rBPA]
 [(1� rB)Ib + rBPB] : (6.12)

With these matrices, one can obtain moment and/or intensity matrices as in

Chapter 4 for single marker transitions.

6.2.2 Multiple Marker Transitions

If haplotype data for a genetic map with more than two markers is available, one

can attempt to construct general matrices of haplotype transition probabilities.

However, the work in the previous section hints at several di�culties. First, if the

haplotype consists of K markers and the ith locus has ki alleles, then the transition

matrix is of dimension
QK

i=1 ki�
QK

i=1 ki, which can be very large. Second, a separate

transition matrix is required for each of the K +1 possible locations of the disease
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gene relative to the K marker loci. Third, each transition matrix will need to be

constructed through Kronecker products up to the K th order.

Single-marker data is more readily available than haplotype data and composite

likelihoods are more tractable than haplotype likelihoods. Therefore, the preferred

approach for estimating the location of disease genes is to use composite likelihoods

(see e.g. [12] and [76]).

6.3 Multiple Marker Simulations

While it can be very di�cult to enumerate explicit transition and moment matrices

for use in the procedures presented in this thesis for single matrices, it is relatively

easy to de�ne a simulation algorithm that captures the features of those transition

matrices. As it will be necessary to simulate haplotype data to evaluate composite

log likelihoods, this section de�nes a population model based on a Wright-Fisher

sampling scheme.

6.3.1 Population Assumptions

The assumptions required for this model are somewhat di�erent from what those

of other population models previously described. They are outlined below.

1. A disease-inuencing gene is located near, or within, a region of a chro-

mosome spanned by genetic markers l1; l2; : : : ; lK, which carry k1; k2; : : : ; kK

alleles, respectively.
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2. The order of markers is known, and speci�ed in (1). The distance in Morgans

between markers i� 1 and i are given by mi for i = 2; 3; : : : ;K.

3. The population of normal chromosomes is larger than the subpopulation

carrying the disease mutation.

4. The haplotype frequencies are �xed quantities in the general population.

5. At some time in the past, a single disease chromosome existed in the entire

population.

6. The subpopulation of disease chromosomes grows deterministically in dis-

crete time at a rate of 1 + � per generation, with � > 0.

7. Mutations may occur at any locus in the map. This map includes the marker

loci and the disease gene.

8. The mutation rates and patterns are known, with Ui representing the mu-

tation matrix of marker li for i = 1; 2; : : : ;K and �d representing the rate of

new disease mutations.

9. During reproduction, recombinations occur within the haplotype according

to a homogeneous Poisson process, with intensity equal to one recombination

event per Morgan per meiosis. This is the assumption that produces the

Haldane mapping function.
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10. Production of subsequent generations occurs according to a Wright-Fisher

sampling scheme.

These general assumptions, make it possible to write a haplotype simulation algo-

rithm.

6.3.2 Simulation Algorithm

This section sketches the algorithm to be used for simulating the expansion of

disease chromosomes within a population, based on the assumptions listed in the

previous section.

1. Fix all the parameters of the model. This includes the size of the disease

population, the age of the disease, the number of markers and their inter-

marker distances, the location of the disease mutation and the mutation rates

and patterns for each of the loci in question.

2. Repeat steps (a) and (b) below for each of the generations of the age of the

disease (t = 1; : : : ; age).

(a) Calculate the number of disease chromosomes in the disease population

as XT (t) = XT (0)(1 + �)t.

(b) Repeat steps i through vi below for each of the XT (t) disease chromo-

somes that will comprise the tth generation.
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i. Randomly, and with replacement, select a haplotype out of those in

the prior generation. It will produce a single o�spring haplotype.

ii. Mutate each of the markers independently, according to its muta-

tion rate and pattern.

iii. Generate locations of recombination within the haplotype accord-

ing to a homogeneous Poisson process, as in Assumption 10 in the

previous section.

iv. Retain the segment of the haplotype that contains the disease gene.

v. If needed, add new fragments of DNA to complete the new disease

haplotype. The sequences of alleles that are added on correspond

to the frequencies of those fragments in the population of normal

haplotypes.

vi. Add new disease mutations by inserting a randomly selected normal

haplotype into the disease population at the rate of �d per meiosis.

This algorithm makes it possible to directly simulate the expansion of disease

haplotypes in a population. It will be used to simulate samples from a population

of disease chromosomes. Those samples will make it possible to evaluate composite

likelihood methodology in the next chapter.
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Chapter 7

Application to Data

This chapter studies the techniques described in this thesis by applying them to a

variety of data sets, both simulated and real.

7.1 Simulated Data

This section examines the behavior of the estimators from this thesis with regards

to simulated populations. The �rst subsection studies the single marker case. It

�rst uses samples generated after simulating a population of disease chromosomes

with the algorithm of Kaplan et al. [36]. The primary purpose of this exercise is

to compare the closed-form �rst order approximation to the simulation estimates

proposed by Kaplan, Hill and Weir [36] when the true model is a branching pro-

cess. The subsection also obtains samples from data simulated from the haplotype

model described in the previous chapter. With these samples, it compares the

estimating procedures for single-marker data described in this thesis. The second

subsection considers multiple linked markers. It uses samples obtained from popu-

lations simulated using the haplotype algorithm described in Chapter 6 to evaluate

the composite likelihoods discussed previously.
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7.1.1 Single Marker

Branching Process: Simulation vs. First Order Approximation

The simulation technique proposed by Kaplan et al. [36] estimates the recombi-

nation fraction based on the entire history of a branching process. The �rst order

approximation uses mean information, making it possible to form analytic estima-

tors when there is no mutation. This section compares the behavior of the point

estimates derived from these two di�erent techniques.

This comparison assumes that the expansion of disease chromosomes within the

total population follows a Galton-Watson branching process. It also assumes that

no mutations occur after the ancestral disease chromosome is introduced into the

population. The section presents the results from simulations for a number of �xed

recombination fractions. The results were obtained by simulating the expansion

of the disease population and estimating the recombination rate from a sample

collected from the simulated disease population.

Table 7.1 contains the means and the square-roots of the mean squared errors

for the estimates from �fty simulations at each of eight selected recombination

fractions. The numbers in the table lead to several observations. The �rst is

that the point estimates obtained from the �rst-order approximation appear to be

slightly smaller than the truth. The second is that the simulated point estimates

exhibit an increasing upward bias as the recombination fraction increases. This
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Truth Simulation First-Order
mean rtMSE mean rtMSE

0.0005 0.000494 0.00020 0.000402 0.00031

0.0010 0.001159 0.00135 0.000816 0.00060

0.0015 0.001448 0.00049 0.001174 0.00064

0.0020 0.002534 0.00365 0.001667 0.00119

0.0025 0.002937 0.00333 0.002098 0.00202

0.0050 0.007481 0.00935 0.005034 0.00279

0.0075 0.009326 0.01002 0.006752 0.00352

0.0100 0.017169 0.02258 0.009509 0.00456

Table 7.1 Means and root mean squared errors for simulation and
�rst-order approximation estimates from 50 simulations at each of 8

selected recombination coe�cients.
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leads to the �nal observation: the bias in the simulated estimates causes the mean-

squared error of the simulator estimates to be signi�cantly greater than the mean-

squared error of the �rst-order approximation estimates for larger recombination

rates.

Summing the mean-squared errors across the various recombination coe�cients

produces an \integrated" root-mean-squared error of 0.00688 for the approximation

estimator. This value is smaller than the value of 0.0148 produced by the simula-

tion estimator, indicating that the �rst-order estimator outperforms the simulation

estimator of Kaplan et al. [36].

Branching Process and Moran/Coalescent Approximations

The last section compared the �rst order branching process approximation to a

simulation-based estimation procedure. This section uses simulated data to com-

pare the four approximation estimators of this thesis to each other.

Table 7.2 contains the parameters used to perform a simulation according to

Parameter value
sample size 150
alleles at each locus 2
mutation rate at each locus 0
disease mutation rate 0
kb from �rst marker to disease gene 275
age of disease 200

Table 7.2 Parameters set in simulation for single-marker comparisons.
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the haplotype model described in Chapter 6 for a map of ten markers spanning a

region of 500 kilobases. Estimating the location of the disease mutation for each

of the markers separately produced the results contained in Tables 7.3 and 7.4.

As seen in Tables 7.3 and 7.4, three of the estimation techniques produce re-

sults that are almost identical: the Galton-Watson and Moran/Coalescent �rst-

order approximations (FOA) and the Moran/Coalescent second-order approxima-

tion (SOA). Only the Galton-Watson SOA di�ers signi�cantly from the others.

Locus Truth Galton-Watson Moran/Coalescent
FOA SOA FOA SOA

1 275 302 1700 303 304
2 160 183 1195 183 184
3 45 72 260 72 72
4 35 79 285 79 80
5 25 14 90 14 14
6 15 42 175 42 42
7 5 7 60 7 7
8 5 14 90 14 14
9 115 146 620 146 147
10 225 411 >2000 412 413

Table 7.3 Comparison of point estimates from the four approximation
techniques for a simulated map of ten markers. All distances are given in
kb. Recall that FOA represents a �rst-order approximation and that SOA
represents a second-order approximation. The grid for the Galton-Watson

second order approximations was set at 5 kb to speed computations.
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Locus Truth Galton-Watson Moran/Coalescent
FOA SOA FOA SOA

1 275 (198,458) (1040,2000+) (198,459) (199,460)
2 160 (112,287) (610,2000+) (112,288) (113,289)
3 45 (34,131) (195,365) (34,131) (35,132)
4 35 (39,142) (210,405) (39,142) (40,143)
5 25 (2,44) (60,130) (2,44) (2,44)
6 15 (16,88) (130,245) (16,88) (16,89)
7 5 (0,31) (35,90) (0,31) (0,32)
8 5 (2,44) (60,130) (2,44) (2,44)
9 115 (86,236) (385,1775) (86,236) (86,237)
10 225 (274,628) (1215,2000+) (274,630) (275,631)

Table 7.4 Comparison of interval estimates from the four approximation
techniques for a simulated map of ten markers. All distances are given in
kb. Recall that FOA represents a �rst-order approximation and that SOA
represents a second-order approximation. The grid for the Galton-Watson

second order approximations was set at 5 kb to speed computations.

The fact that the �rst-order approximations are similar is not surprising. Their

concordance can be explained by the likelihoods themselves (see Equations 5.7 and

5.28), which di�er only slightly since e�rt � (1� r)t.

The similarity between the �rst-order (FOA) and second-order (SOA) approx-

imations derived from the Moran/Coalescent model is somewhat more surprising.

However, this outcome is supported by the results of Xiong and Guo [76], whose

�rst-order and second-order approximations are also similar.

The most notable di�erence is that the second order approximation based on

the branching process model appears to be unstable. It produces estimates that

are almost always far too large. The reason for this seems to be that there is
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a high degree of variability in the allele counts of the linked marker, even when

the recombination rate is very low. This, coupled with the form of the Hessian

(see Equation 3.22), produces very negative values of the log likelihood in regions

neighboring each marker locus.

Estimates with Marker Mutations

Since the models of this thesis make it possible to allow for mutations at the loci, it

is of interest to examine how the estimators perform when mutations are allowed at

the marker loci. In this section, the matrix containing the transition probabilities

from one allele (rows) to another (columns) is set equal to

0
BBB@

0:9995 0:0005

0:0005 0:9995

1
CCCA (7.1)

for each marker. This model that allows for mutations at the marker loci is then

used to obtain estimates corresponding to those in Tables 7.3 and 7.4. The results

are listed in Tables 7.5 and 7.6.

The e�ect of allowing marker mutations is clear: it reduces the estimate of

the genetic distance. In the case where all of the mutation rates were assumed

to be the same (0.0005), the estimated distances were decreased by about 100 kb.

This is an indication of how highly confounded recombination and mutation are.

Therefore, knowing mutation rates and patterns should improve genetic mapping

e�orts.



119

Locus Truth Galton-Watson Moran/Coalescent
FOA SOA FOA SOA

1 275 202 1610 203 203
2 160 83 1095 83 84
3 45 1 160 1 1
4 35 1 185 1 1
5 25 1 5 1 1
6 15 1 75 1 1
7 5 1 5 1 1
8 5 1 5 1 1
9 115 46 620 46 47
10 225 311 1715 312 313

Table 7.5 Comparison of point estimates, with mutation, from the four
approximation techniques for a simulated map of ten markers. All
distances are given in kb. Recall that FOA represents a �rst-order

approximation and that SOA represents a second-order approximation.
The grid for the Galton-Watson second order approximations was set at 5

kb to speed computations.

Locus Truth Galton-Watson Moran/Coalescent
FOA SOA FOA SOA

1 275 (78,358) (805,>2000) (98,359) (98,360)
2 160 (12,187) (510,>2000) (12,187) (13,188)
3 45 (0,42) (95,265) (0,42) (0,42)
4 35 (0,48) (110,300) (0,48) (0,49)
5 25 (0,19) (0,30) (0,19) (0,19)
6 15 (0,26) (30,140) (0,26) (0,26)
7 5 (0,18) (0,20) (0,18) (0,18)
8 5 (0,19) (0,30) (0,19) (0,19)
9 115 (0,135) (285,1680) (0,136) (0,136)
10 225 (174,527) (865,>2000) (174,529) (175,530)

Table 7.6 Comparison of interval estimates, with mutation, from the
four approximation techniques for a simulated map of ten markers. All
distances are given in kb. Recall that FOA represents a �rst-order

approximation and that SOA represents a second-order approximation.
The grid for the Galton-Watson second order approximations was set at 5

kb to speed computations.
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The di�erences among the estimates are minimal, both with and without mu-

tation, except for the second order branching process estimates. Therefore, the

evaluations that remain use only the �rst order approximation to the branching

process, unless otherwise stated.

7.1.2 Multiple Markers

The aim of this section is to examine the ability of the estimation methods of

this thesis to locate disease genes when a map with more than one marker is

available. It studies the case where there are two marker loci and then provides

some illustrations where there are more than two markers.

Two-Marker Results

This section describes the results of a single replicate of a factorial experiment

designed to examine the impact of various population parameters on composite

likelihood estimates based on two marker loci. Table 7.7 contains the parameters,

with the values used in the study.

The algorithm for haplotype simulation described in Chapter 6 was used to

produce a population of disease chromosomes according to combinations of the

parameters in Table 7.7. Two other parameters were �xed for all realizations of

the experiment. The population of disease chromosomes was assumed to grow

from one to 100000 at a deterministic rate. This number was selected for compu-
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Parameter Values examined
sample size (dsamp) 25, 150, 250
kb between markers (kb b) 20, 200, 2000
alleles at locus 1 (a1) 2, 6
alleles at locus 2 (a2) 2, 8
mutation rate at locus 1 (m1) 0, 1� 10�6

mutation rate at locus 2 (m2) 0, 1� 10�4

disease mutation rate (md) 0, 1� 10�7

location of disease gene (kb d) -50, 10, 100, 1000
age of disease (age) 100, 200, 400

Table 7.7 Values of parameters examined in the factorial
experiment for two-marker composite likelihoods.

tational convenience. This choice is not without precedent. It has been used by

other researchers in population simulations (see e.g. [12] and [11]). Another �xed

parameter was the marker allele frequencies in the total population. They were set

equal to one over the number of marker alleles (i.e. if there were two alleles, then

they each were assumed to have a frequency of 0.5). Another important assump-

tion was the pattern of mutations at the marker loci. When mutations occurred

at a marker locus, a single-step model of mutation with reective boundaries was

assumed. The speci�c form of the mutation matrix, conditional on a mutation
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occurring was 0
BBBBBBBBBBBBBBBBBB@

0:4 0:6 0:0 : : : 0:0

0:4 0:0 0:6 0:0 : : : 0:0

. . . . . . . . .

0:0 : : : 0:0 0:4 0:0 0:6

0:0 : : : 0:0 0:4 0:6

1
CCCCCCCCCCCCCCCCCCA

: (7.2)

Once the samples from the simulated populations were obtained, the data were

analyzed with three di�erent composite likelihoods. The �rst estimates were from

a composite likelihood calculated under the assumption of no mutations. The

second set of estimates was computed by assuming that mutations occurred at the

marker loci with a mutation transition matrix of0
BBBBBBBBBBBBBBBBBB@

0:9997 0:0003 0:0 : : : 0:0

0:0002 0:9995 0:0003 0:0 : : : 0:0

. . . . . . . . .

0:0 : : : 0:0 0:0002 0:9995 0:0003

0:0 : : : 0:0 0:0002 0:9998

1
CCCCCCCCCCCCCCCCCCA

: (7.3)

The �nal estimates were made using the maximal restrictive smooth described in

Chapter 6.

Two behaviors of the estimates were of interest: the point estimates and the

con�dence intervals. To evaluate the quality of the point estimates, the distance

between the predicted location and the truth, plus one, was logarithmically trans-

formed to stabilize the variance and to achieve approximate normality. Even after
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performing this transformation, the �t of the models was insu�cient. Fitting sep-

arate analysis of variance models to the data for each level of the disease location

factor (kb d), recti�ed this problem.

In order to analyze the data, it was necessary to pool high order interactions to

form the error term. Using a forward selection procedure provided the general form

of the models. Performing full and reduced model tests indicated that adding four-

way interactions to the three-way interaction model for the kb d=-50 factor level

did not signi�cantly improve the �t of the model. Likewise, the models including

three-way interactions were not signi�cantly better than the models with only two-

way interactions for each of the other three levels of the kb d factor. Therefore,

for the kb d=-50 factor level, a model including one-way, two-way and three-way

interactions was selected. For the other three levels, models including one-way and

two-way interactions were chosen.

The tables in Appendix C contain multivariate and univariate analysis of vari-

ance tables for each of the levels of kb d and for each of the repeated measurements:

the estimates based on no smoothing, mutation smoothing and restrictive smooth-

ing. The main e�ects and interactions that were signi�cant at a level of � = 0:01

level in a multivariate analysis were considered to be important. The discussion

that follows focuses on speci�c levels of the kb d factor and considers only those

terms that were signi�cant in the multivariate model and all three of the univariate
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models for the repeated measurements. This was done to obtain some protection

against Type I errors, as many tests were made.

Furthermore, if a main e�ect is signi�cant alone and is also included in an

important interaction, then discussion is limited to the interaction term alone.

While discussion is limited to those terms in the models that were signi�cant for

all of the multivariate and univariate analyses, the means and mean-squared errors

of the estimates from other terms that were signi�cant in at least the multivariate

analysis are included in Appendix C.

Relatively few interactions and main e�ects were signi�cant at the � = 0:01

level in the models for each of levels of the kb d factor. For the kb d=-50 level,

only the variables in the a1 by a2 by kb b interaction were signi�cant for each

of the models considered. For the kb d=10 level, two two-way interactions were

su�cient to describe all of the terms that were signi�cant in the multivariate and

univariate models: the a1 by kb b and the dsamp by age interactions. For the

kb d=100 level, the signi�cant factors were the kb b main e�ect and the a1 by age

interaction. For the kb d=1000 level, only the kb b main e�ect was signi�cant in

all models. Figures 7.1 through 7.5 contain main e�ect and interaction plots for

these terms. The results are discussed below. As mentioned earlier, other model

terms were signi�cant, but not consistently so. These terms, while not discussed

in the text, can be examined through the tables printed in Appendix C.

Before examining the results from the models, consider Table 7.8. This table
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kb d estimate mean MSE
-50 no smooth 4.01 0.20
-50 mutation smooth 4.04 0.20
-50 restrictive smooth 4.02 0.15
10 no smooth 2.30 1.15
10 mutation smooth 2.25 0.90
10 restrictive smooth 2.10 0.91
100 no smooth 3.85 1.46
100 mutation smooth 3.98 1.21
100 restrictive smooth 3.77 1.00
1000 no smooth 6.16 1.42
1000 mutation smooth 6.21 1.33
1000 restrictive smooth 6.31 0.79

Table 7.8 Means and mean squared errors from the models �t to the
log of the prediction error plus one for di�erent levels of the kb d factor

and the di�erent estimation techniques.

demonstrates that all three estimation procedures behave similarly for each of

the levels of kb d. However, the estimates that were smoothed tended to have

smaller values of MSE. They also appear to provide some small bene�t when only

10 kilobases separate the markers in the map. One point that stands out from

this table is that the estimation error was quite large on average when the disease

mutation was located outside of the map of markers, even though it was only 50

kilobases from the �rst marker.

Figure 7.1 contains plots of the interaction that contains the signi�cant infor-

mation from the model when the disease locus was -50 kb from the �rst marker

in the map. This interaction involves the distance between the markers and the

number of alleles at each of the two marker loci in the map. When there were
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Figure 7.1 Interaction plots for the a1 by a2 by kb b interaction. The
dependent variable is the log of the absolute error plus one, for the case
when the disease mutation is -50 kb from the �rst marker. See Table 7.7

for a description of the factors and their levels.

two alleles at each of the marker loci, the estimation error decreased gradually as

the distance between markers was increased. When there were 6 and 8 alleles at

marker 1 and 2, respectively, the behavior was similar. However, the error dropped

rapidly as kb b moved from 20 to 200 kb and then leveled o�. When there were

2 and 8 alleles at marker 1 and 2, the prediction error changed little. The allele

combination that di�ered the most from the others was when marker 1 had 2 alle-

les and marker 2 had 8 alleles. In this case, the prediction error increased as kb b

went from 20 to 200 kb before falling when the distance between the two markers

reached 2000 kilobases.
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All of the allele combinations behaved similarly when a great distance separated

the markers. Di�erent allele patterns produces estimates of di�erent quality for

reasons that are not clear at this time. It is worth mentioning here, however, that

none of the estimators performed particularly well in this case, since the mutation

was outside the map of markers. Rather than concern oneself with this result, it

would be preferable to type markers that the disease gene is almost sure to be

within the map of marker loci.

Figure 7.2 contains plots of one of the two interactions that were important for

the case when the disease mutation was 10 kb from the �rst marker: the a1 by
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Figure 7.2 Interaction plots for the a1 by kb b interaction. The
dependent variable is the log of the absolute error plus one, when the
disease mutation is 10 kb from the �rst marker. See Table 7.7 for a

description of the factors and their levels.



128

kb b interaction. This interaction has a simple interpretation. If the marker loci

are separated by 10 kb, it is better to use biallelic markers. Otherwise, it is better

to use markers that have more than two alleles.

Figure 7.3 contains plots of the other interaction that was signi�cant when the

disease mutation was 10 kb from the �rst marker. One result is clear from this plot:

when the sample of disease chromosomes increased, the prediction error tended to

decrease. The age of the disease also tended to make the prediction error decrease,

but the patterns in which the prediction error decreased depended on sample size.

If the sample size was 25 disease chromosomes, moving from 100 to 200 generations
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Figure 7.3 Interaction plots for the dsamp by age interaction. The
dependent variable is the log of the absolute error plus one, when the
disease mutation is 10 kb from the �rst marker. See Table 7.7 for a

description of the factors and their levels.
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increased the prediction error to its highest point. On the other hand, if the sample

size was larger, an age of 200 generations produced the smallest prediction error.

Figure 7.4 contains plots for the single interaction to be discussed for the case

when the disease mutation was 100 kb from the �rst marker. The case where no

smoothing was applied was quite similar to the case when the restrictive smooth

was used. In this case, biallelic markers were better then multi-allelic markers

when the disease mutation was 100 generations old, but worse when the disease

mutation was 200 generations old. The di�erences were insigni�cant when the

disease mutation was 400 generations old. The most striking feature of this inter-
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Figure 7.4 Interaction plots for the a1 by age interaction. The
dependent variable is the log of the absolute error plus one, when the
disease mutation is 100 kb from the �rst marker. See Table 7.7 for a

description of the factors and their levels.
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action was that the mutation smooth greatly inuenced by the number of marker

alleles. When there were only two alleles, it performed poorly. When there were

six alleles, it performed well for diseases over 100 generations old.

The plots in Figure 7.5 di�er from those in the previous �gures. They are

main e�ect plots for the kb b factor. Also, they display results for two levels of the

kb d factor. They highlight a di�erence showcased in Table 7.8: the location of the

disease mutation relative to the map of marker loci had a big inuence on prediction

error. Other di�erences here were slight. The results from the \No Smooth" and

\Mutation Smooth" were not signi�cantly di�erent. The \Restrictive Smooth"

kb between markers
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Figure 7.5 E�ect plots for the kb b main e�ect. The dependent
variable is the log of the absolute error plus one, when the disease

mutation is 100 kb and 1000 kb from the �rst marker. See Table 7.7 for a
description of the factors and their levels.
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estimates were better for the factor level combinations of kb d=100, kb b=200

and kb d=1000, kb b=2000. However, they were worse when kb d was 1000 and

kb b was 20.

This brings to light a property of the restrictive smoothing technique. It tends

to predict that the disease mutation will lie somewhere near the center of the map

of markers. For this reason alone, it would seem to be unwise to use this ad hoc

smoothing method.

The second behavior considered through this factorial experiment was the the

coverage probability of the approximate intervals. To evaluate the results, a cat-

egorical model that used main e�ects and two-way interactions to predict the

coverage probability was �t via maximum likelihood for each estimation method.

The maximum likelihood analysis of variance tables are included in Appendix C.

The tables indicate that the models �t the data quite well, and perhaps too well,

as the p-values for the goodness-of-�t were all approximately equal to one. In

keeping with the practice established for interpreting the prediction error, the text

discusses only the terms in the model that were signi�cant at the � = 0:01 level

for all of the smoothing methods. The estimated coverage probabilities for various

interactions are included in Appendix C. The plots in Figures 7.6 through 7.10

contain the main e�ect and interaction plots that are discussed in the text.

Figure 7.6 contains the main e�ect plot for the factor that inuenced coverage

probability the most: the location of the disease mutation, or kb d. The most
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Figure 7.6 E�ect plots for the kb d main e�ect. The dependent
variable is the coverage probability. See Table 7.7 for a description of the

factors and their levels.

striking feature of this plot is that the coverage probability was extremely low when

kb d was equal to -50, being less than 20 percent. It climbed above 80 percent

when the disease locus was 10 kilobases from the �rst marker in the map. It then

leveled out for larger values of kb d, at about 60 percent for the \No Smooth"

and \Mutation Smooth" methods and at about 70 percent for the \Restrictive

Smooth" method.

As had been hoped, the smoothing procedures provided increased coverage

probabilities when the disease mutation was separated from the �rst marker locus

by only 10 kilobases.
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Figure 7.7 Interaction plots for the a1 by kb d interaction. The
dependent variable is the coverage probability. See Table 7.7 for a

description of the factors and their levels.

Figure 7.7 contains interaction plots for the kb d by a1 interaction. The domi-

nant feature is the e�ect of the levels of the kb d factor. The a1 factor added some

information, however. The two levels of the a1 factor produced similar results

when kb d is small, but as kb d increased, the coverage probability decreased less

for marker loci with 6 alleles than for biallelic markers. This di�erence was less

marked when no smoothing procedure was performed.

The dsamp by kb d interaction was second only to kb d in importance when

no smoothing was applied. Figure 7.8 contains the interaction plots for this inter-

action. The �rst, and perhaps most startling, feature that is apparent from these

plots is the fact that lower sample sizes produce better coverage probabilities. This
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Figure 7.8 Interaction plots for the dsamp by kb d interaction. The
dependent variable is the coverage probability. See Table 7.7 for a

description of the factors and their levels.

suggests that the narrower con�dence intervals produced by larger sample sizes can

be misleading. This also veri�es that composite likelihoods do not produce consis-

tent estimators, something mentioned by Devlin et al. [12].

Figure 7.9 illustrates the kb b by kb d interaction for each of the estimation

procedures. The coverage probabilities were highest when the disease mutation

was 10 kb from the �rst marker. When the markers were separated by 20 kb,

the coverage probabilities were 50 percent or lower when the disease mutation was

more than 20 kilobases from the �rst marker. This reinforces an observation made

in conjunction with the kb d factor alone. Disease mutations lying outside of the

map of marker loci are very di�cult to detect.
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Figure 7.9 Interaction plots for the kb b by kb d interaction. The
dependent variable is the coverage probability. See Table 7.7 for a

description of the factors and their levels.
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Figure 7.10 Interaction plots for the age by kb d interaction. The
dependent variable is the coverage probability. See Table 7.7 for a

description of the factors and their levels.
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Two results stand out from the plots in Figure 7.10. The coverage probabilities

are quite low for young disease mutations that are far from the markers in the map.

Also, the coverage probabilities for disease mutation that are 200 generations old

are low when the disease mutation is 100 kb from the �rst marker in the map.

These results are not true for the Restrictive Smooth estimates, which exhibit

lower coverage probabilities for older mutations, regardless of the location of the

disease mutation, with those for younger mutations decreasing more slowly as the

disease location goes from 100 to 1000 kb from the �rst marker in the map.

In summary, several observations can be made about the results of this simu-

lation. The �rst is that the location of the disease mutation is the most important

factor in controlling the behavior of the composite likelihood estimates. It had a

tremendous impact on the prediction errors and on the coverage probabilities as

well. This is an unfortunate result. However, closer examination of the results

brings hope. The cases where the estimators performed poorly were when the dis-

ease mutation was outside the map of marker loci. Using a map of marker loci that

is very likely to contain the disease mutation will improve performance. This map

may be de�ned through prior linkage analysis studies or through other methods.

Another result that was common to both the prediction error and coverage

probability analyses was that new mutations did not signi�cantly inuence the

performance of the composite likelihoods. This is likely due to the fact that the
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variability inherent in the stochastic models for disease propagation dwarfs the

variability induced by varying the mutation rates.

Another interesting result is the e�ect of the dsamp factor. Increasing the

sample size decreased the prediction error. However, it decreased the coverage

probability as well. The improved prediction error is probably due to the fact that

larger sample sizes produce more precise estimates of the marker allele frequencies.

This decrease in allele frequency estimation error is reected in the approximate

log likelihoods, making the search regions too narrow.

The �nal result worth noting here is that the distance between the marker

loci had an e�ect on the estimation. If the marker loci were close together, the

prediction errors were small and the coverage probabilities were high as long as

the disease mutation was relatively close to one of the marker loci. There is also

evidence to suggest that biallelic markers outperform multi-allelic markers in a

dense map where the disease mutation is close to a marker locus in a dense map.

On the other hand, if the loci are separated by 100 kilobases or more, or if the

disease mutation is far from the markers in the map, multi-allelic markers were

better.

Age Estimates

When data from several marker loci are available, one can consider estimating the

age of the disease in addition to the position of the disease mutation. Figure 7.11
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contains a contour plot that jointly estimates the location and age of a disease

mutation from a simulated data set. The outer contour is not the lowest point in

the composite log likelihood. For visual purposes, the plot looks only at the highest

twelve log-likelihood units. The inner-most contour represents an approximate

95% con�dence region. Note that locations of the disease gene to the left of the

kb from 1st marker
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Figure 7.11 Contour plot of the joint composite log likelihood from
two-marker simulated data with a sample size of 250. The contours

represent two unit increments of the composite log likelihood, with the
solid line with the largest circumference representing the lowest value.

The truth is marked by �.
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�rst marker locus cannot be discounted, unless an assumption is made about the

minimal possible age of the disease.

The true parameter value lies outside the con�dence region de�ned by the

highest contour. It does not miss by much, however. In fact, if age is treated as

a nuisance parameter, a con�dence region that contains the true location of the

disease is de�ned by projecting the extreme points of the contour to the `X' axis.

This is not the case in a projection to the `Y' axis, where the truth is still outside

the 95% interval. This suggests that estimating the age of a disease is more di�cult

than estimating its location.

More than Two Marker Loci

This section looks at three situations where data are simulated from a map of ten

marker loci. In the �rst two examples, the disease gene resides in a region densely

populated by markers. In the �rst, the disease is near the end of the map and in

the second, the disease is near the center. In the third example, the disease gene

lies close to the end of a less dense map spanning 2000 kilobases.

Figures 7.12 7.13 and 7.14 contain contour plots of very restricted views of the

resulting composite log likelihoods. The composite likelihoods for the dense maps

come remarkably close to predicting the true location of the disease gene. In each

case, the true location lies safely within a �95% con�dence interval that spans

about 20 kb. However, they fail to provide good estimates of the age of the disease
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Figure 7.13 Contour plot of a restricted view of the joint composite log
likelihood from simulated data with the disease gene near the center of a
dense map. The contours represent two unit increments of the composite

log likelihood, with the solid line with the largest circumference
representing the lowest value. The true location is marked with a vertical

line.
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Figure 7.14 Contour plot of a restricted view of the joint composite log
likelihood from simulated data with the disease gene near the end of a

sparse map. The contours represent two unit increments of the composite
log likelihood, with the solid line with the largest circumference

representing the lowest value. The true location is marked with a vertical
line.



143

gene, which in each case was 100 generations. This reinforces the result that the

two marker haplotypes suggested: it is di�cult to estimate the age of a disease

mutation.

The result from the sparse map tells a di�erent story. First of all, it comes a

little closer in its estimate of the age of the disease. However, the con�dence region

for the location spans several hundred kilobases and misses the true location by

several hundred more. This illustrates two issues. First, in order to map disease

genes with high precision, one must have a dense map of genetic markers. Second,

if the disease gene lies close to the end of the map of markers, the composite

likelihood may have high values outside of the map. This is due to the fact that

the component likelihoods have very negative values near marker loci.

Estimates with Mutations at the Marker Loci

When single-marker estimates were made by assuming the mutation matrix in

Equation 7.1, the estimates of the distances between markers and disease were

reduced. Here, the single-marker likelihoods used to obtain the results listed in

Tables 7.3, 7.4 are combined into composite likelihoods. Figure 7.15 contains

the composite log likelihood from the �rst order approximation and Figure 7.16

contains the second order approximation. Note that the composite estimates are

not only easier to interpret than the combined single-marker results, but they also

appear to provide more reliable estimates of disease location.
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The composite and single-marker estimates behave quite di�erently when muta-

tion is used in the estimation procedure when none was present in the evolutionary

model. The single marker estimates systematically underestimated the location of

the disease gene relative to each marker(see Table 7.5). However, combining those

single marker likelihoods into composite likelihoods produced estimates that were

quite good. It seems that the composite likelihood is less sensitive to incorrectly

specifying mutation processes. This reinforces the result from Chapter 6 which

suggested that allowing for mutation acts to smooth the likelihood surface.

For this example, the results from this smoothing-through-mutation are favor-

able. For each order of approximation, the smoothed composite likelihood sug-

gested a search region of about 30 kb. The �rst order smoothed interval missed

the truth, but only by 1 kb.

The second order smoothed likelihood showed a great improvement over the

unsmoothed version. In fact, it de�ned a search region that captured the true

location of the disease gene. This result can be explained by the fact that mutation

and recombination parameters are confounded. If mutations occur, then fewer

recombinations are required to explain the observed deviation from the initial allele

frequencies. This makes it more likely that the disease and marker loci are close

together. This increases the value of the log likelihood for small recombination

coe�cients, helping overcome the instability of the second order approximation to

the branching process model.
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7.2 Published Data

This section applies the methodology of this thesis to published data and compares

the results to those obtained with other methods.

7.2.1 Cystic Fibrosis

Cystic �brosis (CF) is an autosomal recessive disease that occurs in approximately

one of every 2000 live births. It has been estimated that about 70% of all CF chro-

mosomes carry the �F508 deletion. Due to this strong founder e�ect, simple linkage

disequilibriummapping techniques aided in the localization of the mutation, which

was cloned in 1989 [39].

Kerem et al. [39] published data which aided in localizing a disease mutation

for Cystic Fibrosis to a region approximately 865 kb from the metD/BanI marker.

Using the data published by Kerem et al. [39], and assuming that the disease

mutation occurred 200 generations ago [36], produces a composite likelihood to

estimate the location of the CF disease gene. Figure 7.17 contains two versions of

the composite likelihood.

The estimates are relatively close to the truth. The estimate from the no-

mutation likelihoodmisses the truth by 72 kb and the mutation estimate misses the

truth by 66 kb. The search regions are more questionable. The simple con�dence

region de�ned by the values of the composite log likelihood which are two units less

than the maximum are far too narrow. The more conservative intervals are almost
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not wide enough. However, these problems can be diminished by jointly estimating

the age and location of the disease. For example, in Figure 7.18, the disease gene is

located within a region where the joint likelihood maintains relatively high values

even for very large ages.

7.2.2 Diastrophic Dysplasia

Diastrophic Dysplasia (DTD) is an autosomal recessive disease that occurs with

low frequency in most populations, but with a carrier frequency of 1% - 2% in
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Figure 7.18 Contour plot of the composite log likelihood for the joint
estimation of the age and location of the Cystic Fibrosis gene. A vertical

dashed line indicates the true location of the �F508 deletion.
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Finland. H�astbacka et al. [23] utilized linkage disequilibriumand physical mapping

techniques to locate the disease gene.

Using the data published by H�astbacka et al. [23], and assuming that the

disease mutation occurred 100 generations ago [24], produces composite likelihoods

that estimate the known location of the DTD gene. Figure 7.19 contains the

composite likelihoods. The unsmoothed likelihood misses the truth by about 95

kb and the conservative con�dence interval misses the truth by about 15 kb. The

smoothed likelihood reaches its maximum at a point only 50 kb away from the

truth, and its conservative con�dence interval contains the disease gene.

7.2.3 Huntington's Disease

Huntington's Disease (HD) is an autosomal dominant disease caused by an unstable

trinucleotide repeat within a large gene. The disease mutation was identi�ed in

1993 by the Huntington Disease Collaborative Research Group [32].

Using the data published by MacDonald et al. [51], makes it possible to form

composite likelihoods to predict the location of the disease gene. Since the precise

distances were not provided, they were inferred from the locations shown in Figure

2 in the MacDonald et al. paper [51]. The inferred distances were in agreement

with the few actual distances that were published in the paper. The distances

between polymorphisms obtained by digesting the same marker with di�erent en-

zymes were set equal to 5 kb. The actual distances were uncertain, and ranged
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The reason for the complex pattern of linkage disequilibrium may be due to

marker and/or disease mutations. Therefore, a composite likelihood was formed

with the same data, but allowing mutational factors to come into play. The muta-

tion e�ects were introduced in a simple-minded way. Namely, it was assumed that

all of the markers share the same rate and pattern of mutation, with a mutation

matrix of 0
BBB@

0:999 0:001

0:001 0:999

1
CCCA (7.4)

It was also assumed that new disease mutations occur at a rate of 1 � 10�8. The

magnitudes of these mutation parameters were roughly based on the estimates of

other researchers (see e.g. [76]). The composite log likelihood produced under these

assumptions is contained in Figure 7.21. The estimated location of the disease

mutation is approximately 2310 kb from the D4S111/PstI locus. The resulting

estimation error is only 5 kb.

7.2.4 Comparisons

The methods presented in this thesis are not the only composite likelihood tech-

niques. This section compares the estimates from this thesis to to those obtained

from other methods.

The method that is the closest to those presented here is that of Xiong and

Guo [76]. In fact, when there is no mutation, their �rst order approximation is
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identical to the �rst order approximation via the Moran/Coalescent model (see

Chapters 3 and 6). Previous results show that the branching process and Moran

�rst order approximations are very similar. Therefore, all estimates obtained using

the branching process �rst order approximation should be very close to the esti-

mates of Xiong and Guo. This is indeed the case. Consider, for example, Cystic

Fibrosis. The method of Xiong and Guo predicts the disease gene to lie about

75 kb from the truth, while the branching process �rst-order approximation has

an error of about 72 kb. For each method, the con�dence intervals fail to cover

the true location of the disease mutation. However, the techniques of smoothing

presented in this thesis provide improved estimates of the location of the disease

mutation.

Another composite likelihood method is that of Devlin et al. [12]. To compare

the methods of this thesis to theirs, consider the DTD data of H�astbacka et al.

[23]. The prediction error from both of their models, simple and heterogeneity,

was about 100 kb. Their simple model produced a con�dence interval that did

not cover the true location, although the heterogeneity model did. This compares

well with the results in the previous section, where the recombination-only model

failed to produce a correct search region, while the smoothed composite likelihood

identi�ed a search region which covered the true location of the disease mutation.

One feature that other composite likelihoods share with those obtained through

the methods of this thesis is a propensity to have small values in a region where
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the map of marker loci is dense. This feature is less marked for the Devlin et al.

[12] heterogeneity model, although it is still present. Using the methods of this

thesis, it is a simple matter to allow for mutation, which can reduce this behavior

and even make it disappear.

In their basic forms, all of these methods are based on the assumption that a

single disease mutation accounts for a large proportion of the disease chromosomes.

However, for each model, methods have been developed to account for deviations

from this assumption. These modi�cations provide insight about which methods

may be preferable.

For the method of Devlin et al., there is a heterogeneity parameter to model

deviations from the expected behavior. However, the way that it does so is unclear.

That is not the case for the methods of this thesis, and that of Xiong and Guo. By

using population models to obtain estimators, one can utilize mutation parameters

to account for heterogeneity in a way that can be quanti�ed and understood.

From a results standpoint, the estimators from this thesis are quite similar

to those of Xiong and Guo. Obtaining the various estimators is vastly di�erent,

however. The method of Xiong and Guo requires that a di�erent system of dif-

ferential equations be solved for each type of mutation matrix. If the mutation

pattern is very complicated, it becomes di�cult to write the di�erential equations.

With the methods of this thesis, the transition matrix due to both mutation and

recombination is a product of mutation and recombination matrices. With this
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transition matrix, it is a simple matter to obtain the �rst order approximations,

either through taking matrix powers or through obtaining the exponential form of

a matrix.
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Chapter 8

Conclusion

The slow decay of linkage disequilibrium between loci that are tightly linked sug-

gests that it can be used to obtain re�ned information about the location of disease

genes. This indication is supported by the successes of various researchers (see e.g.

[39] [23] and [11].

Methods for linkage disequilibrium mapping can be separated into two major

classes: population and family-based methods. Family-based techniques include

the transmission disequilibrium test [65] and haplotype relative risk methods [44].

This thesis focuses on disequilibrium mapping with population data.

Population-based methods for linkage disequilibrium can be grouped into two

categories. The �rst of these estimates the location of disease genes based on the

relative magnitude of linkage disequilibrium measures among a map of genetic

markers. Speci�c techniques that �t into this group include simple disequilibrium

mapping (see e.g. [11] and moment estimators of r (see e.g. [24] [73]). The second

provides maximum likelihood estimates of the recombination coe�cient through

the use of sampling and population models. The contributions of this thesis fall

into this class. Other maximum likelihood methods are due to Hill and Weir [29],
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Kaplan et al. [36], Terwilliger [68], Devlin et al. [12], Xiong and Guo [76], Rannala

and Slatkin [59], and Lange and Fan [46].

Up until very recently, little work had been done to extend linkage disequi-

librium mapping outside the framework of simple mapping. Recent work by

Terwilliger [68] and Devlin et al. [12] developed maximum likelihood procedures

that could be used to estimate the recombination coe�cient. Their methods were

based on sampling and population behavior of speci�c measures of disequilibrium

(primarily � from Table 3.2).

In 1992, H�astbacka et al. [24] made a major contribution by formulating an

estimate of recombination fraction for the situation where disequilibrium is present

in a young, isolated and rapidly-growing population. This had the e�ect of making

it possible to estimate the location of a disease gene, conditional only on the age

of the disease, without speci�c reference to a measure of disequilibrium.

Kaplan et al. [36] made a second contribution by realizing that it is not nec-

essary to model the history of the entire population. Rather, it is su�cient to

model the population of disease chromosomes within a large, non-disease popu-

lation. They proposed that this could be done with a multi-type Galton-Watson

branching process with Poisson o�spring distributions, which is a rare-disease ap-

proximation to the Wright-Fisher model.

Using a multinomial sampling model, they de�ned the likelihood in Equation

3.12. This likelihood (or log likelihood) could then be used to estimate the location
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of disease genes. They simulated realizations from the branching process to obtain

Monte Carlo estimates of the likelihood.

This simulation procedure required vast amounts of computer time, and its

results were subject to potentially large simulation error. This problem prompted

the initial work of this thesis. Its aim was to study the behavior of their branching

process model in an attempt to improve its utility in estimating r. This led to

expressions of the �rst two moments of the distributions of allele counts, conditional

on the age of the disease. Later work also obtained moments of allele frequencies

from a time-continuous version of the Moran model via the coalescent. These

moments led to approximations to the likelihood for r, which in some special cases

yielded closed-form estimates of the recombination coe�cient.

As the work of this thesis was progressing, Xiong and Guo [76] published a

paper, where they modeled the expansion of a population of disease chromosomes

with a di�usion approximation to the Wright-Fisher model. They obtained systems

of di�erential equations that could be used to obtain moment estimates that they

used to form approximations to the likelihood. They were the �rst to describe the

technique of approximating the likelihood with low-order Taylor series expansions.

Two papers have recently been published which provide slightly di�erent per-

spectives. In the �rst, Lange and Fan [46] generalize several of the assumptions

required in existing methods. They assume that the population of normal chro-

mosomes is experiencing deterministic exponential growth, and that new disease
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mutations occur according to a Poisson point process. After a disease mutation

occurs, they model its population behavior with a time continuous branching pro-

cess. Or speci�cally, each mutant chromosome lives for an exponential length of

time, after which it produces o�spring according to some probability law. This

probability law can depend on selection pressures, as well as other population pa-

rameters. There are three bene�ts to this technique. First, it is a more reasonable

model for disease mutations, as it allows for selective pressures to act against them.

Second, it allows for the normal population to be modeled concurrently with the

disease population. Third, expectations of a variety of random variables can be

obtained by evaluating Laplace transforms. These moments can then be used to

form approximations to likelihoods for estimation of r.

In the second paper, Rannala and Slatkin [59] assume that a single disease

mutation is propagating within a stable normal population. They also assume

that the expansion of disease chromosomes can be described by a continuous time

birth-death process similar to that used by Lange and Fan [46]. Their approach

is very similar to that of Kaplan et al. [36], with only the disease population

models di�ering. However, they present two important advances. First, they

obtain transition probabilities that account for mutation and recombination si-

multaneously. More speci�cally, they �nd the transition probabilities as general

functions of time. Second, in a major departure from existing methods, they use

coalescent-based arguments to obtain the sampling distribution of disease chro-
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mosomes. Their approach enjoys increased computational e�ciency over that of

Kaplan et al. [36].

The approach of this thesis is something of a juxtaposition of the work of

Kaplan et al. [36] and Xiong and Guo [76]. It uses population models, one of

which is a Poisson branching process, to derive moments to be used in �rst and

second order approximations to the log likelihood of Equation 3.12. While this

technique is closely related to these two, it o�ers several bene�ts.

The �rst order estimator outperformed that of Kaplan et al. [36] on data sim-

ulated with their branching process recursion. This is a reection of a problem

noted by other researchers, who found that the con�dence regions of Kaplan et

al. [36] can be too wide to be of practical use (see e.g. [76]). Also, the approxi-

mations presented in this thesis are much more computationally e�cient than the

simulation algorithm.

The method of Xiong and Guo [76] is mathematically complex in the sense that

systems of di�erential equations must be obtained and then solved. The di�erential

equations are quite complex, even for the single-step mutation model that the

authors propose. Also, in order to use a di�erent model of mutation, one must

rewrite the systems of di�erential equations. Accommodating di�erent mutation

patterns invariably makes the system of di�erential equations more di�cult to

obtain.
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With the methods presented in this thesis, changing the mutation model is

as simple as modifying the mutation matrix and multiplying it to the matrix of

transition probabilities due to recombination. This produces a transition matrix

that can be modi�ed for use in either a branching process or Moran model. The

moments necessary to form the approximations can then be obtained through

matrix operations on the intensity matrix.

The methods of this thesis perform well, but not perfectly, with respect to

data. When used on simulated data, the estimators provided estimates of the

location of the disease gene that were close to the truth. However, there were

instances when the estimators missed the truth by wide margins. Also, the 95%

con�dence intervals displayed reduced coverage probabilities in many instances.

This is consistent with the results from other methods (see e.g. [12]).

One of the techniques that shows promise in helping overcome the weak-

nesses of genetic mapping with linkage disequilibrium is the concept of smoothing.

Smoothing the composite likelihoods, either by allowing mutation at marker loci or

through ad hoc methods, improved the coverage probability on the simulated data.

This result was not unexpected. The improvements due to allowing mutation were

expected as it is unlikely that recombination alone acts to change marker allele

frequencies, even for young diseases propagating in isolated populations. The case

for ad hoc methods is stated in Chapter 6. Namely, eliminating extremely negative
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values near marker loci is extremely valuable when the disease gene is close to a

marker locus.

Applying this methodology to several published data sets, produces estimates

that agree with the true location of cloned disease genes. The techniques presented

in this thesis successfully predicted the location of genes for simple genetic diseases

such as Diastrophic Dysplasia and Cystic Fibrosis, as well as for the more complex

Huntington's Disease. One important note is that while almost all likelihood-based

mapping procedures correctly identify the location of the Cystic Fibrosis and the

Diastrophic Dysplasia genes, only those which can incorporate mutations at the

disease locus and/or at the marker loci are able to do so with Huntington's disease

(see e.g. [36], [12] and [76]).

These results further validate the applicability of linkage disequilibrium map-

ping as a re�nement to the search regions obtained through linkage analysis. Using

these methods, the search for disease genes can be narrowed to regions that are

much smaller than those obtained through linkage analysis. The estimated inter-

vals were as narrow as 30 kilobases for simulated data, and were several hundred

kilobases in length for the real data sets. This compares to intervals from linkage

analysis that are on the order of megabases.
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8.1 Recommendations

The results of this thesis provide insights to linkage disequilibriummapping. They

lead to several suggestions for those who wish to use it to map disease genes. What

follows are several recommendations concerning the location and spacing of marker

loci and the selection of population parameters.

8.1.1 Marker Selection

Other researchers have suggested that having markers placed closer together that

60 kb will `be a waste' [76]. This remark was perhaps precipitated by results from

several real data sets. In these data sets, the location of the disease gene was

very close to one or more markers. In these cases, the composite likelihood was

not maximized at the true location, but rather at some location nearby where

no marker was interfering with the signal. The results from this thesis indicate

that smoothing the composite likelihood surface can reduce this problem. In fact,

using markers that are quite densely spaced can be pro�table. This is evidenced

in Figure 7.13, where the estimate of disease location was quite close to the truth

even within a region populated with markers spaced 10 kb apart. The estimates

are even better if the composite likelihood is smoothed, either by accounting for

mutation or by using some other method. Other results indicate that if a dense

map of markers is to be used, it may be preferable to use markers with few alleles.
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Another important aspect to be considered in marker selection is illustrated

in Figure 7.14. If the disease gene is located near the end of the dense map of

genetic markers, the composite likelihood may peak at a point far outside the

map. Smoothing the likelihood can help in this case as well, as it makes the values

near markers less negative. However, the problems indicated in the �gure were

veri�ed in the simulation study. When the disease mutation lies outside of the

map of markers, composite likelihood methods do not work well. It is advisable to

take cautionary measures to ensure that the disease mutation is likely to be within

the map. For example, one could type markers outside each end of the coarse

search region de�ned via linkage analysis.

8.1.2 Population Parameters

It is always preferable to utilize the correct parameters describing population

growth, age of disease, mutation, etc. However, if this information is unavailable,

one can still obtain reasonable estimates of the location of disease genes.

The �rst order approximation does not depend on the growth rate, so estimates

of disease location can be made without assuming any �xed value. However, the

age of the disease and mutation rates and patterns do inuence estimates. By com-

bining the information of several markers into a composite likelihood, the impact

of these parameters is diminished. Also, if the age of the disease is not known, it

can be made a free parameter to be estimated jointly with the disease location.
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Treating age as a nuisance parameter in this way can improve estimates. Also,

underestimating the age of the disease mutation results in more conservative con�-

dence intervals. When it is clear that mutation is needed for the population model

to be reasonable, and no mutation rates are known, using the same mutation rate

for all markers seems to work well. This is justi�ed somewhat by the estimates for

Huntington's disease in Chapter 7 (see Figure 7.21), where the composite likeli-

hood estimated when the mutation rate and pattern was assumed to be the same

for all of the marker loci produced favorable results. Recall that this has the e�ect

of smoothing the composite log likelihood, something bene�cial in its own right.

8.2 Future Work

Many issues dealing with linkage disequilibrium mapping remain to be studied.

For example, this method assumes that the marker allele frequencies in the entire

population are �xed constants. This assumption is not reasonable for markers such

as microsatellites which have high mutation rates and/or experience directional

mutation. Other population e�ects such as population substructure, incomplete

penetrance and non-rarity of disease may be important factors.

A related issue is the appropriateness of a branching process model for au-

tosomal recessive diseases. Some claim that the correspondence is poor, since

individuals must have two copies of the disease allele to contract the disease [46].

As such, Huntington's disease was the only appropriate data set for our branch-
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ing process model. However, the results from Diastrophic Dysplasia and Cystic

Fibrosis, two recessive diseases, were also reasonable. It may be enlightening to

study the ability of various population models to approximate di�erent modes of

inheritance.

This raises a detail that has been suppressed throughout the thesis. All of the

work herein makes the implicit assumption that chromosomes carrying a disease

mutation can be distinguished from those that do not. This, in truth, can be quite

di�cult. For example, if the disease displays an autosomal dominant mode of

inheritance, one must decide which of the two copies contains the disease mutation.

The di�culties are evenmore pronounced for complex diseases, where several genes

can inuence the disease. The results from Huntington's disease are promising in

this case. It is an autosomal dominant disease, yet linkage disequilibrium correctly

identi�es the location of the disease gene by assuming that both of the chromosomes

in Huntington's Disease patients carry the disease mutation. Even so, further work

needs to be done to address the problem of identifying chromosomes, rather than

individuals, that carry a speci�c disease mutation.

Other interesting paths are laid down by Lange and Fan [46] and Rannala and

Slatkin [59]. They present new population and sampling models. More work can

be done with generalized population models, including time-continuous branching

processes and nonequilibrium normal population models. Also, it is of interest to
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look into using the coalescent to obtain sampling distributions, thus eliminating

the need to evaluate a complex expectation to obtain a likelihood for r.

It is also of interest to move from single-marker to haplotype models. Chapter

6 mentioned some possibilities by considering two-marker transition matrices when

there is no mutation. It should be possible to obtain transition matrices that allow

for mutation at the marker loci. These transition matrices would make it possible

to proceed as in the single marker case to obtain two-marker likelihoods, and even

other composite likelihoods, for r.

Another possible project is to study the haplotype population algorithm de-

scribed in Chapter 7. It may be possible to use it in a way that is analogous to

the simulation likelihood technique proposed by Kaplan et al. [36].

8.3 Conclusion

This thesis examines the use of stochastic population models relative to linkage

disequilibriummapping. In particular, it presents derivations of approximate like-

lihood equations based on moment estimates from two speci�c models: multi-type

Galton-Watson branching processes and a time-continuous version of the Moran

model. This scheme provides the bene�t of being able to easily incorporate any

desired model of mutation into the estimation of disease gene location. Results

indicate that the techniques presented in this thesis can be used to narrow physical



170

search regions to sequences of DNA that are on the order of several tens to several

hundreds of base pairs in length.
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Appendix A

Programs

A.1 Recombination-Only Model: FOA

A.1.1 Galton-Watson Branching Process

c 07 July 1997

c

c This program calculates the point and interval estimates from

c the likelihood described in Chapter 5.

c

c

implicit none

integer maxall !the maximum number of alleles

parameter (maxall=25) !set the maxall parameter

integer k !the actual number of marker alleles

real*8 disease(maxall) !disease allele counts

real*8 normal(maxall) !normal counts

integer order(maxall) !vector containing indices that assure

! that the most frequent disease allele

! is in the proper position.

real*8 totd !disease sample size

real*8 totn !normal sample size

real*8 age !age (in generations) of disease

real*8 pn(maxall) !freq. of allele 1 in normal pop.

real*8 pd(maxall) !observed freq of disease allele 1

real*8 ests(3) !contains the maximum likelihood

! estimate of r, plus approx 95% int

integer i !loop counter

character*1 check !checks inputs

check = 'N'

do while (check .ne. 'Y')

write(*,'(/,A)') 'Enter the number of marker alleles.'

read(*,*) k

write(*,'(/,A)') 'Enter the sampled disease allele counts.'

read(*,*) (disease(i), i = 1, k)

write(*,'(/,A)')

1 'Enter the normal allele counts in the same order.'

read(*,*) (normal(i), i=1,k)

write(*,'(/,A)') 'Enter the age of the disease (generations).'
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read(*,*) age

write(*,'(//,A,/)') 'You have entered:'

write(*,'(a7,15i5)') ' ', (i,i=1,k)

write(*,'(a8,15f5.0)') 'Disease', (disease(i),i=1,k)

write(*,'(a8,15f5.0)') 'Normal', (normal(i),i=1,k)

write(*,'(/,A,f10.0)') 'Age of disease:', age

write(*,'(//,A)') 'Is that correct? (Y/N)'

read(*,'(A)') check

if (check .eq. 'y') check = 'Y'

enddo

c Initialize the orderings.

do i = 1, k

order(i) = i

enddo

call assume(maxall, k, disease, order)

totn = 0.0d0

totd = 0.0d0

do i = 1, k

totn = totn + normal(i)

totd = totd + disease(i)

enddo

do i = 1, k

pd(i) = disease(i)/totd

pn(i) = normal(i)/totn

enddo

ests(1) = 1.0d0 - ( (pd(order(1)) - pn(order(1))) /

1 (1.0d0 - pn(order(1))) )**(1/age)

ests(2) = 0.0000000010d0

ests(3) = 2.50d0 * ests(1)

call nrlim(disease(order(1)), totd, pd(order(1)),

1 pn(order(1)), age, ests(2))

call nrlim(disease(order(1)), totd, pd(order(1)),

1 pn(order(1)), age, ests(3))

write(*,*)

write(*,'(/,A,f11.8)')

1 'The maximum likelihood estimate of r is: ', ests(1)

write(*,'(/,A,e10.4,A,e10.4,A)')

1 'Approximate 95% confidence interval: (',
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2 ests(2),', ',ests(3),')'

end

subroutine assume(maxall, k, disease, order)

c

c This subroutine sorts the alleles by the frequency in which they

c occur in the disease sample. This makes it possible to ensure

c that the assumption that the disease mutation occurred with

c the most frequent disease allele is used correctly.

c

implicit none

integer maxall, k

real*8 disease(maxall) !the disease allele counts

integer order(maxall) !the sorted index

integer i !counting variable

integer ip1 !i + 1

integer istop !limit of the loop

integer temp !temporary storage

logical sorted !data sorted flag

c Sort the order array

istop = k - 1

sorted = .false.

do while (.not. sorted)

sorted = .true.

do i = 1, istop

ip1 = i+1

if (disease(order(i)) .lt. disease(order(ip1))) then

temp = order(i)

order(i) = order(ip1)

order(ip1) = temp

sorted = .false.

endif

enddo

istop = istop - 1

enddo

return

end

subroutine nrlim(n1d, totd, p1d, p1n, age, rlim)

c
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c This subroutine finds the approximate maximum likelihood

c confidence limits for the recombination coefficient (95%).

c It is an application of the Newton-Rhapson algorithm.

c

real*8 n1d !number of most frequent disease marker

! alleles (sample size)

real*8 totd !complete disease sample size

real*8 p1d !the allele frequency of the most

! common disease allele in disease

! sample

real*8 p1n !the allele frequency of the most

! common disease allele in normal

! sample

real*8 age !age in generations of the disease

real*8 rlim !root of the equation (solution)

real*8 r0, r1 !the iterated values of r

real*8 a, b, c, d, e, ei !some temporary quantities

real*8 num, den !numerator and denominator of NR update

real*8 error !N-R approximation error at each step

a = n1d*log(p1d)

c = totd - n1d

b = c*log(1.0d0 - (p1d-p1n)/(1.0d0-p1n))

d = 1.0d0 - p1n

e = n1d*d

r0 = rlim

r1 = 1.0d0

error = 1.0d0

do while (error .gt. 0.00000001d0)

ei = (1.0d0 - r0)**age

num = n1d*log(p1n + d*ei) - a + c*log(1-ei) - b + 2

den = age*ei/(1.0d0-r0) * (c/(1.0d0-ei) - e/(p1n+d*ei))

r1 = r0 - num/den

error = abs(r1-r0)

r0 = r1

enddo

rlim = r1

return

end
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A.1.2 Moran/Coalescent Process

c Expected Moran/Coalescent Likelihood Shane, 13 January 1998

c

c This program calculates the likelihood described in the PhD thesis

c of Shane Pankratz (Moran/Coalescent, Recombination Only).

c

c The the disease allele frequencies are obtained from a time-continuous

c Moran model using a coalescent argument (they are expected disease

c allele frequencies).

c

c

implicit none

integer maxall !the maximum number of alleles

parameter (maxall=25) !set the maxall parameter

integer k !the actual number of marker alleles

real*8 disease(maxall) !disease allele counts

real*8 normal(maxall) !normal counts

integer order(maxall) !vector containing indices that assure

! that the most frequent disease allele

! is in the proper position.

real*8 totd !disease sample size

real*8 totn !normal sample size

real*8 age !age (in generations) of disease

real*8 pn(maxall) !freq. of allele 1 in normal pop.

real*8 pd(maxall) !observed freq of disease allele 1

real*8 sortpn(maxall) !sorted normal allele freqs

real*8 sortnd(maxall) !sorted disease allele counts

real*8 ests(3) !contains the maximum likelihood

! estimate of r, plus approx 95% int

integer i !loop counter

character*1 check !checks inputs

check = 'N'

do while (check .ne. 'Y')

write(*,'(/,A)') 'Enter the number of marker alleles.'

read(*,*) k

write(*,'(/,A)') 'Enter the sampled disease allele counts.'

read(*,*) (disease(i), i = 1, k)

write(*,'(/,A)')'Enter the normal allele counts in the same order.'

read(*,*) (normal(i), i=1,k)

write(*,'(/,A)') 'Enter the age of the disease (generations).'

read(*,*) age

write(*,'(//,A,/)') 'You have entered:'
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write(*,'(a7,15i5)') ' ', (i,i=1,k)

write(*,'(a8,15f5.0)') 'Disease', (disease(i),i=1,k)

write(*,'(a8,15f5.0)') 'Normal', (normal(i),i=1,k)

write(*,'(/,A,f10.0)') 'Age of disease:', age

write(*,'(//,A)') 'Is that correct? (Y/N)'

read(*,'(A)') check

if (check .eq. 'y') check = 'Y'

enddo

c Initialize the orderings.

do i = 1, k

order(i) = i

enddo

call assume(maxall, k, disease, order)

totn = 0.0d0

totd = 0.0d0

do i = 1, k

totn = totn + normal(i)

totd = totd + disease(i)

enddo

do i = 1, k

pd(i) = disease(i)/totd

pn(i) = normal(i)/totn

enddo

do i = 1, k

sortpn(i) = pn(order(i))

sortnd(i) = disease(order(i))

enddo

ests(1) = -1.0d0 / age * dlog(

1 (pd(order(1)) - pn(order(1))) / (1.0d0 - pn(order(1))) )

ests(2) = 0.0000000010d0

ests(3) = 0.50d0

call nrlim(maxall,k,sortnd,totd,sortpn,age,ests(1),ests(2))

call nrlim(maxall,k,sortnd,totd,sortpn,age,ests(1),ests(3))

write(*,*)

write(*,'(/,A,f11.8)')

1 'The maximum likelihood estimate of r is: ', ests(1)

write(*,'(/,A,e10.4,A,e10.4,A)')

1 'Approximate 95% confidence interval: (',

2 ests(2),', ',ests(3),')'

end
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subroutine assume(maxall, k, disease, order)

c

c This subroutine sorts the alleles by the frequency in which they

c occur in the disease sample. This makes it possible to ensure that

c the assumption that the disease mutation occurred with the most

c frequent disease allele is used correctly.

c

implicit none

integer maxall, k

real*8 disease(maxall) !the disease allele counts

integer order(maxall) !the sorted index

integer i !counting variable

integer ip1 !i + 1

integer istop !limit of the loop

integer temp !temporary storage

logical sorted !data sorted flag

c Sort the order array

istop = k - 1

sorted = .false.

do while (.not. sorted)

sorted = .true.

do i = 1, istop

ip1 = i+1

if (disease(order(i)) .lt. disease(order(ip1))) then

temp = order(i)

order(i) = order(ip1)

order(ip1) = temp

sorted = .false.

endif

enddo

istop = istop - 1

enddo

return

end
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subroutine nrlim(maxall,k,nd,totd,pn,age,rhat,rlim)

c

c This subroutine finds the approximate maximum likelihood confidence

c limits for the recombination coefficient (95%). This routine applies

c a bisection algorithm.

c

implicit none

integer maxall !maximum alleles allowed

integer k !number of alleles

real*8 nd(maxall) !counts of sampled disease markers

real*8 totd !complete disease sample size

real*8 pn(maxall) !allele frequencies in the normal pop

real*8 age !age in generations of the disease

real*8 rhat !mle

real*8 rlim !confidence limit

real*8 limit(3) !the limits for the bisection

real*8 fx(3) !the functional evaluations of limit

real*8 a, b, c, ei !some temporary quantities-to save time

real*8 max !max value of the function

real*8 error !approximation error at each step

integer i !loop counter

a = (totd - nd(1)) * age

b = 1.0d0 - pn(1)

c = age * nd(1) * b

ei = dexp(-rhat*age)

max = nd(1)*dlog(pn(1) + b*ei)

do i = 2, k

max = max + nd(i) * dlog(pn(i) * (1.0d0 - ei))

enddo

limit(1) = rhat

limit(3) = rlim

if (limit(1) .gt. limit(3)) then

limit(2) = limit(3)

limit(3) = limit(1)

limit(1) = limit(2)

endif

limit(2) = (limit(1) + limit(3))/2.0d0

do i = 1, 3

call logl(maxall,k,nd,totd,pn,age,max,limit(i),fx(i))

enddo

error = dabs(limit(3) - limit(1))
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do while (error .gt. 0.0000000010d0)

if ((fx(1) .lt. 0.0d0) .and. (fx(2) .gt. 0.0d0)) then

limit(3) = limit(2)

limit(2) = (limit(1) + limit(3))/2.0d0

elseif ((fx(2).lt.0.0d0) .and. (fx(3).gt.0.0d0)) then

limit(1) = limit(2)

limit(2) = (limit(1) + limit(3))/2.0d0

elseif ((fx(2).gt.0.0d0) .and. (fx(3).lt.0.0d0)) then

limit(1) = limit(2)

limit(2) = (limit(1) + limit(3))/2.0d0

elseif ((fx(1).gt.0.0d0) .and. (fx(2).lt.0.0d0)) then

limit(3) = limit(2)

limit(2) = (limit(1) + limit(3))/2.0d0

endif

do i = 1, 3

call logl(maxall,k,nd,totd,pn,age,max,limit(i),fx(i))

enddo

error = dabs(limit(3) - limit(1))

enddo

rlim = limit(2)

return

end
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subroutine logl(maxall, k, nd, totd, pn, age, max, r, fx)

c

c This subroutine calculates the value of the log-likelihood,

c scaled such that the mle has a value of 2 (this allows us to

c find the roots of the likelihood where the value of the

c likelihood is 2 less than the maximum.

c

implicit none

integer maxall !maximum alleles allowed

integer k !number of alleles

real*8 nd(maxall) !counts of sampled disease markers

real*8 totd !complete disease sample size

real*8 pn(maxall) !allele frequencies in the normal pop

real*8 age !age in generations of the disease

real*8 a, b, c, ei !some temporary quantities-to save time

real*8 max !max value of the function

real*8 r !recombination value for function eval

real*8 fx !loglikelihood(r) - max + 2

integer i !loop counter

a = (totd - nd(1)) * age

b = 1.0d0 - pn(1)

c = age * nd(1) * b

ei = dexp(-r*age)

fx = nd(1)*dlog(pn(1) + b*ei) - max + 2.0d0

do i = 2, k

fx = fx + nd(i) * dlog(pn(i) * (1.0d0 - ei))

enddo

return

end
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A.2 General Composite Likelihood Program

program composite

c

c This program calculates composite likelihoods, based on moment

c estimates (first- and second-order) obtained using branching

c process or Moran/coalescent models.

c

c==============================================================================

c

c Variable Declarations

c

implicit none

integer maxmark !maximum number of markers

integer maxall !maximum number of alleles at each mark

real*8 conf !constant that gives confidence level

! 2 corresponds to ~95%

parameter (maxmark=30, maxall=10, conf = 2.0d0)

character*20 filein !name of the input file

character*20 fileout !name of the output file

character*40 name !name of the disease

real*8 dpopsize !current size of disease population

real*8 dismut !disease mutation rate

real*8 lambda !population growth rate

integer nummark !number of markers

character*16 markname(maxmark) !names of markers

integer numall(maxmark) !number of alleles at each marker

real*8 nd(maxmark,maxall) !sampled disease chromosomes

real*8 nn(maxmark,maxall) !sampled normal chromosomes

real*8 kb(maxmark) !kilobases between adjacent markers

real*8 pd(maxmark,maxall) !disease marker allele frequencies

real*8 pn(maxmark,maxall) !normal marker allele frequencies

real*8 mutmark(maxmark,maxall,maxall) !marker mutation matrices

real*8 agelim(3) !years to consider

real*8 kboff !distance in kb to calculate the

! likelihood from the ends of the map

real*8 kbmesh !grid coarseness for the likelihood

character*1 model !Population model to be used

! B = Branching Process, M = Moran/Coalescent

character*1 approx !Type of approximation to the likelihood

! 1 = FOA, 2 = SOA

character*1 liketype !Type of likelihood to form

character*1 smooth !smooth 'Y' or 'N'

real*8 coval !cutoff falue for smoothing

character*1 input !when input = I, input the data

character*1 run !done with setup (run program when R)
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real*8 age !age of disease (loop counter)

real*8 dloc !disease location (loop counter)

real*8 llike !log-likelihood value

real*8 r !recombination coefficient

real*8 mean(maxall,maxall) !one-step mean matrix

real*8 mt(maxall,maxall) !age-generation mean matrix

real*8 mt_1(maxall,maxall) !more powers of mean

real*8 SVE(maxall,maxall) !sum of V_i*EX_i^(t-1)

real*8 hessian(maxall,maxall) !the Hessian of prod(pid^nid)

real*8 EXXt(maxall,maxall) !the matrix of second moments for

! the counts

real*8 EPd(maxall) !the expected disease allele freqs

! (need to be in sorted order)

real*8 hE(maxall,maxall) !hessian * EXXt

integer ranks(maxmark,maxall) !the ranks of the disease allele counts

! (for each marker separately)

real*8 Rt(maxall, maxall) !the joint probs from Moran/Coal

real*8 foa !function that calculates first-order

integer i !,j,k !loop counters

real*8 temp, temp2 !temporary variables (various uses)

real*8 dlhat !estimate for location of disease locus

real*8 rhat !estimated recombination coef

real*8 ul, ll !upper and lower confidence limits

real*8 maxlike !maximum value of the log likelihood

data model, approx, liketype, smooth /'B','1','C','N'/

c

c==============================================================================

c

c Begin Execution

filein = 'composite.dat'

fileout = 'composite.out'

input = 'q'

do while (input .ne. 'I')

call menu(model, approx, liketype, kbmesh, kboff,

1 agelim, dpopsize, smooth, coval, filein,

2 fileout, input, run)

if (run .eq. 'Q') goto 9999 !exit program

if (run .ne. 'R') then

call datain(maxmark,maxall,filein,name,dpopsize,dismut,

1 nummark, markname, numall, nd, nn, kb, pd,

2 pn, mutmark, agelim, kboff, kbmesh, input)

endif



189

enddo

call rankeach(maxmark,nummark,maxall,numall,nd,ranks)

if (fileout .eq. 'composite') fileout = 'composite.out'

open(9,file=fileout)

if (liketype .eq. 'S') then

write(9,'(/,2A,///)') 'SINGLE-LOCUS ESTIMATES FOR: ',name

else

write(9,'(/,2A,///)') 'COMPOSITE LIKELIHOOD FOR: ',name

endif

if (model .eq. 'M') then

write(9,'(A,/)') 'POPULATION MODEL: Moran/Coalescent'

else

write(9,'(A,/)') 'POPULATION MODEL: Branching Process'

endif

if (approx .eq. '2') then

write(9,'(A,/)') 'APPROXIMATION: Second Order'

else

write(9,'(A)') 'APPROXIMATION: First Order'

endif

if (liketype .eq. 'C') then

write(9,'(//,A)') 'SPECIFIED MAP (Intermarker distances

1 given in kilobases)'

write(9,'(A)') '------------------------------------

1--------------------'

do i = 1, nummark

write(9,'(9x,A)') markname(i)

if (i .ne. nummark) write(9,'(f8.1)') kb(i+1)-kb(i)

enddo

write(9,'(//,A)') ' AGE kb Composite'

write(9,'(A,/)') '--------------------------------------'

endif

do age = agelim(1), agelim(2), agelim(3)

if (model .eq. 'M') then

lambda = dlog(dpopsize) / age

else

lambda = dpopsize**(1.0d0/age) - 1.0d0

endif

if (liketype .eq. 'S') then

write(9,'(/,A)')

1 'Estimates given in kilobases.'

write(9,'(////,A,f7.1,A,//)')

1 'Age assumed to be ',age,' generations.'

write(9,'(A)')

1'MAP Estimate Lower Limit Upper Limit'

write(9,'(A,/)')
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1'--------------------------------------------------------------'

if (kboff .eq. 0.0d0) kboff = 1.0d3

do i = 1, nummark

open(19,file='cABC0001.TMP')

do dloc = kbmesh+1.0d-4, kboff+1.0d-4, kbmesh

r = 0.50d0 * (1.0d0 - dexp(-2.0d-5 * dloc))

llike = foa(maxmark, nummark, maxall, numall, model,

1 approx, hessian, lambda, EXXt, EPd, hE,

2 i, nd, ranks, pn, smooth, coval, age, r,

3 mean, mutmark, dismut, mt, mt_1, SVE, Rt)

write(19,'(f7.2,f9.6,f35.5)') dloc, r, llike

enddo

rewind(19)

maxlike = -1.0d100

do temp = kbmesh+1.0d-4, kboff+1.0d-4, kbmesh

read(19,'(f7.2,f9.6,f35.5)') dloc, r, llike

if (llike .ge. maxlike) then

dlhat = dloc

rhat = r

maxlike = llike

endif

enddo

rewind(19)

ll = 0.0d0

ul = kboff + 0.00010d0

temp2 = 0.0d0

do temp = kbmesh+0.00010d0, kboff+0.00010d0, kbmesh

read(19,'(f7.2,f9.6,f35.5)') dloc, r, llike

if (dloc .lt. dlhat) then

if (llike .lt. maxlike - conf) ll = dloc

else

if (llike .lt. maxlike - conf) temp2=temp2+1.0d0

if ((temp2 .gt. 0.90d0) .and. (temp2 .lt. 1.10d0))

1 ul = dloc

endif

enddo

write(9,'(A,2x,f14.3,2f15.3)') markname(i), dlhat, ll, ul

if (i .ne. nummark) write(9,'(/,8x,f7.1,A,/)')

1 kb(i+1)-kb(i), ' kb'

close(19,status='delete')

enddo

write(9,'(//,A,f9.3,A)')

1 'NOTE: If the upper confidence limit is equal to ',

2 kboff+1.0d-4, ','

write(9,'(7x,A)')

1 'then the chosen off-end distance was too small.'

else

do dloc = 1.0d-4 - kboff, kb(nummark)+kboff+1.0d-4, kbmesh

llike = 0.0d0
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do i = 1, nummark

r = 0.50d0 *

1 (1.0d0 - dexp(-0.000020d0*dabs(dloc-kb(i))))

llike = llike + foa(maxmark, nummark, maxall, numall,

1 model, approx, hessian, lambda, EXXt, EPd, hE,

2 i, nd, ranks, pn, smooth, coval, age, r,

3 mean, mutmark, dismut, mt, mt_1, SVE, Rt)

enddo

write(9,'(f7.1,3x,f10.3,3x,f15.3)') age, dloc, llike

enddo

endif

enddo

close(9)

goto 9999

9999 continue

end
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subroutine menu(model, approx, liketype, kbmesh, kboff,

1 agelim, dpopsize, smooth, coval, filein,

1 fileout, input, run)

c

c This subroutine is simply the main menu for the composite likelihood

c program. It allows the user to set and change parameters before

c running the program.

c

c==============================================================================

c

c Variable declarations

c

implicit none

character*1 model !Population model to be used

! B = Branching Process, M = Moran/Coalescent

character*32 popmod !text describing population model

character*1 approx !Type of approximation to the likelihood

! 1 = FOA, 2 = SOA

character*13 atype !text describing approximation type

character*1 liketype !Type of likelihood to form

! S = Single Marker, C = Composite

character*13 ltype !text describing likelihood type

real*8 kbmesh !grid coarseness for the likelihood

real*8 kboff !distance in kb to calculate the

! likelihood from the ends of the map

real*8 agelim(3) !contains elements for forming age grid

real*8 dpopsize !current size of disease population

character*1 smooth !smooth 'Y' or 'N'

real*8 coval !cutoff falue for smoothing

character*20 filein !name of the input file

character*20 fileout !name of the output file

character*1 input !when input = I, input the data

character*1 run !when run = R, run the program

logical*1 correct !limits inputs to menu choices

character*1 choice !menu choice

character*1 ch_vals(18) !acceptable choices

integer i !loop counter

data ch_vals, popmod, atype, ltype

1 / 'A','a','B','b','C','c','D','d','E','e','I','i',

2 'R','r','Q','q','F','f',

3 'Galton-Watson Branching Process','First Order',

4 'Composite' /

c==============================================================================

c

c Begin Execution

c

run = 'q'
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do while ((run .ne. 'R') .and. (run .ne. 'r') .and.

1 (run .ne. 'Q'))

correct = .false.

do while (.not. correct)

write(*,'(//////////////////////////////)')

write(*,'(//////////////////////////////)')

write(*,'(/,A,A)')

1 '=======================================',

2 '======================================='

write(*,'(5x,a,5x,9x,A)')

1 'A - Population Model',popmod

write(*,'(/,5x,a,5x,7x,A)')

1 'B - Approximation Type',atype

write(*,'(/,5x,a,5x,10x,A)')

1 'C - Likelihood Type',ltype

write(*,'(/,5x,a,5x,A,f6.1,A,f6.1,A,f6.1,A)')

1 'D - Parameters:',

2 'age: from ',agelim(1),' to ',

3 agelim(2),' by ',agelim(3), ' generations'

write(*,'(25x,A,2x,f12.0)')'# disease chromosomes:',dpopsize

write(*,'(25x,A,13x,f5.1)')

1 'mesh size in kb: ',kbmesh

write(*,'(25x,A,13x,f7.1)')

1 'kb outside map: ',kboff

if (smooth .eq. 'Y') then

write(*,'(/,5x,A,21x,A,A,10x,A,f5.2)')

1 'E - Smoothing',smooth,'es','cut-off value: ',coval

else

write(*,'(/,5x,A,21x,A,A)')

1 'E - Smoothing',smooth,'o'

endif

write(*,'(/,5x,A,12x,A,A)')

1 'F - Files:','Input: ',filein

write(*,'(27x,A,A)') 'Output: ',fileout

write(*,'(/,5x,18a,5x,A)')

1 'I - Input Data'

write(*,'(/,5x,18a,5x,A)')

1 'R - Run'

write(*,'(/,5x,A)')

1 'Q - Quit without running program'

write(*,'(A,A)')

1 '=======================================',

2 '======================================='

write(*,'(A)') 'Enter a letter to make modifications.'

read(*,'(A)') choice

do i = 1, 18

if (choice .eq. ch_vals(i)) correct = .true.

enddo

enddo

if ((choice .eq. 'a') .or. (choice .eq. 'A')) then
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if (model .eq. 'B') then

model = 'M'

popmod = 'Moran/Coalescent'

else

model = 'B'

popmod = 'Galton-Watson Branching Process'

endif

endif

if ((choice .eq. 'b') .or. (choice .eq. 'B')) then

if (approx .eq. '1') then

approx = '2'

atype = 'Second Order'

else

approx = '1'

atype = 'First Order'

endif

endif

if ((choice .eq. 'c') .or. (choice .eq. 'C')) then

if (liketype .eq. 'C') then

liketype = 'S'

ltype = 'Single Marker'

else

liketype = 'C'

ltype = 'Composite'

endif

endif

if ((choice .eq. 'd') .or. (choice .eq. 'D')) then

write(*,'(////,7x,A,////)')

1' *** These parameters are also read from the input file. ***'

write(*,'(A)') 'NOTE: Ages must be given in units of

1 generations.'

100 write(*,'(//,A,/)') 'Enter the smallest age of the disease

1 to consider.'

read(*,*,err=100) agelim(1)

101 write(*,'(/,A,/)') 'Enter the largest age of the disease

1 to consider.'

read(*,*,err=101) agelim(2)

102 write(*,'(/,A,/)') 'Enter the mesh size for disease age.'

read(*,*,err=102) agelim(3)

103 write(*,'(/,A,/)') 'Enter the number of disease

1 chromsomes in the population.'

read(*,*,err=103) dpopsize

104 write(*,'(/,A,/)') 'Enter the mesh size, in kb, for

1 the grid of likelihood evaluations.'

read(*,*,err=104) kbmesh

105 write(*,'(/,A)') 'Enter the distance, in kb, where

1 the likelihood is to be evaluated'

write(*,'(A,/)') 'beyond the ends of the map.'

read(*,*,err=105) kboff

endif
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if ((choice .eq. 'e') .or. (choice .eq. 'E')) then

if (smooth .eq. 'Y') then

smooth = 'N'

else

smooth = 'Y'

write(*,'(/,2A)') 'Enter the inverse smoothing parameter',

1 ' (larger values imply less smoothing).'

read(*,*) coval

if (coval .lt. 0.0d0) smooth = 'N'

endif

endif

if ((choice .eq. 'f') .or. (choice .eq. 'F')) then

input = 'q'

write(*,'(/,A,/)') 'Enter the name of the file containing

1 the data.'

read(*,*) filein

write(*,'(/,A,/)') 'Enter the name of the file to

1 contain the output.'

read(*,*) fileout

endif

if ((input .ne. 'I') .and. ((choice .eq. 'i') .or.

1 (choice .eq. 'I'))) then

input = 'I'

run = 'r'

endif

if ((choice .eq. 'r') .or. (choice .eq. 'R')) then

if (input .ne. 'd') then

input = 'q'

write(*,'(////,A,//,A,////)')

1 ' *** Input data before running program! *** ',

2 ' Press <RETURN> to continue.'

read(*,*)

else

input = 'I'

run = 'R'

endif

endif

if ((choice .eq. 'q') .or. (choice .eq. 'Q')) run = 'Q'

enddo

return

end
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subroutine datain(maxmark,maxall,filein,name,dpopsize,dismut,

1 nummark, markname, numall, nd, nn, kb, pd,

2 pn, mutmark, agelim, kboff, kbmesh, input)

implicit none

integer maxmark !maximum number of markers

integer maxall !maximum number of alleles at each mark

character*20 filein !name of the input file

character*40 name !name of the disease

real*8 dpopsize !current size of disease population

real*8 dismut !disease mutation rate

integer nummark !number of markers

character*16 markname(maxmark) !names of markers

integer numall(maxmark) !number of alleles at each marker

real*8 nd(maxmark,maxall) !sampled disease chromosomes

real*8 nn(maxmark,maxall) !sampled normal chromosomes

real*8 kb(maxmark) !kilobases between adjacent markers

real*8 pd(maxmark,maxall) !disease marker allele frequencies

real*8 pn(maxmark,maxall) !normal marker allele frequencies

real*8 mutmark(maxmark,maxall,maxall) !marker mutation matrices

real*8 totd, totn !counts the total sample sizes

real*8 agelim(3) !years to consider

real*8 kboff !distance in kb to calculate the

! likelihood from the ends of the map

real*8 kbmesh !grid coarseness for the likelihood

character*1 input !if input=I, then ok to input data

integer i, j, k !loop counters

open(1,file=filein,status='old',err=10)

read(1,'(A)') name

read(1,*) dpopsize

read(1,*) dismut

read(1,*)

read(1,*) nummark

kb(1) = 0.0d0

do i = 1, nummark

read(1,*)

read(1,'(A)') markname(i)

read(1,*) numall(i)

read(1,*) (nd(i,j), j = 1, numall(i))

read(1,*) (nn(i,j), j = 1, numall(i))

do j = 1, numall(i)

read(1,*) (mutmark(i,j,k),k=1,numall(i))

enddo

if (i .ne. nummark) then

read(1,*) kb(i+1)

kb(i+1) = kb(i+1) + kb(i)
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endif

totd = 0.0d0

totn = 0.0d0

do j = 1, numall(i)

totd = totd + nd(i,j)

totn = totn + nn(i,j)

enddo

do j = 1, numall(i)

pd(i,j) = nd(i,j)/totd

pn(i,j) = nn(i,j)/totn

enddo

enddo

read(1,*)

read(1,*) (agelim(j), j=1,3)

read(1,*)

read(1,*) kboff

read(1,*)

read(1,*) kbmesh

close(1)

input = 'd'

goto 11

10 write(*,'(/////,A,/)')

1 ' *** The input file does not exist! ***'

write(*,'(/,A,////)')

1 ' Press <RETURN> to continue.'

read(*,*)

input = 'q'

11 continue

return

end
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subroutine rankeach(maxmark,nummark,maxall,numall,nd,ranks)

c

c This subroutine ranks the observed disease chromosome counts

c of each marker.

c

c==============================================================================

c

c Variable declarations

c

implicit none

integer maxmark !the maximum number of markers

integer nummark !the actual number of markers

integer maxall !the maximum number of alleles

integer numall(maxmark) !number of alleles at each marker

real*8 nd(maxmark,maxall) !sampled disease chromosomes

integer ranks(maxmark,maxall) !ranks of observed disease chromosome

! counts for each marker

integer m,i !loop counters

integer ip1 !equals i + 1

integer istop !controls stopping on one pass of sort

logical*1 sorted !is the vector sorted?

integer temp !used to exchange values in rank

c==============================================================================

c

c Begin execution

c

c For each marker,

do m = 1, nummark

c Initialize the order array

do i = 1, numall(m)

ranks(m,i) = i

enddo

c Sort the rank array

istop = numall(m) - 1

sorted = .false.

do while (.not. sorted)

sorted = .true.

do i = 1, istop

ip1 = i+1

if (nd(m,ranks(m,i)) .lt. nd(m,ranks(m,ip1))) then

temp = ranks(m,i)

ranks(m,i) = ranks(m,ip1)

ranks(m,ip1) = temp

sorted = .false.

endif
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enddo

istop = istop-1

enddo

enddo

return

end
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real*8 function foa(maxmark, nummark, maxall, numall, model,

1 approx, hessian, lambda, EXXt, EPd, hE,

2 m, nd, ranks, pn, smooth, coval, age, r,

3 mean, mutmark, dismut, mt, mt_1, SVE, Rt)

c

c This function calculates the first order approximation to the

c likelihood, based on the first moments of either a Galton-

c Watson branching process or a Moran/Coalescent model.

c

c It assumes that the first element in nd (and pn) represents the

c ancestral allele.

c

c==============================================================================

c

c Variable Declarations

c

implicit none

integer maxmark !the maximum number of markers

integer nummark

integer maxall !the maximum number of alleles

integer numall(maxmark) !the observed number of alleles

character*1 model !which model to use

! B = branching process

! M = Moran/Coalescent

character*1 approx !Type of approximation to the likelihood

! 1 = FOA, 2 = SOA

real*8 hessian(maxall,maxall) !the Hessian of prod(pid^nid)

real*8 lambda !the growth parameter

real*8 EXXt(maxall,maxall) !the matrix of second moments for

! the counts

real*8 EPd(maxall) !the expected disease allele freqs

! (need to be in sorted order)

real*8 hE(maxall,maxall) !hessian * EXXt

integer m !which marker

real*8 nd(maxmark,maxall) !the disease allele counts

integer ranks(maxmark,maxall) !the ranks of the disease allele counts

real*8 pn(maxmark,maxall) !the normal allele frequencies

character*1 smooth !will we smooth the log likelihood?

real*8 coval !the cut-off to be used in smoothing

real*8 age !the assumed age

real*8 r !the assumed recombination coefficient

real*8 mean(maxall,maxall) !one-step mean matrix

real*8 mutmark(maxmark,maxall,maxall) !mutation matrices

real*8 dismut !disease mutation matrix

real*8 mt(maxall,maxall) !mean^age (matrix)

real*8 mt_1(maxall,maxall) !more powers of mean

real*8 SVE(maxall,maxall) !sum of V_i*EX_i^(t-1)

real*8 Rt(maxall,maxall) !the joint allele probabilities
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real*8 soab !function that calculates the second-

! order correction

real*8 p1d !most common disease allele frequency

real*8 rhat !the mle

real*8 llmax !the max value of the log likelihood

real*8 ll !temporary variable for calculating the

! log-likelihood value

real*8 decay !decay of disequilibrium

integer i, j !loop counters

real*8 dpopsize !size of the disease population

real*8 rtint !function that calculates the integrand

! for Rt

external rtint

c==============================================================================

c

c Begin execution

c

if (model .eq. 'M') then !Moran/Coalescent model, get intensity

do i = 1, numall(m) ! matrix

do j = 1, numall(m)

mean(i,j) = (1-r)*mutmark(m,ranks(m,i),ranks(m,j)) +

1 (r+dismut) * pn(m,ranks(m,j))

enddo

mean(i,i) = mean(i,i) - 1.0d0 - dismut

enddo

dpopsize = dexp(lambda*age)

c calculate the expected frequencies

c calculate the exponential of the intensity matrix and take the first row

c as the expected allele freqs.

call expmat(maxall,numall(m),age,mean,hE,EXXt,mt,EPd)

else !branching process model, calculate moment matrix

do i = 1, numall(m)

do j = 1, numall(m)

mean(i,j) = (1+lambda) *

1 ((1-r)*mutmark(m,ranks(m,i),ranks(m,j)) +

2 (r+dismut) * pn(m,ranks(m,j)))

enddo

enddo

c calculate the expected frequencies (approximations)

c first, calculate the age power of the matrix
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call matpow(maxall, numall(m), age, mean, hE, mt)

c then approximate expected allele frequencies

ll = 0.0d0

do i = 1, numall(m)

ll = mt(1,i) + ll

enddo

do i = 1, numall(m)

EPd(i) = mt(1,i) / ll

enddo

endif

c Finally, calculate foa to the log likelihood (for either bp or M/c)

ll = 0.0d0

do i = 1, numall(m)

ll = ll + nd(m,ranks(m,i)) * dlog(EPd(i))

enddo

c If we want to calculate the second-order approximation, we need to

c calculate the correction.

if (approx .eq. '2') then

c calculate the Hessian for the log-likelihood

do i = 1, numall(m)

hessian(i,i) = -nd(m,ranks(m,i)) / (EPd(i)**2)

do j = i+1, numall(m)

hessian(i,j) = 0.0d0

hessian(j,i) = 0.0d0

enddo

enddo

c calculate the second-order approximation

if (model .eq. 'M') then

c use the Moran/Coalescent SOA

c get the initial stage of Rt (as indicated when writing the expression with

c initial conditions separated)

p1d = dexp((dexp(-lambda*age)-1.0d0)/lambda) !a temporary constant

do i = 1, numall(m)

do j = i, numall(m)

Rt(i,j) = EPd(i) * EPd(j) * p1d

Rt(j,i) = Rt(i,j)

enddo

enddo

c use rhat as a temporary variable containing the integral, and update the

c initial Rt to get the final version

p1d = p1d * dexp(1.0d0/lambda) * dexp(-lambda*age) !temp. constant

do i = 1, numall(m)

do j = i, numall(m)

c Here, we use EXXt, SVE, EPd and mt_1 as temporary matrices used in the

c evaluation of the integral
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call trapzoid(maxall, numall(m), i, j, lambda, mean,

1 mt, EXXt, SVE, mt_1, EPd, 0.0d0,

2 age, rhat)

Rt(i,j) = Rt(i,j) + p1d * rhat

Rt(j,i) = Rt(i,j)

enddo

enddo

c Turn the Rt values into noncentral moments

do i = 1, numall(m)

Rt(i,i) = Rt(i,i) + (mt(1,i) - Rt(i,i)) / dpopsize

do j = i+1, numall(m)

Rt(i,j) = Rt(i,j) - Rt(i,j)/dpopsize

Rt(j,i) = Rt(i,j)

enddo

enddo

c We have a hessian, and the matrix of noncentral second moments,

c so we can calculate the correction to the log likelihood

do i = 1, numall(m)

do j = 1, numall(m)

hE(i,j) = hessian(i,i) * Rt(i,j)

enddo

enddo

c Use p1d as the variable containing the correction

p1d = 0.0d0

do i = 1, numall(m)

p1d = p1d + hE(i,i) !trace part of correction

p1d = p1d - hessian(i,i) * mt(1,i)**2 !other part of correct.

enddo

ll = ll + p1d / 2.0d0

else

c use the Galton-Watson branching process SOA

ll = ll + soab(maxmark, nummark, maxall, numall,

1 m, ranks, pn, age, r, hessian,

2 lambda, EXXt, EPd, hE,

3 mean, mt, mt_1, SVE)

endif

endif

if (smooth .eq. 'Y') then

p1d = 0.0d0

do i = 1, numall(m)

p1d = p1d + nd(m,ranks(m,i))

enddo

p1d = nd(m,ranks(m,1)) / p1d

c Get the mle (first order)

if (model .eq. 'M') then

rhat = -1.0d0/age * dlog((p1d - pn(m,ranks(m,1))) /

1 (1.0d0 - pn(m,ranks(m,1))))

decay = dexp(-rhat*age)
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else

rhat = 1.0d0 - ((p1d - pn(m,ranks(m,1))) /

1 (1.0d0 - pn(m,ranks(m,1))))**(1.0d0/age)

decay = (1.0d0 - rhat)**age

endif

llmax = nd(m,ranks(m,1)) *

1 dlog(pn(m,ranks(m,1)) + (1.0d0-pn(m,ranks(m,1)))*decay)

do i = 2, numall(m)

llmax = llmax + nd(m,ranks(m,i)) *

1 dlog(pn(m,ranks(m,i)) * (1.0d0 - decay))

enddo

if (r .lt. rhat) ll = max(ll,llmax-coval)

endif

foa = ll

return

end
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real*8 function soab(maxmark, nummark, maxall, numall,

1 m, ranks, pn, age, r, hessian,

2 lambda, EXXt, EPd, hE,

3 mean, mt, mt_1, SVE)

c

c This function calculates the correction that gives the

c second order approximation to the likelihood.

c

c This function is appropriate only for the branching process

c model.

c

c==============================================================================

c

c Variable declarations

c

implicit none

integer maxmark !the maximum number of markers

integer nummark

integer maxall !the maximum number of alleles

integer numall(maxmark) !the observed number of alleles

integer m !which marker

integer ranks(maxmark,maxall) !the ranks of the disease allele counts

real*8 pn(maxmark,maxall) !the normal allele frequencies

real*8 age !the assumed age

real*8 r !the assumed recombination coefficient

real*8 hessian(maxall,maxall) !the Hessian of prod(pid^nid)

real*8 lambda !the growth parameter

real*8 EXXt(maxall,maxall) !the matrix of second moments for

! the counts

real*8 EPd(maxall) !the expected disease allele freqs

! (need to be in sorted order)

real*8 hE(maxall,maxall) !hessian * EXXt

real*8 mean(maxall,maxall) !one-step matrix of first moments

real*8 mt(maxall,maxall) !powers of mean

real*8 mt_1(maxall,maxall) !more powers of mean

real*8 SVE(maxall,maxall) !sum of V_i*EX_i^(t-1)

real*8 t !age loop counter

integer i, j !loop counters

real*8 pop2 !(1+lambda)^(2t)

real*8 correct !used to calculate the soa correction

c==============================================================================

c

c Begin execution

c

c

pop2 = (1.0d0 + lambda)**(2*age)



206

c Calculate the matrix of noncentral second moments for the counts

c get the age-th power of the moment matrix and

c and get the first part of EXXt (the squared first moment)

call matpow(maxall, numall(m), age, mean, hE, mt)

do i = 1, numall(m)

do j = 1, numall(m)

EXXt(i,j) = mt(1,i) * mt(1,j)

enddo

enddo

c get the rest of EXXt

do t = 1.0d0, age, 1.0d0

c calculate (age-t)-th power of the mean matrix

call matpow(maxall, numall(m), age-t, mean, hE, mt)

c get the sum of the Vi*Ei,j-1 (this equals diag[mean**t])

do i = 1, numall(m)

do j = i+1, numall(m)

SVE(i,j) = 0.0d0

SVE(j,i) = 0.0d0

enddo

enddo

call matpow(maxall, numall(m), t, mean, hE, mt_1)

do i = 1, numall(m)

SVE(i,i) = mt_1(1,i)

enddo

c mt contains mean^(age-t), now we calculate mean'^(age-t)*sve (matrix mult)

do i = 1, numall(m)

do j = 1, numall(m)

hE(i,j) = mt(j,i) * SVE(j,j) !use mt(j,i) since we want to

! use mt' here

!this works since SVE is diag.

enddo

enddo

c now hE contains mean'^(age-t)*sve and mt contains mean^(age-t), we can

c finally get mean'^(age-t)*sve*mean^(age-t) (we store it in SVE)

call matmult(maxall, numall(m), hE, mt, SVE)

c we now update EXXt

do i = 1, numall(m)

do j = 1, numall(m)

EXXt(i,j) = EXXt(i,j) + SVE(i,j)

enddo

enddo

enddo
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c We have a hessian, and the matrix of noncentral second moments,

c so we can calculate the correction to the log likelihood

do i = 1, numall(m)

do j = 1, numall(m)

hE(i,j) = hessian(i,i) * EXXt(i,j)

enddo

enddo

correct = 0.0d0

do i = 1, numall(m)

correct = correct + hE(i,i)/(pop2) !get trace part of correction,

! scaling it for counts

correct = correct-EPd(i)**2*hessian(i,i) !get last part of

enddo ! correction

c Correction for second-order approximation to the log-likelihood

soab = (correct / 2.0d0)

return

end
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subroutine matmult(maxall, numall, A, B, C)

c

c This routine calculates the matrix product of A times B, and returns

c it in the matrix C (this is written for square matrices only).

c

integer maxall !the maximum number of alleles allowed

integer numall !the number of marker alleles

real*8 A(maxall,maxall) !the first matrix

real*8 B(maxall,maxall) !the second matrix

real*8 C(maxall,maxall) !the output of AB

do i = 1, numall

do j = 1, numall

C(i,j) = 0.0d0

do k = 1, numall

C(i,j) = C(i,j) + A(i,k) * B(k,j)

enddo

enddo

enddo

return

end
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subroutine matpow(m, n, pow, A, B, C)

c

c This routine calculates the matrix power of A^pow, and returns

c it in the matrix C.

c

integer m !the maximum number of alleles allowed

integer n !the number of marker alleles

real*8 pow !power of matrix to be calculated

real*8 A(m,m) !the matrix

real*8 B(m,m) !a temporary matrix (same size as A)

real*8 C(m,m) !the output of A^pow

real*8 t !counting variable

do i = 1, n

do j = 1, n

B(i,j) = A(i,j) !copy the contents of A into B

C(i,j) = A(i,j) !copy the contents of A into C (needed if pow=1)

enddo

enddo

do t = 2.0d0, pow, 1.0d0

call matmult(m, n, A, B, C) !multiply A * B (B = A^(t-1)) => C=A^t

if (t .lt. pow) then

do i = 1, n

do j = 1, n

B(i,j) = C(i,j) !set B = A^t

enddo

enddo

endif

enddo

return

end
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subroutine expmat(m, n, t, A, B, C, D, E)

c

c This routine calculates an approximation to the exponential

c of the matrix A, and returns the result in the matrix C.

c

integer m !the maximum number of alleles allowed

integer n !the number of marker alleles

real*8 t !age of the disease mutation (e^(At))

real*8 A(m,m) !the matrix

real*8 B(m,m) !a temporary matrix (same size as A)

real*8 C(m,m) !a temporary matrix (same size as A)

real*8 D(m,m) !the output (exp(At))

real*8 E(m) !the first row of D (expected allele freqs)

real*8 error !error of the approximation

real*8 iter !iterates the approximation

real*8 fact !function for calculating factorials

real*8 tfact !temp variable so only calculate fact once

c Do some initializations

error = 1.0d30

do i = 1, n

do j = 1, n

A(i,j) = A(i,j) * t !scale A by age of disease

D(i,j) = A(i,j)

enddo

D(i,i) = D(i,i) + 1.0d0 !D now contains the first order

! approx to the exponential matrix

! I + A*t

enddo

c Now move on to compute a higher-order approx to the exponential matrix

iter = 2.0d0

do while (error .gt. 1.0d-20)

error = 0.0d0

call matpow(m, n, iter, A, B, C) !C contains (A*t)^iter

tfact = fact(iter)

do i = 1, n

do j = 1, n

D(i,j) = D(i,j) + C(i,j)/tfact

if (i .eq. 1) then

error = (E(j) - D(i,j))**2 + error

E(j) = D(i,j)

endif

enddo

enddo

iter = iter + 1.0d0

enddo
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do i = 1, n

do j = 1, n

A(i,j) = A(i,j) / t

enddo

enddo

return

end
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real*8 function fact(num)

c

c This function returns the factorial of NUM.

c

c NOTE: This is not to be used for large values of NUM!!!

c

real*8 num !the number

real*8 count !loop counter

real*8 temp !temporary variable

temp = 1.0d0

do count = 2.0d0, num, 1.0d0

temp = temp * count

enddo

fact = temp

return

end
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real*8 function rtint(maxall, numall, row, col, lambda,

1 mean, mt, temp1, temp2, mx,

2 temp3, x)

c

c This function returns the value of the integrand required for

c the Moran second order approximation.

c

integer maxall !maximum number of alleles

integer numall !number of alleles

integer row !which row of Rt to calculate

integer col !which column of Rt to calculate

real*8 lambda !growth parameter

real*8 mean(maxall,maxall) !intensity matrix

real*8 mt(maxall,maxall) !t-generation transition matrix

real*8 temp1(maxall,maxall) !a temporary matrix

real*8 temp2(maxall,maxall) !a temporary matrix

real*8 mx(maxall,maxall) !x-generation transition matrix

real*8 temp3(maxall) !a temporary vector

real*8 x !point at which to evaluate the function

call expmat(maxall, numall, x, mean, temp1, temp2, mx, temp3)

do i = 1, numall

do j = 1, numall

temp1(i,j) = mt(j,i) * mx(1,j) !P'(t) PI(t)

enddo

enddo

call matmult(maxall, numall, temp1, mt, temp2)

rtint = temp2(row,col) * dexp(-dexp(-lambda*x)/lambda)

return

end

subroutine trapzoid(maxall, numall, row, col, lambda,

1 mean, mt, temp1, temp2, mx,

2 temp3, a, b, st)

integer maxall !maximum number of alleles

integer numall !number of alleles

integer row !which row of Rt to calculate

integer col !which column of Rt to calculate

real*8 lambda !growth parameter

real*8 mean(maxall,maxall) !intensity matrix

real*8 mt(maxall,maxall) !t-generation transition matrix

real*8 temp1(maxall,maxall) !a temporary matrix

real*8 temp2(maxall,maxall) !a temporary matrix

real*8 mx(maxall,maxall) !x-generation transition matrix
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real*8 temp3(maxall) !a temporary vector

real*8 a !lower limit of integration

real*8 b !upper limit of integration

real*8 st !sum of trapeziods (integral estimate)

real*8 rtint !the function to evaluate

external rtint

real*8 n_traps !number of intervals

real*8 x !where we evaluate the function

real*8 y !functional value at x

real*8 int_len !length of interval

parameter (n_traps = 100)

int_len = (b - a) / n_traps

st = 0.0d0

do x = a, b, int_len

if (x .eq. 0.0d0) then

y = mt(1,row)*mt(1,col)*dexp(-dexp(-lambda*x)/lambda)

else

y = rtint(maxall, numall, row, col, lambda,

1 mean, mt, temp1, temp2, mx, temp3, x)

endif

if ((x .eq. a) .or. (x .eq. b)) then

st = st + y

else

st = st + 2.0d0 * y

endif

enddo

st = int_len * st / 2.0d0

return

end
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Appendix B

Data Files

B.1 Cystic Fibrosis

In this section, we include the data �le used in the composite likelihood program in
Appendix A to generate the no-mutation composite log likelihood in Figure 7.17.
The data were published by Kerem et al. [39].

Cystic Fibrosis !Name of the disease

2000000 !current number of disease chromosomes

0.000 !disease mutation rate

22 !number of markers

!blank line (repeat this sequence of lines for each marker)

metD BanI !name of the marker

2 !number of marker alleles

48 25 !disease marker allele counts

28 59 !normal marker allele counts (in same order as disease ones)

1 0 !marker alleles x marker alleles mutation transition matrix

0 1

9 !distance in kb to next marker

metD TaqI

2

75 4

74 19

1 0

0 1

15.8

metH TaqI

2

49 20

45 38

1 0

0 1

500

E6

2

62 17

58 42

1 0

0 1
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10

E7

2

57 16

51 40

1 0

0 1

20

pH131

2

47 33

18 81

1 0

0 1

15

W3D1.4

2

47 33

22 82

1 0

0 1

25

XV2C

2

53 11

39 37

1 0

0 1

20

HincII

2

69 7

31 56

1 0

0 1

20

BglII

2

69 9

27 62

1 0

0 1

20
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KM19

2

70 10

30 69

1 0

0 1

30

E2.6

2

55 6

26 34

1 0

0 1

25

H2.8A

2

55 9

22 52

1 0

0 1

35

E4.1

2

64 8

38 37

1 0

0 1

35

J44

2

70 6

40 44

1 0

0 1

80

AccI

2

60 15

14 67

1 0

0 1

10

HaeIII

2
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61 15

14 72

1 0

0 1

20

T6/20

2

66 8

21 56

1 0

0 1

10

H1.3

2

69 7

35 53

1 0

0 1

50

CE1.0

2

73 3

81 8

1 0

0 1

585

J3.11

2

38 36

36 62

1 0

0 1

100

J29

2

36 36

26 55

1 0 !don't need distance to next marker (there isn't one)

0 1

!blank line

200 200 1 !generational limits to consider, plus mesh size

50 !# of kilobases off the end of the map

1 !mesh size for likelihood (in kb)



219

B.2 Diastrophic Dysplasia

In this section, we include the data �le used in the composite likelihood program
printed in Appendix A to generate the composite log likelihoods in Figure 7.19.
The data were published by H�astbacka et al. [23].

Diastrophic Displasia !Name of the disease

200000 !number of disease chromosomes

0.00000 !disease mutation rate

10 !number of markers

!blank line (repeat this and the next lines for each marker)

D5S372 !name of the marker

2 !number of marker alleles

93 61 !disease marker allele counts

16 103 !normal marker allele counts (in same order as disease ones)

1 0 !marker alleles x marker alleles mutation transition matrix

0 1

775 !distance in kb to next marker

BT1

2

139 13

5 117

1 0

0 1

45

CSF1R/EcoRI

2

150 8

12 116

1 0

0 1

35

CSF1R/TAGA

2

144 6

46 82

1 0

0 1

3

CSF1R/Sty1

2

151 7
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34 93

1 0

0 1

3

CSF1R/CA

2

124 29

20 108

1 0

0 1

5

CSF1R/CCT

2

97 27

5 125

1 0

0 1

25

PDGFRB/BgII

2

94 47

36 87

1 0

0 1

30

PDGFRB/EcoRI

2

100 51

28 91

1 0

0 1

1000

RPS14

2

99 51

57 63

1 0

0 1

100 100 1 !generations to consider

0 !kb off map end

1 !kb mesh length
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B.3 Huntington's Disease

In this section, we include the data �le used in the composite likelihood program
of Appendix A to generate the composite log likelihood in Figure 7.21. The data
were published by MacDonald et al. [51].

Huntington's Disease !Name of the disease

100000 !current number of disease chromosomes

0.00000001 !disease mutation rate

25 !number of markers

!blank line (repeat this and the next lines for each marker)

D4S111 PstI !name of the marker

2 !number of marker alleles

17 26 !disease allele counts

36 61 !normal allele counts (in same order as disease alleles)

0.999 0.001 !marker alleles x marker alleles mutation transition matrix

0.001 0.999

5 !kb to next marker

D4S111 BelI

2

40 27

107 45

0.999 0.001

0.001 0.999

270

D4S115

2

18 29

27 84

0.999 0.001

0.001 0.999

20

D4S96

2

58 36

195 132

0.999 0.001

0.001 0.999

415

D4S168

2

29 28
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68 58

0.999 0.001

0.001 0.999

105

D4S113

2

12 58

26 128

0.999 0.001

0.001 0.999

80

D4S186

2

57 12

132 24

0.999 0.001

0.001 0.999

55

D4S114

2

41 12

94 26

0.999 0.001

0.001 0.999

30

D4S98

2

38 129

38 352

0.999 0.001

0.001 0.999

400

D4S43 Sau96

2

50 6

111 14

0.999 0.001

0.001 0.999

5

D4S43 HincII

2

25 40

75 75

0.999 0.001



223

0.001 0.999

5

D4S43 StuI

2

29 38

47 108

0.999 0.001

0.001 0.999

180

D4S183

2

27 39

55 94

0.999 0.001

0.001 0.999

330

D4S182

2

40 29

66 81

0.999 0.001

0.001 0.999

190

D4S95 TaqI

2

53 94

155 285

0.999 0.001

0.001 0.999

5

D4S95 AccI

2

109 25

286 139

0.999 0.001

0.001 0.999

115

D4S127 Pvu II

2

57 16

97 67

0.999 0.001

0.001 0.999

5
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D4S127 Stu I

2

18 53

60 99

0.999 0.001

0.001 0.999

330

D4S180 BamHI

2

25 46

28 124

0.999 0.001

0.001 0.999

5

D4S180 XmnI

2

24 20

57 51

0.999 0.001

0.001 0.999

150

D4S125

2

35 26

93 40

0.999 0.001

0.001 0.999

250

D4S126

2

34 34

61 99

0.999 0.001

0.001 0.999

205

D4S10 HindIII

2

49 22

275 109

0.999 0.001

0.001 0.999

5

D4S10 EcoRI
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2

39 48

206 220

0.999 0.001

0.001 0.999

5

D4S10 BgII

2

27 17

108 60

0.999 0.001

0.001 0.999

200 200 1 !generational limits to consider, plus mesh size

0 !# of kilobases off the end of the map

5 !mesh size for likelihood (in kb)
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Appendix C

Simulation Results

This appendix contains the results of the simulation performed in Chapter 7. The
�rst section contains multivariate and univariate analysis of variance tables for
each of the four possible settings of the location of the disease mutation relative to
the �rst marker locus. It also contains estimates of the logarithm of the absolute
error (plus one), tabulated at the levels of the interactions that were signi�cant at
the � = 0:01 level.

The second section contains maximum likelihood analysis of variance tables for
the coverage probabilities. It also contains estimates of the coverage probablities,
tabluated at the levels of the interactions that were signi�cant at the � = 0:01
level.

Note that the names of the factors are indicated in Table 7.7.

C.1 Prediction Error

C.1.1 Analysis of Variance Tables

KB_D=-50

MULTIVARIATE ANALYSIS OF VARIANCE

Source S M N Wilk's Lambda F df1 df2 Pr > F

A1 1 0.5 329 0.88181849 29.4844 3 660 0.0001

A2 1 0.5 329 0.81352990 50.4264 3 660 0.0001

A1*A2 1 0.5 329 0.96565005 7.8258 3 660 0.0001

DSAMP 2 0 329 0.98241743 1.9600 6 1320 0.0684

A1*DSAMP 2 0 329 0.99040473 1.0631 6 1320 0.3827

A2*DSAMP 2 0 329 0.97971913 2.2654 6 1320 0.0352

A1*A2*DSAMP 2 0 329 0.98461972 1.7116 6 1320 0.1147

KB_B 2 0 329 0.77816608 29.3943 6 1320 0.0001

A1*KB_B 2 0 329 0.88204275 14.2491 6 1320 0.0001

A2*KB_B 2 0 329 0.88373650 14.0245 6 1320 0.0001

A1*A2*KB_B 2 0 329 0.88169760 14.2949 6 1320 0.0001

DSAMP*KB_B 3 0 329 0.98407946 0.8855 12 1746.487 0.5614

A1*DSAMP*KB_B 3 0 329 0.99079094 2.0448 3 660 0.1063

A1*M1 1 0.5 329 0.99315374 1.5166 3 660 0.2090

A2*M1 1 0.5 329 0.99651976 0.7683 3 660 0.5120

A1*A2*M1 1 0.5 329 0.99681205 0.7036 3 660 0.5501

DSAMP*M1 2 0 329 0.99044071 1.0591 6 1320 0.3852
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A1*DSAMP*M1 2 0 329 0.99351547 0.7168 6 1320 0.6361

A2*DSAMP*M1 2 0 329 0.99151982 0.9388 6 1320 0.4660

KB_B*M1 2 0 329 0.98081308 2.1414 6 1320 0.0462

A1*KB_B*M1 2 0 329 0.97833148 2.4230 6 1320 0.0247

A2*KB_B*M1 2 0 329 0.99256415 0.8225 6 1320 0.5524

DSAMP*KB_B*M1 3 0 329 0.98771679 0.6815 12 1746.487 0.7708

M2 1 0.5 329 0.97974983 4.5471 3 660 0.0036

A1*M2 1 0.5 329 0.99898621 0.2233 3 660 0.8802

A2*M2 1 0.5 329 0.96816043 7.2351 3 660 0.0001

A1*A2*M2 1 0.5 329 0.99296082 1.5596 3 660 0.1980

DSAMP*M2 2 0 329 0.97273943 3.0614 6 1320 0.0056

A1*DSAMP*M2 2 0 329 0.97934240 2.3082 6 1320 0.0320

A2*DSAMP*M2 2 0 329 0.98127429 2.0892 6 1320 0.0518

KB_B*M2 2 0 329 0.96160128 4.3495 6 1320 0.0002

A1*KB_B*M2 2 0 329 0.99499948 0.5521 6 1320 0.7686

A2*KB_B*M2 2 0 329 0.97517755 2.7824 6 1320 0.0108

DSAMP*KB_B*M2 3 0 329 0.97095141 1.6307 12 1746.487 0.0768

M1*M2 1 0.5 329 0.99324374 1.4965 3 660 0.2143

A1*M1*M2 1 0.5 329 0.99606476 0.8692 3 660 0.4567

A2*M1*M2 1 0.5 329 0.99542212 1.0118 3 660 0.3869

DSAMP*M1*M2 2 0 329 0.98707051 1.4362 6 1320 0.1972

KB_B*M1*M2 2 0 329 0.99253218 0.8261 6 1320 0.5496

MD 1 0.5 329 0.99385039 1.3613 3 660 0.2535

A1*MD 1 0.5 329 0.99508713 1.0862 3 660 0.3542

A2*MD 1 0.5 329 0.99691506 0.6808 3 660 0.5640

A1*A2*MD 1 0.5 329 0.99861500 0.3051 3 660 0.8217

DSAMP*MD 2 0 329 0.99202206 0.8829 6 1320 0.5066

A1*DSAMP*MD 2 0 329 0.98588731 1.5690 6 1320 0.1526

A2*DSAMP*MD 2 0 329 0.99097500 0.9995 6 1320 0.4240

KB_B*MD 2 0 329 0.99248868 0.8309 6 1320 0.5459

A1*KB_B*MD 2 0 329 0.99252820 0.8265 6 1320 0.5493

A2*KB_B*MD 2 0 329 0.99733617 0.2936 6 1320 0.9401

DSAMP*KB_B*MD 3 0 329 0.97973229 1.1307 12 1746.487 0.3300

M1*MD 1 0.5 329 0.99669015 0.7306 3 660 0.5340

A1*M1*MD 1 0.5 329 0.99717107 0.6241 3 660 0.5996

A2*M1*MD 1 0.5 329 0.99556697 0.9796 3 660 0.4018

DSAMP*M1*MD 2 0 329 0.99072793 1.0271 6 1320 0.4058

KB_B*M1*MD 2 0 329 0.99042310 1.0611 6 1320 0.3840

M2*MD 1 0.5 329 0.99620953 0.8371 3 660 0.4738

A1*M2*MD 1 0.5 329 0.99487525 1.1333 3 660 0.3348

A2*M2*MD 1 0.5 329 0.99431914 1.2569 3 660 0.2882

DSAMP*M2*MD 2 0 329 0.99377068 0.6884 6 1320 0.6590

KB_B*M2*MD 2 0 329 0.98936364 1.1794 6 1320 0.3146

M1*M2*MD 1 0.5 329 0.99700092 0.6618 3 660 0.5758

AGE 2 0 329 0.95938521 4.6085 6 1320 0.0001

A1*AGE 2 0 329 0.98024804 2.2054 6 1320 0.0402

A2*AGE 2 0 329 0.98702699 1.4411 6 1320 0.1954

A1*A2*AGE 2 0 329 0.99119379 0.9751 6 1320 0.4406

DSAMP*AGE 3 0 329 0.98745328 0.6962 12 1746.487 0.7565

A1*DSAMP*AGE 3 0 329 0.98536943 0.8130 12 1746.487 0.6373
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A2*DSAMP*AGE 3 0 329 0.98584169 0.7865 12 1746.487 0.6650

KB_B*AGE 3 0 329 0.95621229 2.4840 12 1746.487 0.0032

A1*KB_B*AGE 3 0 329 0.94482782 3.1556 12 1746.487 0.0002

A2*KB_B*AGE 3 0 329 0.98039300 1.0934 12 1746.487 0.3612

DSAMP*KB_B*AGE 3 2 329 0.97118097 0.8085 24 1914.802 0.7294

M1*AGE 2 0 329 0.98836806 1.2908 6 1320 0.2583

A1*M1*AGE 2 0 329 0.98934749 1.1812 6 1320 0.3136

A2*M1*AGE 2 0 329 0.99720740 0.3078 6 1320 0.9331

DSAMP*M1*AGE 3 0 329 0.98805321 0.6626 12 1746.487 0.7885

KB_B*M1*AGE 3 0 329 0.97115067 1.6193 12 1746.487 0.0798

M2*AGE 2 0 329 0.97815681 2.4428 6 1320 0.0236

A1*M2*AGE 2 0 329 0.99100771 0.9959 6 1320 0.4265

A2*M2*AGE 2 0 329 0.98892376 1.2286 6 1320 0.2886

DSAMP*M2*AGE 3 0 329 0.98243461 0.9781 12 1746.487 0.4675

KB_B*M2*AGE 3 0 329 0.97704133 1.2833 12 1746.487 0.2215

M1*M2*AGE 2 0 329 0.97907009 2.3391 6 1320 0.0298

MD*AGE 2 0 329 0.99392601 0.6712 6 1320 0.6730

A1*MD*AGE 2 0 329 0.99120433 0.9740 6 1320 0.4414

A2*MD*AGE 2 0 329 0.98723872 1.4173 6 1320 0.2044

DSAMP*MD*AGE 3 0 329 0.97719156 1.2748 12 1746.487 0.2268

KB_B*MD*AGE 3 0 329 0.99238246 0.4212 12 1746.487 0.9559

M1*MD*AGE 2 0 329 0.99574147 0.4699 6 1320 0.8310

M2*MD*AGE 2 0 329 0.99473747 0.5812 6 1320 0.7456

------------------------------------------------------------------------------

Dependent Variable: LOGERR_0

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 201 22.80255867 0.11344557 2.99 0.0001

Error 662 25.12022448 0.03794596

Corrected Total 863 47.92278315

R-Square C.V. Root MSE LOGERR_0 Mean

0.475819 4.852491 0.194797 4.014376

Source DF Anova SS Mean Square F Value Pr > F

A1 1 1.63188633 1.63188633 43.01 0.0001

A2 1 2.40289422 2.40289422 63.32 0.0001

A1*A2 1 0.12411475 0.12411475 3.27 0.0710

DSAMP 2 0.09472232 0.04736116 1.25 0.2877

A1*DSAMP 2 0.03071706 0.01535853 0.40 0.6673

A2*DSAMP 2 0.01200406 0.00600203 0.16 0.8537

A1*A2*DSAMP 2 0.03001006 0.01500503 0.40 0.6735

KB_B 2 3.42193520 1.71096760 45.09 0.0001

A1*KB_B 2 1.34555813 0.67277907 17.73 0.0001

A2*KB_B 2 1.32267763 0.66133882 17.43 0.0001

A1*A2*KB_B 2 1.16337761 0.58168880 15.33 0.0001

DSAMP*KB_B 4 0.15777758 0.03944439 1.04 0.3859

A1*DSAMP*KB_B 4 0.19103745 0.04775936 1.26 0.2849
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A2*DSAMP*KB_B 4 0.05272534 0.01318134 0.35 0.8459

M1 1 0.11530926 0.11530926 3.04 0.0818

A1*M1 1 0.11781549 0.11781549 3.10 0.0785

A2*M1 1 0.04486989 0.04486989 1.18 0.2772

A1*A2*M1 1 0.03355667 0.03355667 0.88 0.3474

DSAMP*M1 2 0.04767416 0.02383708 0.63 0.5339

A1*DSAMP*M1 2 0.03538315 0.01769158 0.47 0.6276

A2*DSAMP*M1 2 0.03506885 0.01753442 0.46 0.6302

KB_B*M1 2 0.30025162 0.15012581 3.96 0.0196

A1*KB_B*M1 2 0.36307095 0.18153548 4.78 0.0087

A2*KB_B*M1 2 0.14739380 0.07369690 1.94 0.1442

DSAMP*KB_B*M1 4 0.06459973 0.01614993 0.43 0.7902

M2 1 0.39532250 0.39532250 10.42 0.0013

A1*M2 1 0.01170401 0.01170401 0.31 0.5788

A2*M2 1 0.08335156 0.08335156 2.20 0.1388

A1*A2*M2 1 0.01804012 0.01804012 0.48 0.4907

DSAMP*M2 2 0.20527806 0.10263903 2.70 0.0676

A1*DSAMP*M2 2 0.12222706 0.06111353 1.61 0.2006

A2*DSAMP*M2 2 0.25402772 0.12701386 3.35 0.0358

KB_B*M2 2 0.38766585 0.19383293 5.11 0.0063

A1*KB_B*M2 2 0.01648354 0.00824177 0.22 0.8048

A2*KB_B*M2 2 0.21393642 0.10696821 2.82 0.0604

DSAMP*KB_B*M2 4 0.20448627 0.05112157 1.35 0.2509

M1*M2 1 0.12547692 0.12547692 3.31 0.0694

A1*M1*M2 1 0.09109895 0.09109895 2.40 0.1218

A2*M1*M2 1 0.00205056 0.00205056 0.05 0.8163

DSAMP*M1*M2 2 0.05110972 0.02555486 0.67 0.5103

KB_B*M1*M2 2 0.15004112 0.07502056 1.98 0.1393

MD 1 0.03900841 0.03900841 1.03 0.3110

A1*MD 1 0.01965024 0.01965024 0.52 0.4720

A2*MD 1 0.00761344 0.00761344 0.20 0.6544

A1*A2*MD 1 0.00892467 0.00892467 0.24 0.6279

DSAMP*MD 2 0.02229935 0.01114968 0.29 0.7455

A1*DSAMP*MD 2 0.13595922 0.06797961 1.79 0.1675

A2*DSAMP*MD 2 0.08413205 0.04206603 1.11 0.3306

KB_B*MD 2 0.06960737 0.03480368 0.92 0.4001

A1*KB_B*MD 2 0.05928690 0.02964345 0.78 0.4583

A2*KB_B*MD 2 0.01162396 0.00581198 0.15 0.8580

DSAMP*KB_B*MD 4 0.10522053 0.02630513 0.69 0.5968

M1*MD 1 0.01038433 0.01038433 0.27 0.6011

A1*M1*MD 1 0.00211622 0.00211622 0.06 0.8134

A2*M1*MD 1 0.01139543 0.01139543 0.30 0.5839

DSAMP*M1*MD 2 0.00148493 0.00074246 0.02 0.9806

KB_B*M1*MD 2 0.05187010 0.02593505 0.68 0.5052

M2*MD 1 0.02508252 0.02508252 0.66 0.4165

A1*M2*MD 1 0.02243381 0.02243381 0.59 0.4422

A2*M2*MD 1 0.11548860 0.11548860 3.04 0.0815

DSAMP*M2*MD 2 0.14164536 0.07082268 1.87 0.1555

KB_B*M2*MD 2 0.06736949 0.03368475 0.89 0.4121

M1*M2*MD 1 0.05893561 0.05893561 1.55 0.2131
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AGE 2 0.60919685 0.30459842 8.03 0.0004

A1*AGE 2 0.36863886 0.18431943 4.86 0.0080

A2*AGE 2 0.03453056 0.01726528 0.45 0.6346

A1*A2*AGE 2 0.00807522 0.00403761 0.11 0.8991

DSAMP*AGE 4 0.15933750 0.03983437 1.05 0.3806

A1*DSAMP*AGE 4 0.18439376 0.04609844 1.21 0.3032

A2*DSAMP*AGE 4 0.02592923 0.00648231 0.17 0.9533

KB_B*AGE 4 0.73886102 0.18471526 4.87 0.0007

A1*KB_B*AGE 4 1.01586496 0.25396624 6.69 0.0001

A2*KB_B*AGE 4 0.06297287 0.01574322 0.41 0.7980

DSAMP*KB_B*AGE 8 0.37001141 0.04625143 1.22 0.2850

M1*AGE 2 0.23185100 0.11592550 3.06 0.0478

A1*M1*AGE 2 0.20270648 0.10135324 2.67 0.0699

A2*M1*AGE 2 0.04245268 0.02122634 0.56 0.5718

DSAMP*M1*AGE 4 0.05672642 0.01418160 0.37 0.8274

KB_B*M1*AGE 4 0.68831658 0.17207914 4.53 0.0013

M2*AGE 2 0.17678739 0.08839369 2.33 0.0981

A1*M2*AGE 2 0.06858832 0.03429416 0.90 0.4055

A2*M2*AGE 2 0.22316212 0.11158106 2.94 0.0535

DSAMP*M2*AGE 4 0.08822261 0.02205565 0.58 0.6763

KB_B*M2*AGE 4 0.18307407 0.04576852 1.21 0.3069

M1*M2*AGE 2 0.02150361 0.01075180 0.28 0.7534

MD*AGE 2 0.04465692 0.02232846 0.59 0.5555

A1*MD*AGE 2 0.11698131 0.05849066 1.54 0.2148

A2*MD*AGE 2 0.13398830 0.06699415 1.77 0.1719

DSAMP*MD*AGE 4 0.10431711 0.02607928 0.69 0.6009

KB_B*MD*AGE 4 0.07858536 0.01964634 0.52 0.7227

M1*MD*AGE 2 0.01714596 0.00857298 0.23 0.7978

M2*MD*AGE 2 0.05541594 0.02770797 0.73 0.4822

------------------------------------------------------------------------------

Dependent Variable: LOGERR_1

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 201 33.15737263 0.16496205 4.11 0.0001

Error 662 26.58954596 0.04016548

Corrected Total 863 59.74691859

R-Square C.V. Root MSE LOGERR_1 Mean

0.554964 4.955245 0.200413 4.044467

Source DF Anova SS Mean Square F Value Pr > F

A1 1 3.33131459 3.33131459 82.94 0.0001

A2 1 5.78589464 5.78589464 144.05 0.0001

A1*A2 1 0.84568474 0.84568474 21.06 0.0001

DSAMP 2 0.08021050 0.04010525 1.00 0.3690

A1*DSAMP 2 0.07210133 0.03605067 0.90 0.4081

A2*DSAMP 2 0.24613289 0.12306644 3.06 0.0474

A1*A2*DSAMP 2 0.19698842 0.09849421 2.45 0.0869

KB_B 2 5.73858764 2.86929382 71.44 0.0001
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A1*KB_B 2 3.38808521 1.69404260 42.18 0.0001

A2*KB_B 2 2.90320612 1.45160306 36.14 0.0001

A1*A2*KB_B 2 3.37578424 1.68789212 42.02 0.0001

DSAMP*KB_B 4 0.04762751 0.01190688 0.30 0.8803

A1*DSAMP*KB_B 4 0.05573667 0.01393417 0.35 0.8462

A2*DSAMP*KB_B 4 0.39089602 0.09772401 2.43 0.0463

M1 1 0.10305426 0.10305426 2.57 0.1097

A1*M1 1 0.13398836 0.13398836 3.34 0.0682

A2*M1 1 0.06021386 0.06021386 1.50 0.2212

A1*A2*M1 1 0.08433720 0.08433720 2.10 0.1478

DSAMP*M1 2 0.03633511 0.01816756 0.45 0.6363

A1*DSAMP*M1 2 0.01330552 0.00665276 0.17 0.8474

A2*DSAMP*M1 2 0.00897302 0.00448651 0.11 0.8943

KB_B*M1 2 0.32853834 0.16426917 4.09 0.0172

A1*KB_B*M1 2 0.28900117 0.14450058 3.60 0.0279

A2*KB_B*M1 2 0.10720687 0.05360343 1.33 0.2640

DSAMP*KB_B*M1 4 0.02170692 0.00542673 0.14 0.9694

M2 1 0.03390249 0.03390249 0.84 0.3586

A1*M2 1 0.00240645 0.00240645 0.06 0.8067

A2*M2 1 0.02385312 0.02385312 0.59 0.4412

A1*A2*M2 1 0.08381906 0.08381906 2.09 0.1490

DSAMP*M2 2 0.27095954 0.13547977 3.37 0.0349

A1*DSAMP*M2 2 0.31113282 0.15556641 3.87 0.0213

A2*DSAMP*M2 2 0.07411122 0.03705561 0.92 0.3980

KB_B*M2 2 0.08282466 0.04141233 1.03 0.3572

A1*KB_B*M2 2 0.00952633 0.00476316 0.12 0.8882

A2*KB_B*M2 2 0.01335869 0.00667935 0.17 0.8468

DSAMP*KB_B*M2 4 0.41785098 0.10446274 2.60 0.0351

M1*M2 1 0.09615214 0.09615214 2.39 0.1223

A1*M1*M2 1 0.07025708 0.07025708 1.75 0.1864

A2*M1*M2 1 0.00035061 0.00035061 0.01 0.9256

DSAMP*M1*M2 2 0.25476412 0.12738206 3.17 0.0426

KB_B*M1*M2 2 0.10889934 0.05444967 1.36 0.2585

MD 1 0.00689900 0.00689900 0.17 0.6787

A1*MD 1 0.01640546 0.01640546 0.41 0.5230

A2*MD 1 0.05413279 0.05413279 1.35 0.2461

A1*A2*MD 1 0.03520914 0.03520914 0.88 0.3495

DSAMP*MD 2 0.01343831 0.00671915 0.17 0.8460

A1*DSAMP*MD 2 0.01660913 0.00830457 0.21 0.8133

A2*DSAMP*MD 2 0.05477006 0.02738503 0.68 0.5061

KB_B*MD 2 0.00585254 0.00292627 0.07 0.9297

A1*KB_B*MD 2 0.00824020 0.00412010 0.10 0.9025

A2*KB_B*MD 2 0.04194141 0.02097070 0.52 0.5935

DSAMP*KB_B*MD 4 0.03944795 0.00986199 0.25 0.9124

M1*MD 1 0.01593493 0.01593493 0.40 0.5290

A1*M1*MD 1 0.02932903 0.02932903 0.73 0.3931

A2*M1*MD 1 0.08321608 0.08321608 2.07 0.1505

DSAMP*M1*MD 2 0.02020144 0.01010072 0.25 0.7777

KB_B*M1*MD 2 0.03407556 0.01703778 0.42 0.6545

M2*MD 1 0.00911608 0.00911608 0.23 0.6339
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A1*M2*MD 1 0.01974073 0.01974073 0.49 0.4835

A2*M2*MD 1 0.02153506 0.02153506 0.54 0.4643

DSAMP*M2*MD 2 0.08807697 0.04403849 1.10 0.3347

KB_B*M2*MD 2 0.00868348 0.00434174 0.11 0.8976

M1*M2*MD 1 0.01009416 0.01009416 0.25 0.6163

AGE 2 0.08977290 0.04488645 1.12 0.3277

A1*AGE 2 0.08977290 0.04488645 1.12 0.3277

A2*AGE 2 0.00599799 0.00299899 0.07 0.9281

A1*A2*AGE 2 0.00599799 0.00299899 0.07 0.9281

DSAMP*AGE 4 0.08226073 0.02056518 0.51 0.7269

A1*DSAMP*AGE 4 0.07049397 0.01762349 0.44 0.7806

A2*DSAMP*AGE 4 0.07015940 0.01753985 0.44 0.7821

KB_B*AGE 4 0.13147620 0.03286905 0.82 0.5137

A1*KB_B*AGE 4 0.13147621 0.03286905 0.82 0.5137

A2*KB_B*AGE 4 0.00559201 0.00139800 0.03 0.9977

DSAMP*KB_B*AGE 8 0.22382085 0.02797761 0.70 0.6948

M1*AGE 2 0.16986613 0.08493306 2.11 0.1215

A1*M1*AGE 2 0.16568048 0.08284024 2.06 0.1280

A2*M1*AGE 2 0.00063316 0.00031658 0.01 0.9921

DSAMP*M1*AGE 4 0.11808031 0.02952008 0.73 0.5683

KB_B*M1*AGE 4 0.25050739 0.06262685 1.56 0.1835

M2*AGE 2 0.07084310 0.03542155 0.88 0.4145

A1*M2*AGE 2 0.07084310 0.03542155 0.88 0.4145

A2*M2*AGE 2 0.16180050 0.08090025 2.01 0.1342

DSAMP*M2*AGE 4 0.21387895 0.05346974 1.33 0.2568

KB_B*M2*AGE 4 0.11429327 0.02857332 0.71 0.5843

M1*M2*AGE 2 0.12765615 0.06382808 1.59 0.2049

MD*AGE 2 0.04513245 0.02256622 0.56 0.5704

A1*MD*AGE 2 0.02116108 0.01058054 0.26 0.7685

A2*MD*AGE 2 0.17468882 0.08734441 2.17 0.1145

DSAMP*MD*AGE 4 0.24050280 0.06012570 1.50 0.2014

KB_B*MD*AGE 4 0.06619601 0.01654900 0.41 0.8000

M1*MD*AGE 2 0.00161182 0.00080591 0.02 0.9801

M2*MD*AGE 2 0.10514665 0.05257332 1.31 0.2708

------------------------------------------------------------------------------

Dependent Variable: LOGERR_2

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 201 20.30601479 0.10102495 4.28 0.0001

Error 662 15.61477296 0.02358727

Corrected Total 863 35.92078775

R-Square C.V. Root MSE LOGERR_2 Mean

0.565300 3.824324 0.153581 4.015911

Source DF Anova SS Mean Square F Value Pr > F

A1 1 1.54700811 1.54700811 65.59 0.0001

A2 1 2.45564240 2.45564240 104.11 0.0001

A1*A2 1 0.11507709 0.11507709 4.88 0.0275



233

DSAMP 2 0.10476965 0.05238482 2.22 0.1093

A1*DSAMP 2 0.04508240 0.02254120 0.96 0.3851

A2*DSAMP 2 0.10140645 0.05070322 2.15 0.1173

A1*A2*DSAMP 2 0.13588029 0.06794014 2.88 0.0568

KB_B 2 3.63065435 1.81532718 76.96 0.0001

A1*KB_B 2 1.28732466 0.64366233 27.29 0.0001

A2*KB_B 2 1.36254180 0.68127090 28.88 0.0001

A1*A2*KB_B 2 1.24086133 0.62043066 26.30 0.0001

DSAMP*KB_B 4 0.07500093 0.01875023 0.79 0.5287

A1*DSAMP*KB_B 4 0.07429743 0.01857436 0.79 0.5335

A2*DSAMP*KB_B 4 0.24480731 0.06120183 2.59 0.0355

M1 1 0.14118510 0.14118510 5.99 0.0147

A1*M1 1 0.10146761 0.10146761 4.30 0.0385

A2*M1 1 0.05199971 0.05199971 2.20 0.1381

A1*A2*M1 1 0.02918227 0.02918227 1.24 0.2664

DSAMP*M1 2 0.01868331 0.00934166 0.40 0.6731

A1*DSAMP*M1 2 0.00683287 0.00341643 0.14 0.8652

A2*DSAMP*M1 2 0.00687462 0.00343731 0.15 0.8644

KB_B*M1 2 0.29380459 0.14690229 6.23 0.0021

A1*KB_B*M1 2 0.34255445 0.17127723 7.26 0.0008

A2*KB_B*M1 2 0.11115081 0.05557541 2.36 0.0956

DSAMP*KB_B*M1 4 0.02786803 0.00696701 0.30 0.8810

M2 1 0.18727868 0.18727868 7.94 0.0050

A1*M2 1 0.00023600 0.00023600 0.01 0.9204

A2*M2 1 0.16802705 0.16802705 7.12 0.0078

A1*A2*M2 1 0.00005601 0.00005601 0.00 0.9612

DSAMP*M2 2 0.37997533 0.18998767 8.05 0.0003

A1*DSAMP*M2 2 0.25492606 0.12746303 5.40 0.0047

A2*DSAMP*M2 2 0.11068369 0.05534185 2.35 0.0965

KB_B*M2 2 0.43969349 0.21984675 9.32 0.0001

A1*KB_B*M2 2 0.01027301 0.00513650 0.22 0.8044

A2*KB_B*M2 2 0.11871821 0.05935910 2.52 0.0815

DSAMP*KB_B*M2 4 0.35758053 0.08939513 3.79 0.0047

M1*M2 1 0.02795582 0.02795582 1.19 0.2767

A1*M1*M2 1 0.04001633 0.04001633 1.70 0.1932

A2*M1*M2 1 0.02795582 0.02795582 1.19 0.2767

DSAMP*M1*M2 2 0.06809075 0.03404537 1.44 0.2369

KB_B*M1*M2 2 0.04017977 0.02008989 0.85 0.4271

MD 1 0.02633695 0.02633695 1.12 0.2910

A1*MD 1 0.01104189 0.01104189 0.47 0.4941

A2*MD 1 0.02633695 0.02633695 1.12 0.2910

A1*A2*MD 1 0.01104189 0.01104189 0.47 0.4941

DSAMP*MD 2 0.03644863 0.01822431 0.77 0.4622

A1*DSAMP*MD 2 0.09961949 0.04980974 2.11 0.1218

A2*DSAMP*MD 2 0.04222237 0.02111119 0.90 0.4091

KB_B*MD 2 0.02754227 0.01377113 0.58 0.5580

A1*KB_B*MD 2 0.04227342 0.02113671 0.90 0.4087

A2*KB_B*MD 2 0.02754227 0.01377113 0.58 0.5580

DSAMP*KB_B*MD 4 0.12188044 0.03047011 1.29 0.2718

M1*MD 1 0.00454238 0.00454238 0.19 0.6609
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A1*M1*MD 1 0.00010386 0.00010386 0.00 0.9471

A2*M1*MD 1 0.03638305 0.03638305 1.54 0.2147

DSAMP*M1*MD 2 0.02521243 0.01260621 0.53 0.5862

KB_B*M1*MD 2 0.01446903 0.00723451 0.31 0.7360

M2*MD 1 0.00008827 0.00008827 0.00 0.9512

A1*M2*MD 1 0.00054971 0.00054971 0.02 0.8787

A2*M2*MD 1 0.01913146 0.01913146 0.81 0.3681

DSAMP*M2*MD 2 0.07323079 0.03661539 1.55 0.2125

KB_B*M2*MD 2 0.00208755 0.00104378 0.04 0.9567

M1*M2*MD 1 0.00893015 0.00893015 0.38 0.5386

AGE 2 0.46996145 0.23498072 9.96 0.0001

A1*AGE 2 0.23400976 0.11700488 4.96 0.0073

A2*AGE 2 0.07591350 0.03795675 1.61 0.2008

A1*A2*AGE 2 0.01750630 0.00875315 0.37 0.6901

DSAMP*AGE 4 0.08170012 0.02042503 0.87 0.4840

A1*DSAMP*AGE 4 0.08746145 0.02186536 0.93 0.4477

A2*DSAMP*AGE 4 0.04718887 0.01179722 0.50 0.7356

KB_B*AGE 4 0.38118307 0.09529577 4.04 0.0030

A1*KB_B*AGE 4 0.47437883 0.11859471 5.03 0.0005

A2*KB_B*AGE 4 0.06623141 0.01655785 0.70 0.5908

DSAMP*KB_B*AGE 8 0.23961675 0.02995209 1.27 0.2562

M1*AGE 2 0.10930050 0.05465025 2.32 0.0994

A1*M1*AGE 2 0.08914860 0.04457430 1.89 0.1519

A2*M1*AGE 2 0.00971519 0.00485759 0.21 0.8139

DSAMP*M1*AGE 4 0.06454034 0.01613509 0.68 0.6032

KB_B*M1*AGE 4 0.28414945 0.07103736 3.01 0.0177

M2*AGE 2 0.26823859 0.13411930 5.69 0.0036

A1*M2*AGE 2 0.11571870 0.05785935 2.45 0.0868

A2*M2*AGE 2 0.15913453 0.07956726 3.37 0.0349

DSAMP*M2*AGE 4 0.11642313 0.02910578 1.23 0.2951

KB_B*M2*AGE 4 0.23091686 0.05772921 2.45 0.0452

M1*M2*AGE 2 0.04812077 0.02406039 1.02 0.3611

MD*AGE 2 0.01133936 0.00566968 0.24 0.7864

A1*MD*AGE 2 0.01136253 0.00568126 0.24 0.7860

A2*MD*AGE 2 0.01861537 0.00930768 0.39 0.6741

DSAMP*MD*AGE 4 0.10466782 0.02616695 1.11 0.3510

KB_B*MD*AGE 4 0.01327888 0.00331972 0.14 0.9670

M1*MD*AGE 2 0.00813762 0.00406881 0.17 0.8416

M2*MD*AGE 2 0.02743572 0.01371786 0.58 0.5593

------------------------------------------------------------------------------

------------------------------------------------------------------------------

KB_D=10

MULTIVARIATE ANALYSIS OF VARIANCE

Source S M N Wilk's Lambda F df1 df2 Pr > F

A1 1 0.5 398 0.96717879 9.0267 3 798 0.0001
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A2 1 0.5 398 0.98104138 5.1404 3 798 0.0016

A1*A2 1 0.5 398 0.98231445 4.7891 3 798 0.0026

DSAMP 2 0 398 0.92261414 10.9310 6 1596 0.0001

A1*DSAMP 2 0 398 0.95529879 6.1523 6 1596 0.0001

A2*DSAMP 2 0 398 0.98877583 1.5055 6 1596 0.1725

KB_B 2 0 398 0.84223634 23.8442 6 1596 0.0001

A1*KB_B 2 0 398 0.94982372 6.9356 6 1596 0.0001

A2*KB_B 2 0 398 0.97189333 3.8189 6 1596 0.0009

DSAMP*KB_B 3 0 398 0.96476551 2.4019 12 2111.601 0.0044

M1 1 0.5 398 0.99884406 0.3078 3 798 0.8197

A1*M1 1 0.5 398 0.99957882 0.1121 3 798 0.9530

A2*M1 1 0.5 398 0.99695566 0.8123 3 798 0.4872

DSAMP*M1 2 0 398 0.99718065 0.3758 6 1596 0.8947

KB_B*M1 2 0 398 0.99441009 0.7466 6 1596 0.6122

M2 1 0.5 398 0.99634754 0.9751 3 798 0.4038

A1*M2 1 0.5 398 0.99462939 1.4363 3 798 0.2308

A2*M2 1 0.5 398 0.99619937 1.0148 3 798 0.3854

DSAMP*M2 2 0 398 0.98883998 1.4968 6 1596 0.1754

KB_B*M2 2 0 398 0.98618044 1.8573 6 1596 0.0848

M1*M2 1 0.5 398 0.99440952 1.4954 3 798 0.2144

MD 1 0.5 398 0.99978830 0.0563 3 798 0.9824

A1*MD 1 0.5 398 0.99751699 0.6621 3 798 0.5755

A2*MD 1 0.5 398 0.99591395 1.0913 3 798 0.3519

DSAMP*MD 2 0 398 0.99513528 0.6494 6 1596 0.6907

KB_B*MD 2 0 398 0.99193376 1.0793 6 1596 0.3725

M1*MD 1 0.5 398 0.99704763 0.7877 3 798 0.5009

M2*MD 1 0.5 398 0.99793382 0.5507 3 798 0.6478

AGE 2 0 398 0.98488816 2.0329 6 1596 0.0584

A1*AGE 2 0 398 0.98623677 1.8496 6 1596 0.0861

A2*AGE 2 0 398 0.99315817 0.9147 6 1596 0.4832

DSAMP*AGE 3 0 398 0.96621691 2.3006 12 2111.601 0.0066

KB_B*AGE 3 0 398 0.96732458 2.2234 12 2111.601 0.0089

M1*AGE 2 0 398 0.99383955 0.8231 6 1596 0.5519

M2*AGE 2 0 398 0.99377376 0.8320 6 1596 0.5451

MD*AGE 2 0 398 0.99165403 1.1170 6 1596 0.3498

-----------------------------------------------------------------------------

Dependent Variable: LOGERR_0

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 63 236.2300036 3.7496826 2.81 0.0001

Error 800 1066.3567662 1.3329460

Corrected Total 863 1302.5867697

R-Square C.V. Root MSE LOGERR_0 Mean

0.181355 50.13376 1.154533 2.302905

Source DF Anova SS Mean Square F Value Pr > F

A1 1 5.81741430 5.81741430 4.36 0.0370

A2 1 0.02249335 0.02249335 0.02 0.8967
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A1*A2 1 6.94454819 6.94454819 5.21 0.0227

DSAMP 2 64.80792000 32.40396000 24.31 0.0001

A1*DSAMP 2 14.11519862 7.05759931 5.29 0.0052

A2*DSAMP 2 3.65935862 1.82967931 1.37 0.2540

KB_B 2 33.28856053 16.64428027 12.49 0.0001

A1*KB_B 2 12.69639599 6.34819800 4.76 0.0088

A2*KB_B 2 9.85631975 4.92815987 3.70 0.0252

DSAMP*KB_B 4 21.76290229 5.44072557 4.08 0.0028

M1 1 0.83994273 0.83994273 0.63 0.4275

A1*M1 1 0.03380624 0.03380624 0.03 0.8735

A2*M1 1 0.23611288 0.23611288 0.18 0.6740

DSAMP*M1 2 2.21223282 1.10611641 0.83 0.4365

KB_B*M1 2 4.10611801 2.05305901 1.54 0.2150

M2 1 0.69619006 0.69619006 0.52 0.4701

A1*M2 1 0.04415844 0.04415844 0.03 0.8556

A2*M2 1 0.88250876 0.88250876 0.66 0.4161

DSAMP*M2 2 0.82159983 0.41079992 0.31 0.7349

KB_B*M2 2 3.03651031 1.51825516 1.14 0.3207

M1*M2 1 0.11957698 0.11957698 0.09 0.7646

MD 1 0.03631491 0.03631491 0.03 0.8689

A1*MD 1 1.01565900 1.01565900 0.76 0.3830

A2*MD 1 0.18011865 0.18011865 0.14 0.7133

DSAMP*MD 2 1.31173329 0.65586664 0.49 0.6116

KB_B*MD 2 0.00440011 0.00220006 0.00 0.9984

M1*MD 1 1.02263761 1.02263761 0.77 0.3813

M2*MD 1 0.02851821 0.02851821 0.02 0.8837

AGE 2 13.24884419 6.62442210 4.97 0.0072

A1*AGE 2 3.47205639 1.73602820 1.30 0.2725

A2*AGE 2 0.15566801 0.07783401 0.06 0.9433

DSAMP*AGE 4 19.64330145 4.91082536 3.68 0.0056

KB_B*AGE 4 1.53616423 0.38404106 0.29 0.8858

M1*AGE 2 1.76779282 0.88389641 0.66 0.5155

M2*AGE 2 5.39503140 2.69751570 2.02 0.1328

MD*AGE 2 1.41189454 0.70594727 0.53 0.5890

------------------------------------------------------------------------------

Dependent Variable: LOGERR_1

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 63 248.6509701 3.9468408 4.88 0.0001

Error 800 647.2158039 0.8090198

Corrected Total 863 895.8667740

R-Square C.V. Root MSE LOGERR_1 Mean

0.277554 39.96715 0.899455 2.250486

Source DF Anova SS Mean Square F Value Pr > F

A1 1 20.14878261 20.14878261 24.91 0.0001

A2 1 4.94065466 4.94065466 6.11 0.0137

A1*A2 1 7.66483963 7.66483963 9.47 0.0022
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DSAMP 2 32.30515092 16.15257546 19.97 0.0001

A1*DSAMP 2 27.76022013 13.88011007 17.16 0.0001

A2*DSAMP 2 5.43390362 2.71695181 3.36 0.0353

KB_B 2 48.14435272 24.07217636 29.75 0.0001

A1*KB_B 2 26.10142515 13.05071257 16.13 0.0001

A2*KB_B 2 15.45778916 7.72889458 9.55 0.0001

DSAMP*KB_B 4 11.98267839 2.99566960 3.70 0.0054

M1 1 0.53175984 0.53175984 0.66 0.4178

A1*M1 1 0.03671717 0.03671717 0.05 0.8314

A2*M1 1 1.40500832 1.40500832 1.74 0.1879

DSAMP*M1 2 0.37400676 0.18700338 0.23 0.7937

KB_B*M1 2 0.85802891 0.42901445 0.53 0.5886

M2 1 2.19325981 2.19325981 2.71 0.1001

A1*M2 1 0.37513004 0.37513004 0.46 0.4961

A2*M2 1 0.01838648 0.01838648 0.02 0.8802

DSAMP*M2 2 0.10116185 0.05058093 0.06 0.9394

KB_B*M2 2 2.40707438 1.20353719 1.49 0.2265

M1*M2 1 2.60170500 2.60170500 3.22 0.0733

MD 1 0.02645353 0.02645353 0.03 0.8565

A1*MD 1 0.77850618 0.77850618 0.96 0.3269

A2*MD 1 0.99882386 0.99882386 1.23 0.2668

DSAMP*MD 2 1.31648409 0.65824204 0.81 0.4436

KB_B*MD 2 2.73549021 1.36774511 1.69 0.1851

M1*MD 1 0.12881665 0.12881665 0.16 0.6900

M2*MD 1 0.66824471 0.66824471 0.83 0.3637

AGE 2 6.38460600 3.19230300 3.95 0.0197

A1*AGE 2 2.09533205 1.04766602 1.29 0.2745

A2*AGE 2 0.18375729 0.09187864 0.11 0.8927

DSAMP*AGE 4 12.21332167 3.05333042 3.77 0.0048

KB_B*AGE 4 6.94630457 1.73657614 2.15 0.0734

M1*AGE 2 0.45277503 0.22638752 0.28 0.7560

M2*AGE 2 2.19324664 1.09662332 1.36 0.2584

MD*AGE 2 0.68677206 0.34338603 0.42 0.6543

------------------------------------------------------------------------------

Dependent Variable: LOGERR_2

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 63 203.3232589 3.2273533 3.94 0.0001

Error 800 655.6469120 0.8195586

Corrected Total 863 858.9701709

R-Square C.V. Root MSE LOGERR_2 Mean

0.236706 43.12634 0.905295 2.099169

Source DF Anova SS Mean Square F Value Pr > F

A1 1 4.36257342 4.36257342 5.32 0.0213

A2 1 3.92729477 3.92729477 4.79 0.0289

A1*A2 1 9.57983528 9.57983528 11.69 0.0007

DSAMP 2 40.21438114 20.10719057 24.53 0.0001
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A1*DSAMP 2 2.96204711 1.48102356 1.81 0.1648

A2*DSAMP 2 2.38829384 1.19414692 1.46 0.2335

KB_B 2 55.50833763 27.75416882 33.86 0.0001

A1*KB_B 2 12.73107226 6.36553613 7.77 0.0005

A2*KB_B 2 9.23810352 4.61905176 5.64 0.0037

DSAMP*KB_B 4 10.66965869 2.66741467 3.25 0.0116

M1 1 0.62741957 0.62741957 0.77 0.3819

A1*M1 1 0.04930975 0.04930975 0.06 0.8063

A2*M1 1 0.69624202 0.69624202 0.85 0.3570

DSAMP*M1 2 1.13836377 0.56918188 0.69 0.4996

KB_B*M1 2 2.96457559 1.48228780 1.81 0.1645

M2 1 0.56745094 0.56745094 0.69 0.4056

A1*M2 1 1.03340674 1.03340674 1.26 0.2618

A2*M2 1 0.22280249 0.22280249 0.27 0.6022

DSAMP*M2 2 1.83145014 0.91572507 1.12 0.3277

KB_B*M2 2 2.94024845 1.47012422 1.79 0.1670

M1*M2 1 0.11976247 0.11976247 0.15 0.7024

MD 1 0.00619049 0.00619049 0.01 0.9308

A1*MD 1 0.00016057 0.00016057 0.00 0.9888

A2*MD 1 0.01915391 0.01915391 0.02 0.8785

DSAMP*MD 2 1.80030510 0.90015255 1.10 0.3339

KB_B*MD 2 0.10172833 0.05086417 0.06 0.9398

M1*MD 1 0.06732590 0.06732590 0.08 0.7745

M2*MD 1 0.45325117 0.45325117 0.55 0.4573

AGE 2 6.31976409 3.15988205 3.86 0.0216

A1*AGE 2 5.03606922 2.51803461 3.07 0.0469

A2*AGE 2 1.86085622 0.93042811 1.14 0.3218

DSAMP*AGE 4 13.29211567 3.32302892 4.05 0.0029

KB_B*AGE 4 4.69416387 1.17354097 1.43 0.2215

M1*AGE 2 2.92348814 1.46174407 1.78 0.1687

M2*AGE 2 1.64582573 0.82291287 1.00 0.3668

MD*AGE 2 1.33023095 0.66511547 0.81 0.4445

------------------------------------------------------------------------------

------------------------------------------------------------------------------

KB_D=100

MULTIVARIATE ANALYSIS OF VARIANCE

Source S M N Wilk's Lambda F df1 df2 Pr > F

A1 1 0.5 398 0.92857488 20.4605 3 798 0.0001

A2 1 0.5 398 0.99280980 1.9264 3 798 0.1238

A1*A2 1 0.5 398 0.99883958 0.3090 3 798 0.8189

DSAMP 2 0 398 0.98078530 2.5930 6 1596 0.0167

A1*DSAMP 2 0 398 0.99047301 1.2762 6 1596 0.2650

A2*DSAMP 2 0 398 0.99390242 0.8147 6 1596 0.5584

KB_B 2 0 398 0.60839814 75.0262 6 1596 0.0001

A1*KB_B 2 0 398 0.97097052 3.9471 6 1596 0.0006
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A2*KB_B 2 0 398 0.98696721 1.7505 6 1596 0.1058

DSAMP*KB_B 3 0 398 0.98475882 1.0245 12 2111.601 0.4229

M1 1 0.5 398 0.99458925 1.4471 3 798 0.2278

A1*M1 1 0.5 398 0.99694841 0.8142 3 798 0.4862

A2*M1 1 0.5 398 0.99523122 1.2746 3 798 0.2819

DSAMP*M1 2 0 398 0.99415744 0.7805 6 1596 0.5852

KB_B*M1 2 0 398 0.99599542 0.5342 6 1596 0.7826

M2 1 0.5 398 0.99583985 1.1112 3 798 0.3437

A1*M2 1 0.5 398 0.99952587 0.1262 3 798 0.9446

A2*M2 1 0.5 398 0.99579541 1.1231 3 798 0.3388

DSAMP*M2 2 0 398 0.99816068 0.2450 6 1596 0.9614

KB_B*M2 2 0 398 0.98778680 1.6394 6 1596 0.1325

M1*M2 1 0.5 398 0.99014650 2.6471 3 798 0.0480

MD 1 0.5 398 0.99108369 2.3931 3 798 0.0672

A1*MD 1 0.5 398 0.99908350 0.2440 3 798 0.8656

A2*MD 1 0.5 398 0.99720728 0.7449 3 798 0.5255

DSAMP*MD 2 0 398 0.98632727 1.8373 6 1596 0.0884

KB_B*MD 2 0 398 0.99196455 1.0752 6 1596 0.3751

M1*MD 1 0.5 398 0.99291881 1.8970 3 798 0.1286

M2*MD 1 0.5 398 0.99685114 0.8402 3 798 0.4720

AGE 2 0 398 0.98994743 1.3472 6 1596 0.2328

A1*AGE 2 0 398 0.97683837 3.1351 6 1596 0.0047

A2*AGE 2 0 398 0.97871454 2.8770 6 1596 0.0086

DSAMP*AGE 3 0 398 0.98323615 1.1280 12 2111.601 0.3321

KB_B*AGE 3 0 398 0.93796844 4.3111 12 2111.601 0.0001

M1*AGE 2 0 398 0.99430214 0.7611 6 1596 0.6006

M2*AGE 2 0 398 0.98077754 2.5940 6 1596 0.0167

MD*AGE 2 0 398 0.99564495 0.5811 6 1596 0.7457

-----------------------------------------------------------------------------

Dependent Variable: LOGERR_0

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 63 215.2039574 3.4159358 1.59 0.0031

Error 800 1716.8791598 2.1460989

Corrected Total 863 1932.0831172

R-Square C.V. Root MSE LOGERR_0 Mean

0.111384 38.07561 1.464957 3.847495

Source DF Anova SS Mean Square F Value Pr > F

A1 1 0.10895645 0.10895645 0.05 0.8218

A2 1 9.56335372 9.56335372 4.46 0.0351

A1*A2 1 1.39258188 1.39258188 0.65 0.4207

DSAMP 2 25.04577945 12.52288972 5.84 0.0030

A1*DSAMP 2 4.94195035 2.47097517 1.15 0.3167

A2*DSAMP 2 3.69310876 1.84655438 0.86 0.4234

KB_B 2 32.62199634 16.31099817 7.60 0.0005

A1*KB_B 2 10.58600709 5.29300355 2.47 0.0855

A2*KB_B 2 1.70114382 0.85057191 0.40 0.6729
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DSAMP*KB_B 4 6.40258561 1.60064640 0.75 0.5609

M1 1 2.24408473 2.24408473 1.05 0.3068

A1*M1 1 3.51508367 3.51508367 1.64 0.2010

A2*M1 1 3.83788365 3.83788365 1.79 0.1815

DSAMP*M1 2 3.68130305 1.84065153 0.86 0.4245

KB_B*M1 2 2.80580492 1.40290246 0.65 0.5204

M2 1 3.35846545 3.35846545 1.56 0.2113

A1*M2 1 0.00489509 0.00489509 0.00 0.9619

A2*M2 1 6.72813183 6.72813183 3.14 0.0770

DSAMP*M2 2 0.74461203 0.37230601 0.17 0.8408

KB_B*M2 2 1.60224909 0.80112455 0.37 0.6886

M1*M2 1 0.55817768 0.55817768 0.26 0.6102

MD 1 13.62890342 13.62890342 6.35 0.0119

A1*MD 1 0.67457806 0.67457806 0.31 0.5752

A2*MD 1 0.02339449 0.02339449 0.01 0.9169

DSAMP*MD 2 8.75011346 4.37505673 2.04 0.1309

KB_B*MD 2 3.38773648 1.69386824 0.79 0.4545

M1*MD 1 0.51384869 0.51384869 0.24 0.6247

M2*MD 1 0.48663575 0.48663575 0.23 0.6341

AGE 2 4.60942562 2.30471281 1.07 0.3422

A1*AGE 2 20.55358391 10.27679196 4.79 0.0086

A2*AGE 2 0.71709620 0.35854810 0.17 0.8462

DSAMP*AGE 4 17.09028066 4.27257017 1.99 0.0940

KB_B*AGE 4 15.74669230 3.93667307 1.83 0.1202

M1*AGE 2 3.29015373 1.64507687 0.77 0.4650

M2*AGE 2 0.19089303 0.09544651 0.04 0.9565

MD*AGE 2 0.40246689 0.20123344 0.09 0.9105

------------------------------------------------------------------------------

Dependent Variable: LOGERR_1

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 63 297.7470516 4.7261437 3.25 0.0001

Error 800 1163.1356081 1.4539195

Corrected Total 863 1460.8826597

R-Square C.V. Root MSE LOGERR_1 Mean

0.203813 30.29255 1.205786 3.980470

Source DF Anova SS Mean Square F Value Pr > F

A1 1 58.19559376 58.19559376 40.03 0.0001

A2 1 0.34139960 0.34139960 0.23 0.6281

A1*A2 1 0.87708824 0.87708824 0.60 0.4376

DSAMP 2 12.29030126 6.14515063 4.23 0.0149

A1*DSAMP 2 2.38655760 1.19327880 0.82 0.4405

A2*DSAMP 2 0.92607050 0.46303525 0.32 0.7274

KB_B 2 79.87976209 39.93988104 27.47 0.0001

A1*KB_B 2 12.97861242 6.48930621 4.46 0.0118

A2*KB_B 2 2.63697584 1.31848792 0.91 0.4042

DSAMP*KB_B 4 11.11785123 2.77946281 1.91 0.1065
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M1 1 4.02047489 4.02047489 2.77 0.0967

A1*M1 1 2.89242700 2.89242700 1.99 0.1588

A2*M1 1 5.42320900 5.42320900 3.73 0.0538

DSAMP*M1 2 3.02935326 1.51467663 1.04 0.3533

KB_B*M1 2 0.04391145 0.02195572 0.02 0.9850

M2 1 0.07266690 0.07266690 0.05 0.8232

A1*M2 1 0.26905154 0.26905154 0.19 0.6672

A2*M2 1 1.23558040 1.23558040 0.85 0.3569

DSAMP*M2 2 0.59202604 0.29601302 0.20 0.8158

KB_B*M2 2 2.50248564 1.25124282 0.86 0.4233

M1*M2 1 9.09796481 9.09796481 6.26 0.0126

MD 1 3.72231534 3.72231534 2.56 0.1100

A1*MD 1 0.06192721 0.06192721 0.04 0.8365

A2*MD 1 0.69779612 0.69779612 0.48 0.4886

DSAMP*MD 2 2.13796847 1.06898424 0.74 0.4797

KB_B*MD 2 0.06083425 0.03041713 0.02 0.9793

M1*MD 1 0.47411965 0.47411965 0.33 0.5681

M2*MD 1 2.11207902 2.11207902 1.45 0.2285

AGE 2 8.38553969 4.19276984 2.88 0.0565

A1*AGE 2 16.03608976 8.01804488 5.51 0.0042

A2*AGE 2 3.85220216 1.92610108 1.32 0.2664

DSAMP*AGE 4 6.51860432 1.62965108 1.12 0.3453

KB_B*AGE 4 38.23487536 9.55871884 6.57 0.0001

M1*AGE 2 1.38613040 0.69306520 0.48 0.6210

M2*AGE 2 0.88626012 0.44313006 0.30 0.7374

MD*AGE 2 2.37094629 1.18547314 0.82 0.4428

------------------------------------------------------------------------------

Dependent Variable: LOGERR_2

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 63 431.7471444 6.8531293 6.90 0.0001

Error 800 794.8552135 0.9935690

Corrected Total 863 1226.6023578

R-Square C.V. Root MSE LOGERR_2 Mean

0.351986 26.47052 0.996779 3.765620

Source DF Anova SS Mean Square F Value Pr > F

A1 1 6.3269019 6.3269019 6.37 0.0118

A2 1 3.8545064 3.8545064 3.88 0.0492

A1*A2 1 0.1504221 0.1504221 0.15 0.6973

DSAMP 2 12.0299061 6.0149531 6.05 0.0025

A1*DSAMP 2 0.3667016 0.1833508 0.18 0.8315

A2*DSAMP 2 0.1877698 0.0938849 0.09 0.9098

KB_B 2 321.1409057 160.5704528 161.61 0.0001

A1*KB_B 2 5.3116228 2.6558114 2.67 0.0697

A2*KB_B 2 2.6683499 1.3341750 1.34 0.2617

DSAMP*KB_B 4 6.3597718 1.5899430 1.60 0.1723

M1 1 0.0019535 0.0019535 0.00 0.9646
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A1*M1 1 1.5666847 1.5666847 1.58 0.2096

A2*M1 1 1.4588801 1.4588801 1.47 0.2260

DSAMP*M1 2 3.1029922 1.5514961 1.56 0.2105

KB_B*M1 2 0.1232305 0.0616153 0.06 0.9399

M2 1 1.6005609 1.6005609 1.61 0.2047

A1*M2 1 0.0422242 0.0422242 0.04 0.8367

A2*M2 1 2.5675394 2.5675394 2.58 0.1083

DSAMP*M2 2 0.1590781 0.0795391 0.08 0.9231

KB_B*M2 2 2.9251403 1.4625701 1.47 0.2301

M1*M2 1 0.0348202 0.0348202 0.04 0.8515

MD 1 6.0406606 6.0406606 6.08 0.0139

A1*MD 1 0.1843521 0.1843521 0.19 0.6668

A2*MD 1 0.5950511 0.5950511 0.60 0.4392

DSAMP*MD 2 2.8842473 1.4421237 1.45 0.2348

KB_B*MD 2 3.7630774 1.8815387 1.89 0.1512

M1*MD 1 3.8028271 3.8028271 3.83 0.0508

M2*MD 1 0.0422493 0.0422493 0.04 0.8367

AGE 2 1.5378230 0.7689115 0.77 0.4616

A1*AGE 2 14.2707567 7.1353783 7.18 0.0008

A2*AGE 2 4.9439904 2.4719952 2.49 0.0837

DSAMP*AGE 4 5.3362993 1.3340748 1.34 0.2524

KB_B*AGE 4 5.6259939 1.4064985 1.42 0.2269

M1*AGE 2 4.3484114 2.1742057 2.19 0.1128

M2*AGE 2 5.6363075 2.8181538 2.84 0.0592

MD*AGE 2 0.7551349 0.3775675 0.38 0.6840

------------------------------------------------------------------------------

------------------------------------------------------------------------------

KB_D=1000

MULTIVARIATE ANALYSIS OF VARIANCE

Source S M N Wilk's Lambda F df1 df2 Pr > F

A1 1 0.5 398 0.99394206 1.6212 3 798 0.1830

A2 1 0.5 398 0.99679857 0.8543 3 798 0.4645

A1*A2 1 0.5 398 0.99491437 1.3597 3 798 0.2539

DSAMP 2 0 398 0.99487683 0.6840 6 1596 0.6626

A1*DSAMP 2 0 398 0.99123078 1.1740 6 1596 0.3174

A2*DSAMP 2 0 398 0.98873097 1.5116 6 1596 0.1705

KB_B 2 0 398 0.41855136 145.1566 6 1596 0.0001

A1*KB_B 2 0 398 0.95368330 6.3827 6 1596 0.0001

A2*KB_B 2 0 398 0.97822169 2.9447 6 1596 0.0073

DSAMP*KB_B 3 0 398 0.96148471 2.6317 12 2111.601 0.0017

M1 1 0.5 398 0.99750601 0.6651 3 798 0.5737

A1*M1 1 0.5 398 0.99932408 0.1799 3 798 0.9100

A2*M1 1 0.5 398 0.99785741 0.5712 3 798 0.6341

DSAMP*M1 2 0 398 0.98800564 1.6097 6 1596 0.1406

KB_B*M1 2 0 398 0.99499991 0.6675 6 1596 0.6760

M2 1 0.5 398 0.99756025 0.6506 3 798 0.5827
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A1*M2 1 0.5 398 0.99669338 0.8825 3 798 0.4497

A2*M2 1 0.5 398 0.99764906 0.6268 3 798 0.5978

DSAMP*M2 2 0 398 0.99703711 0.3949 6 1596 0.8826

KB_B*M2 2 0 398 0.99751565 0.3310 6 1596 0.9208

M1*M2 1 0.5 398 0.99759142 0.6422 3 798 0.5880

MD 1 0.5 398 0.99840178 0.4258 3 798 0.7346

A1*MD 1 0.5 398 0.99665074 0.8939 3 798 0.4438

A2*MD 1 0.5 398 0.99819790 0.4802 3 798 0.6961

DSAMP*MD 2 0 398 0.99012027 1.3238 6 1596 0.2430

KB_B*MD 2 0 398 0.98940564 1.4203 6 1596 0.2031

M1*MD 1 0.5 398 0.99477814 1.3963 3 798 0.2426

M2*MD 1 0.5 398 0.99592904 1.0873 3 798 0.3536

AGE 2 0 398 0.95194708 6.6310 6 1596 0.0001

A1*AGE 2 0 398 0.99149986 1.1378 6 1596 0.3378

A2*AGE 2 0 398 0.99433163 0.7571 6 1596 0.6038

DSAMP*AGE 3 0 398 0.98231216 1.1909 12 2111.601 0.2834

KB_B*AGE 3 0 398 0.86658944 9.7859 12 2111.601 0.0001

M1*AGE 2 0 398 0.99798695 0.2681 6 1596 0.9519

M2*AGE 2 0 398 0.99469656 0.7082 6 1596 0.6431

MD*AGE 2 0 398 0.99532550 0.6239 6 1596 0.7113

-----------------------------------------------------------------------------

Dependent Variable: LOGERR_0

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 63 215.3988431 3.4190293 1.70 0.0009

Error 800 1611.0685830 2.0138357

Corrected Total 863 1826.4674261

R-Square C.V. Root MSE LOGERR_0 Mean

0.117932 23.02700 1.419097 6.162752

Source DF Anova SS Mean Square F Value Pr > F

A1 1 0.99107525 0.99107525 0.49 0.4832

A2 1 3.13071693 3.13071693 1.55 0.2128

A1*A2 1 7.63144796 7.63144796 3.79 0.0519

DSAMP 2 4.29919439 2.14959720 1.07 0.3444

A1*DSAMP 2 1.94234712 0.97117356 0.48 0.6176

A2*DSAMP 2 1.75828831 0.87914415 0.44 0.6464

KB_B 2 45.14810624 22.57405312 11.21 0.0001

A1*KB_B 2 26.46782667 13.23391334 6.57 0.0015

A2*KB_B 2 11.14790530 5.57395265 2.77 0.0634

DSAMP*KB_B 4 23.17975115 5.79493779 2.88 0.0220

M1 1 0.96233329 0.96233329 0.48 0.4896

A1*M1 1 0.03073424 0.03073424 0.02 0.9017

A2*M1 1 0.60304981 0.60304981 0.30 0.5844

DSAMP*M1 2 7.94836793 3.97418396 1.97 0.1397

KB_B*M1 2 1.78387002 0.89193501 0.44 0.6423

M2 1 1.48496036 1.48496036 0.74 0.3908

A1*M2 1 0.35740174 0.35740174 0.18 0.6737



244

A2*M2 1 2.08899787 2.08899787 1.04 0.3088

DSAMP*M2 2 1.48821105 0.74410552 0.37 0.6912

KB_B*M2 2 0.59557870 0.29778935 0.15 0.8626

M1*M2 1 0.74829307 0.74829307 0.37 0.5423

MD 1 1.91561961 1.91561961 0.95 0.3297

A1*MD 1 0.25327899 0.25327899 0.13 0.7230

A2*MD 1 2.74550500 2.74550500 1.36 0.2433

DSAMP*MD 2 4.80169492 2.40084746 1.19 0.3041

KB_B*MD 2 0.54143885 0.27071943 0.13 0.8742

M1*MD 1 1.31750614 1.31750614 0.65 0.4188

M2*MD 1 0.00436671 0.00436671 0.00 0.9629

AGE 2 8.13599683 4.06799841 2.02 0.1333

A1*AGE 2 0.76691063 0.38345532 0.19 0.8267

A2*AGE 2 7.12731882 3.56365941 1.77 0.1711

DSAMP*AGE 4 11.45879379 2.86469845 1.42 0.2246

KB_B*AGE 4 27.07323883 6.76830971 3.36 0.0097

M1*AGE 2 0.22944435 0.11472217 0.06 0.9446

M2*AGE 2 3.94980721 1.97490360 0.98 0.3755

MD*AGE 2 1.28946507 0.64473253 0.32 0.7261

------------------------------------------------------------------------------

Dependent Variable: LOGERR_1

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 63 215.4632380 3.4200514 1.92 0.0001

Error 800 1424.5757862 1.7807197

Corrected Total 863 1640.0390242

R-Square C.V. Root MSE LOGERR_1 Mean

0.131377 21.50321 1.334436 6.205753

Source DF Anova SS Mean Square F Value Pr > F

A1 1 3.83907978 3.83907978 2.16 0.1424

A2 1 1.08700143 1.08700143 0.61 0.4349

A1*A2 1 5.89142027 5.89142027 3.31 0.0693

DSAMP 2 5.97519619 2.98759810 1.68 0.1875

A1*DSAMP 2 0.44131373 0.22065686 0.12 0.8835

A2*DSAMP 2 4.01062194 2.00531097 1.13 0.3248

KB_B 2 39.22985782 19.61492891 11.02 0.0001

A1*KB_B 2 45.45870523 22.72935262 12.76 0.0001

A2*KB_B 2 9.03755288 4.51877644 2.54 0.0797

DSAMP*KB_B 4 18.98069674 4.74517419 2.66 0.0314

M1 1 0.77636692 0.77636692 0.44 0.5093

A1*M1 1 0.32501498 0.32501498 0.18 0.6693

A2*M1 1 0.92276178 0.92276178 0.52 0.4718

DSAMP*M1 2 3.23249211 1.61624605 0.91 0.4039

KB_B*M1 2 1.56380804 0.78190402 0.44 0.6448

M2 1 2.75054087 2.75054087 1.54 0.2143

A1*M2 1 0.00952186 0.00952186 0.01 0.9417

A2*M2 1 1.40581767 1.40581767 0.79 0.3745



245

DSAMP*M2 2 0.20077210 0.10038605 0.06 0.9452

KB_B*M2 2 0.67664730 0.33832365 0.19 0.8270

M1*M2 1 1.07455608 1.07455608 0.60 0.4375

MD 1 0.78446439 0.78446439 0.44 0.5071

A1*MD 1 0.60374345 0.60374345 0.34 0.5605

A2*MD 1 1.99305379 1.99305379 1.12 0.2904

DSAMP*MD 2 6.81970569 3.40985285 1.91 0.1480

KB_B*MD 2 3.47032067 1.73516034 0.97 0.3779

M1*MD 1 2.15003578 2.15003578 1.21 0.2722

M2*MD 1 0.06244464 0.06244464 0.04 0.8515

AGE 2 10.47714909 5.23857455 2.94 0.0533

A1*AGE 2 0.14506910 0.07253455 0.04 0.9601

A2*AGE 2 6.08755889 3.04377944 1.71 0.1817

DSAMP*AGE 4 9.16945078 2.29236270 1.29 0.2733

KB_B*AGE 4 22.88525646 5.72131411 3.21 0.0125

M1*AGE 2 0.64294511 0.32147255 0.18 0.8349

M2*AGE 2 3.16121471 1.58060736 0.89 0.4120

MD*AGE 2 0.12107974 0.06053987 0.03 0.9666

KB_D=1000

Dependent Variable: LOGERR_2

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 63 555.9469381 8.8245546 13.97 0.0001

Error 800 505.5201303 0.6319002

Corrected Total 863 1061.4670684

R-Square C.V. Root MSE LOGERR_2 Mean

0.523753 12.59837 0.794921 6.309715

Source DF Anova SS Mean Square F Value Pr > F

A1 1 0.0001852 0.0001852 0.00 0.9863

A2 1 0.8561766 0.8561766 1.35 0.2448

A1*A2 1 1.6305209 1.6305209 2.58 0.1086

DSAMP 2 1.5676162 0.7838081 1.24 0.2898

A1*DSAMP 2 1.2208569 0.6104284 0.97 0.3810

A2*DSAMP 2 2.0265496 1.0132748 1.60 0.2018

KB_B 2 481.3262841 240.6631421 380.86 0.0001

A1*KB_B 2 0.1638387 0.0819193 0.13 0.8784

A2*KB_B 2 1.2663695 0.6331847 1.00 0.3676

DSAMP*KB_B 4 2.4806631 0.6201658 0.98 0.4168

M1 1 1.2359318 1.2359318 1.96 0.1623

A1*M1 1 0.0163951 0.0163951 0.03 0.8721

A2*M1 1 0.1313388 0.1313388 0.21 0.6486

DSAMP*M1 2 2.7743708 1.3871854 2.20 0.1120

KB_B*M1 2 2.0699653 1.0349827 1.64 0.1950

M2 1 0.4334017 0.4334017 0.69 0.4078

A1*M2 1 0.4026609 0.4026609 0.64 0.4250

A2*M2 1 0.0088598 0.0088598 0.01 0.9058

DSAMP*M2 2 0.1875613 0.0937807 0.15 0.8621

KB_B*M2 2 0.6898768 0.3449384 0.55 0.5796
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M1*M2 1 0.1384554 0.1384554 0.22 0.6398

MD 1 0.0560449 0.0560449 0.09 0.7659

A1*MD 1 0.4983048 0.4983048 0.79 0.3748

A2*MD 1 0.1465879 0.1465879 0.23 0.6302

DSAMP*MD 2 1.2922843 0.6461421 1.02 0.3602

KB_B*MD 2 0.0907604 0.0453802 0.07 0.9307

M1*MD 1 0.3474409 0.3474409 0.55 0.4586

M2*MD 1 1.2339226 1.2339226 1.95 0.1627

AGE 2 14.6341266 7.3170633 11.58 0.0001

A1*AGE 2 1.2896081 0.6448041 1.02 0.3609

A2*AGE 2 2.2177744 1.1088872 1.75 0.1736

DSAMP*AGE 4 3.1780990 0.7945248 1.26 0.2853

KB_B*AGE 4 27.5369938 6.8842485 10.89 0.0001

M1*AGE 2 0.4668154 0.2334077 0.37 0.6913

M2*AGE 2 1.3108894 0.6554447 1.04 0.3549

MD*AGE 2 1.0194072 0.5097036 0.81 0.4467

------------------------------------------------------------------------------
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C.1.2 Tables of Estimates

KB_D = -50

No Smooth Mutation Smooth Restrictive Smooth

MSE = 0.0379 MSE = 0.0402 MSE = 0.0236

Factor Levels N Mean Mean Mean

-------------------------------------------------------------------------------

a1=2, a2=2, kb_b=20 72 4.05539 4.05808 4.05616

a1=2, a2=2, kb_b=200 3.99213 3.99042 3.99213

a1=2, a2=2, kb_b=2000 3.93183 3.93183 3.93183

a1=2, a2=8, kb_b=20 4.19112 4.26268 4.19398

a1=2, a2=8, kb_b=200 4.24473 4.46453 4.24343

a1=2, a2=8, kb_b=2000 3.93183 3.93183 3.93183

a1=6, a2=2, kb_b=20 3.93014 3.93183 3.93183

a1=6, a2=2, kb_b=200 3.92604 3.93183 3.93183

a1=6, a2=2, kb_b=2000 3.93431 3.93183 3.93183

a1=6, a2=8, kb_b=20 4.16886 4.23511 4.17997

a1=6, a2=8, kb_b=200 3.93183 3.93183 3.93183

a1=6, a2=8, kb_b=2000 3.93431 3.93183 3.93431

-------------------------------------------------------------------------------

a2=2, m2=0 216 3.97321 3.97415 3.96338

a2=2, m2=1e-4 3.95007 3.95112 3.96182

a2=6, m2=0 4.09832 4.12731 4.09789

a2=6, m2=1e-4 4.03590 4.12529 4.04056

-------------------------------------------------------------------------------

dsamp=25, m2=0 144 4.01671 4.02930 4.01606

dsamp=25, m2=1e-4 4.01368 4.06393 4.04107

dsamp=150, m2=0 4.05035 4.06579 4.03561

dsamp=150, m2=1e-4 4.00319 4.04430 3.99929

dsamp=250, m2=0 4.04024 4.05710 4.04024

dsamp=250, m2=1e-4 3.96209 4.00637 3.96320

-------------------------------------------------------------------------------

kb_b=20, m2=0 144 4.13704 4.14201 4.13704

kb_b=20, m2=1e-4 4.03572 4.10183 4.04393

kb_b=200, m2=0 4.03595 4.07835 4.02179

kb_b=200, m2=1e-4 4.01142 4.08095 4.02781

kb_b=2000, m2=0 3.93431 3.93183 3.93307

kb_b=2000, m2=1e-4 3.93183 3.93183 3.93183

-------------------------------------------------------------------------------

a1=2, kb_b=20, age=100 48 4.12962 4.17186 4.14497

a1=2, kb_b=20, age=200 4.15026 4.15235 4.14037

a1=2, kb_b=20, age=400 4.08988 4.15694 4.08988

a1=2, kb_b=200, age=100 4.30747 4.29460 4.25250

a1=2, kb_b=200, age=200 4.03021 4.22748 4.08324

a1=2, kb_b=200, age=400 4.01760 4.16035 4.01760

a1=2, kb_b=2000, age=100 3.93183 3.93183 3.93183

a1=2, kb_b=2000, age=200 3.93183 3.93183 3.93183



248

a1=2, kb_b=2000, age=400 3.93183 3.93183 3.93183

a1=2, kb_b=20, age=100 4.07509 4.08347 4.07657

a1=2, kb_b=20, age=200 4.04954 4.08347 4.06279

a1=2, kb_b=20, age=400 4.02387 4.08347 4.02832

a1=2, kb_b=200, age=100 3.92398 3.93183 3.93183

a1=2, kb_b=200, age=200 3.93183 3.93183 3.93183

a1=2, kb_b=200, age=400 3.93099 3.93183 3.93183

a1=2, kb_b=2000, age=100 3.93556 3.93183 3.93556

a1=2, kb_b=2000, age=200 3.93556 3.93183 3.93183

a1=2, kb_b=2000, age=400 3.93183 3.93183 3.93183

-------------------------------------------------------------------------------

-------------------------------------------------------------------------------

KB_D = 10

No Smooth Mutation Smooth Restrictive Smooth

MSE = 1.3329 MSE = 0.8090 MSE = 0.8196

Factor Levels N Mean Mean Mean

-------------------------------------------------------------------------------

a1=2, a2=2 216 2.29021 2.23339 1.99751

a1=2, a2=8 2.47972 2.57300 2.34295

a1=6, a2=2 2.30540 2.11634 2.06599

a1=6, a2=8 2.13630 2.07921 1.99023

-------------------------------------------------------------------------------

a1=2, dsamp=25 144 2.55660 2.41989 2.39455

a1=2, dsamp=150 2.40783 2.40745 2.07898

a1=2, dsamp=250 2.19045 2.38225 2.03716

a1=6, dsamp=25 2.74009 2.60554 2.40236

a1=6, dsamp=150 2.15597 1.96566 1.92281

a1=6, dsamp=250 1.76649 1.72213 1.75916

-------------------------------------------------------------------------------

a1=2, kb_b=20 144 2.12326 1.92841 1.66980

a1=2, kb_b=200 2.72831 2.81932 2.56873

a1=2, kb_b=2000 2.30332 2.46186 2.27215

a1=6, kb_b=20 2.30036 2.10980 1.84011

a1=6, kb_b=200 2.42277 2.32984 2.14710

a1=6, kb_b=2000 1.93942 1.85369 2.09712

-------------------------------------------------------------------------------

a2=2, kb_b=20 144 2.14331 1.91115 1.67414

a2=2, kb_b=200 2.48340 2.35372 2.17108

a2=2, kb_b=2000 2.26670 2.25973 2.25002

a2=6, kb_b=20 2.28030 2.12706 1.83577

a2=6, kb_b=200 2.66768 2.79544 2.54475

a2=6, kb_b=2000 1.97604 2.05582 2.11925

-------------------------------------------------------------------------------

dsamp=25, kb_b=20 96 2.25936 2.05292 1.84042

dsamp=25, kb_b=200 3.03564 2.96050 2.76729

dsamp=25, kb_b=2000 2.65003 2.52472 2.58764
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dsamp=150, kb_b=20 2.28595 2.09822 1.77206

dsamp=150, kb_b=200 2.46320 2.40023 2.24517

dsamp=150, kb_b=2000 2.09656 2.06121 1.98546

dsamp=250, kb_b=20 2.09010 1.90618 1.65239

dsamp=250, kb_b=200 2.22779 2.36300 2.06128

dsamp=250, kb_b=2000 1.61752 1.88739 1.98081

-------------------------------------------------------------------------------

dsamp=25, age=100 96 2.62632 2.54239 2.40477

dsamp=25, age=200 2.78759 2.64751 2.51289

dsamp=25, age=400 2.53112 2.34824 2.27770

dsamp=150, age=100 2.66479 2.40564 2.22233

dsamp=150, age=200 2.03880 1.95011 1.84586

dsamp=150, age=400 2.14212 2.20391 1.93449

dsamp=250, age=100 2.13554 2.15026 2.00022

dsamp=250, age=200 1.74702 1.88275 1.64284

dsamp=250, age=400 2.05285 2.12356 2.05143

-------------------------------------------------------------------------------

kb_b=20, age=100 96 2.40429 2.23099 1.98295

kb_b=20, age=200 2.04112 1.77489 1.62498

kb_b=20, age=400 2.19001 2.05144 1.65693

kb_b=200, age=100 2.68863 2.57865 2.47665

kb_b=200, age=200 2.50661 2.63129 2.25993

kb_b=200, age=400 2.53138 2.51379 2.33716

kb_b=2000, age=100 2.33372 2.28865 2.16771

kb_b=2000, age=200 2.02569 2.07419 2.11667

kb_b=2000, age=400 2.00470 2.11048 2.26953

-------------------------------------------------------------------------------

-------------------------------------------------------------------------------

KB_D = 100

No Smooth Mutation Smooth Restrictive Smooth

MSE = 2.1461 MSE = 1.4539 MSE = 0.9936

Factor Levels N Mean Mean Mean

-------------------------------------------------------------------------------

a1=2, kb_b=20 144 4.11532 4.60081 4.47560

a1=2, kb_b=200 3.45580 3.66329 3.08448

a1=2, kb_b=2000 4.00506 4.45590 3.99351

a1=6, kb_b=20 4.01921 3.99565 4.49910

a1=6, kb_b=200 3.73369 3.47809 2.90804

a1=6, kb_b=2000 3.75590 3.68908 3.63300

-------------------------------------------------------------------------------

a1=2, age=20 144 3.79002 4.19009 3.74124

a1=2, age=200 4.00582 4.28527 3.95817

a1=2, age=2000 3.78034 4.24465 3.85418

a1=6, age=20 4.11141 4.04691 3.86436

a1=6, age=200 3.57893 3.50483 3.45507
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a1=6, age=2000 3.81846 3.61108 3.72071

-------------------------------------------------------------------------------

a2=2, age=20 144 4.09665 4.08942 3.78107

a2=2, age=200 3.87658 3.86948 3.76566

a2=2, age=2000 3.88487 4.04215 3.95051

a2=6, age=20 3.80477 4.14758 3.82453

a2=6, age=200 3.70817 3.92062 3.64758

a2=6, age=2000 3.71392 3.81357 3.62437

-------------------------------------------------------------------------------

kb_b=20, age=100 96 3.95506 4.24673 4.46962

kb_b=20, age=200 4.13001 4.38959 4.49350

kb_b=20, age=400 4.11672 4.25838 4.49892

kb_b=200, age=100 3.66937 3.57315 3.07875

kb_b=200, age=200 3.51896 3.69787 3.00369

kb_b=200, age=400 3.59589 3.44105 2.90634

kb_b=2000, age=100 4.22770 4.53562 3.86003

kb_b=2000, age=200 3.72816 3.59770 3.62267

kb_b=2000, age=400 3.68558 4.08415 3.95707

-------------------------------------------------------------------------------

-------------------------------------------------------------------------------

KB_D = 1000

No Smooth Mutation Smooth Restrictive Smooth

MSE = 2.0138 MSE = 1.7807 MSE = 0.6319

Factor Levels N Mean Mean Mean

-------------------------------------------------------------------------------

a1=2, kb_b=20 144 6.53815 6.63198 6.89777

a1=2, kb_b=200 6.25596 6.42626 6.79105

a1=2, kb_b=2000 5.79575 5.75899 5.23893

a1=6, kb_b=20 6.43281 6.36685 6.89752

a1=6, kb_b=200 5.77954 5.80871 6.75885

a1=6, kb_b=2000 6.17430 6.24172 5.27416

-------------------------------------------------------------------------------

a2=2, kb_b=20 144 6.47741 6.43115 6.89804

a2=2, kb_b=200 6.23801 6.29211 6.78359

a2=2, kb_b=2000 5.95343 6.00041 5.34196

a2=6, kb_b=20 6.49355 6.56768 6.89725

a2=6, kb_b=200 5.79749 5.94286 6.76632

a2=6, kb_b=2000 6.01663 6.00031 5.17113

-------------------------------------------------------------------------------

dsamp=25, kb_b=20 96 6.65095 6.65903 6.89861

dsamp=25, kb_b=200 6.29298 6.40119 6.78881

dsamp=25, kb_b=2000 5.82681 5.89768 5.41087

dsamp=150, kb_b=20 6.37341 6.37090 6.89720

dsamp=150, kb_b=200 6.00125 6.10117 6.76837

dsamp=150, kb_b=2000 5.88675 5.89528 5.12390
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dsamp=250, kb_b=20 6.43207 6.46831 6.89713

dsamp=250, kb_b=200 5.75902 5.85010 6.76768

dsamp=250, kb_b=2000 6.24152 6.20811 5.23487

-------------------------------------------------------------------------------

kb_b=20, age=100 96 6.37732 6.34565 6.89694

kb_b=20, age=200 6.47730 6.50824 6.89868

kb_b=20, age=400 6.60181 6.64436 6.89732

kb_b=200, age=100 5.97744 5.99066 6.76827

kb_b=200, age=200 5.82043 5.93915 6.76991

kb_b=200, age=400 6.25539 6.42265 6.78668

kb_b=2000, age=100 6.38871 6.31032 5.03886

kb_b=2000, age=200 5.78314 5.75138 4.93645

kb_b=2000, age=400 5.78323 5.93938 5.79434

-------------------------------------------------------------------------------

-------------------------------------------------------------------------------
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C.2 Coverage Probability

C.2.1 Analysis of Variance Tables

NO SMOOTH

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source DF Chi-Square Prob

--------------------------------------------------

INTERCEPT 1 686.33 0.0000

A1 1 6.02 0.0141

A2 1 16.84 0.0000

DSAMP 2 1773.59 0.0000

KB_B 2 71.03 0.0000

M1 1 0.39 0.5346

M2 1 0.36 0.5482

MD 1 0.21 0.6474

AGE 2 73.56 0.0000

KB_D 3 1662.42 0.0000

A1*KB_D 3 12.65 0.0055

A2*KB_D 3 19.40 0.0002

DSAMP*KB_D 5 996.10 0.0000

KB_B*KB_D 6 32.54 0.0000

AGE*KB_D 6 102.38 0.0000

M1*KB_D 3 1.26 0.7390

M2*KB_D 3 1.94 0.5840

MD*KB_D 3 0.79 0.8511

LIKELIHOOD RATIO 3409 2986.69 1.0000

MUTATION SMOOTH

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source DF Chi-Square Prob

--------------------------------------------------

INTERCEPT 1 27.97 0.0000

A1 1 12.51 0.0004

A2 1 14.83 0.0001

DSAMP 2 135.60 0.0000

KB_B 2 69.80 0.0000

M1 1 0.03 0.8566

M2 1 0.08 0.7717

MD 1 0.48 0.4879

AGE 2 86.12 0.0000

KB_D 3 277.70 0.0000

A1*KB_D 3 35.39 0.0000
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A2*KB_D 3 13.49 0.0037

DSAMP*KB_D 6 67.79 0.0000

KB_B*KB_D 6 105.11 0.0000

AGE*KB_D 6 114.86 0.0000

M1*KB_D 3 1.50 0.6826

M2*KB_D 3 0.68 0.8769

MD*KB_D 3 6.32 0.0970

LIKELIHOOD RATIO 3408 2648.81 1.0000

RESTRICTIVE SMOOTH

MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE

Source DF Chi-Square Prob

--------------------------------------------------

INTERCEPT 1 20.72 0.0000

A1 1 2.37 0.1234

A2 1 28.81 0.0000

DSAMP 2 169.11 0.0000

KB_B 2 66.33 0.0000

M1 1 0.09 0.7684

M2 1 3.00 0.0833

MD 1 0.65 0.4195

AGE 2 213.60 0.0000

KB_D 3 337.31 0.0000

A1*KB_D 3 17.70 0.0005

A2*KB_D 3 9.29 0.0257

DSAMP*KB_D 4 164.17 0.0000

KB_B*KB_D 6 98.66 0.0000

AGE*KB_D 5 242.20 0.0000

M1*KB_D 3 1.68 0.6423

M2*KB_D 3 2.32 0.5078

MD*KB_D 3 0.88 0.8310

LIKELIHOOD RATIO 3411 1781.74 1.0000
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C.2.2 Tables of Estimates

No Smooth Mutation Smooth Restrictive Smooth

Factor Levels N Coverage Coverage Coverage

-------------------------------------------------------------------------------

a1=2, kb_d=-50 432 0.18056 0.21991 0.17361

a1=2, kb_d=10 0.81713 0.90509 0.95370

a1=2, kb_d=100 0.62037 0.51852 0.81481

a1=2, kb_d=1000 0.56250 0.51620 0.63194

a1=6, kb_d=-50 0.14352 0.15741 0.13889

a1=6, kb_d=10 0.83565 0.86806 0.95602

a1=6, kb_d=100 0.59028 0.59954 0.85417

a1=6, kb_d=1000 0.59491 0.57639 0.71991

-------------------------------------------------------------------------------

a2=2, kb_d=-50 432 0.18056 0.19907 0.17361

a2=2, kb_d=10 0.82407 0.90278 0.96991

a2=2, kb_d=100 0.61343 0.56481 0.85185

a2=2, kb_d=1000 0.65278 0.63194 0.75000

a2=6, kb_d=-50 0.14352 0.17824 0.13889

a2=6, kb_d=10 0.82870 0.87037 0.93981

a2=6, kb_d=100 0.59722 0.55324 0.81713

a2=6, kb_d=1000 0.50463 0.46065 0.60185

-------------------------------------------------------------------------------

dsamp=25, kb_d=-50 288 0.48264 0.55903 0.46528

dsamp=25, kb_d=10 0.92014 0.96181 1.00000

dsamp=25, kb_d=100 0.76389 0.75694 0.92361

dsamp=25, kb_d=1000 0.77083 0.75000 0.78472

dsamp=150, kb_d=-50 0.00347 0.00347 0.00347

dsamp=150, kb_d=10 0.78125 0.90625 0.94444

dsamp=150, kb_d=100 0.52431 0.49306 0.80208

dsamp=150, kb_d=1000 0.53819 0.48958 0.63194

dsamp=250, kb_d=-50 0.00000 0.00347 0.00000

dsamp=250, kb_d=10 0.77778 0.79167 0.92014

dsamp=250, kb_d=100 0.52778 0.42708 0.77778

dsamp=250, kb_d=1000 0.42708 0.39931 0.61111

-------------------------------------------------------------------------------

kb_b=20, kb_d=-50 288 0.09375 0.11458 0.08681

kb_b=20, kb_d=10 0.78819 0.92014 0.97917

kb_b=20, kb_d=100 0.49306 0.33681 0.60764

kb_b=20, kb_d=1000 0.47222 0.43056 0.47569

kb_b=200, kb_d=-50 0.17361 0.17361 0.16319

kb_b=200, kb_d=10 0.81944 0.86806 0.93750

kb_b=200, kb_d=100 0.66319 0.70833 0.95833

kb_b=200, kb_d=1000 0.58333 0.52431 0.63889

kb_b=2000, kb_d=-50 0.21875 0.27778 0.21875

kb_b=2000, kb_d=10 0.87153 0.87153 0.94792

kb_b=2000, kb_d=100 0.65972 0.63194 0.93750

kb_b=2000, kb_d=1000 0.68056 0.68403 0.91319
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-------------------------------------------------------------------------------

age=100, kb_d=-50 288 0.30556 0.32986 0.30556

age=100, kb_d=10 0.89931 0.96181 0.98611

age=100, kb_d=100 0.66319 0.63194 0.85417

age=100, kb_d=1000 0.48958 0.44792 0.75000

age=200, kb_d=-50 0.17014 0.17361 0.16319

age=200, kb_d=10 0.81250 0.88889 0.95139

age=200, kb_d=100 0.62500 0.59375 0.85417

age=200, kb_d=1000 0.62500 0.61111 0.67361

age=4000, kb_d=-50 0.01042 0.06250 0.00000

age=4000, kb_d=10 0.76736 0.80903 0.92708

age=4000, kb_d=100 0.52778 0.45139 0.79514

age=4000, kb_d=1000 0.62153 0.57986 0.60417

-------------------------------------------------------------------------------

kb_d=-50 864 0.16204 0.18866 0.15625

kb_d=10 0.82639 0.88657 0.95486

kb_d=100 0.60532 0.55903 0.83449

kb_d=1000 0.57870 0.54630 0.67593

-------------------------------------------------------------------------------

-------------------------------------------------------------------------------


