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Abstract

We have evaluated probability distributions of estimates of param-
eters of population growth, based on data on frequencies of alleles of
unlinked SNP sites in DNA, modeled with the use of time depen-
dent coalescence process acting together with mutation of very low
intensity. Probability distributions of maximum likelihood estimates
of product parameter of present population effective size and expo-
nent coefficient, for exponential scenario, have atoms at zero and long
tails to the right. For stepwise scenario, log likelihood functions typ-
ically have very long ridges (covering many decades of the scale) of
almost the same value of log likelihood. Observational data from (Pi-
coult Newberg et al.1999) are not inconsistent with the hypothesis of
population growth.

1 Introduction

Single Nucleotide Polymorphisms (SNP) seem to be most promising genetic
markers due to their high density in human genome. Publicly available SNP
databases constantly increase in number and size. A lot of research was done
to develop methods for SNP discovery and to characterize distributions of
SNPs across the genome (Wang et al. 1998), (Collins et al 1997), (Marth et
al. 1999), (Picoult Newberg et al.1999), (Cargill et al. 1999), (Altshuler et
al. 2000). SNP data has already been used in association studies of complex
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diseases (Boerwinkle et al. 1996), (Bonnen et al. 2000), (Halushka et al.
1999); it is believed that eventually they will enable creating fine genetic
maps for complex traits analysis (Kruglyak 1999), (Rish 2000).

Researches were also conducted to use SNP data in population genetics
models, for inference on demographic parameters and history. Kuhner et al.
(2000) analyzed estimation of the product parameter § = 4N u of effective
population size N, and mutation rate p, under assumption of constant pop-
ulation size and various hypotheses of spatial (chromosomal) distributions of
SNPs: fully or partially linked, or linked segments of nonrecombining SNP
sites. Basing on extensive simulations, accuracy of estimates and possible
sources of bias were evaluated.

Studies by Nielsen (2000) and Wakeley et al. (2001) were devoted to
detection of signatures of human population growth in SNP data. For es-
timation of growth parameters both researches used maximum likelihood
method for unlinked SNP sites created by mutation process of very low in-
tensity. The models included assumptions concerning SNP ascertainment
procedures, since it is well known that strategy for SNP discovery signifi-
cantly influences their sampling distributions (Renwick et. al, 2002), (Yang
et al., 2000), (Eberle and Kruglyak, 2000). Nielsen (2000) fitted the scenario
of exponential expansion N,(t) = Nee " (N(t) - effective population size, ¢
- time in generations measured backwards, r - growth exponent) to SNP data
from the paper (Picoult Newberg et al.1999). Surprisingly, estimates of the
product parameter r N,o were equal to zero for both cases of unmodeled and
modeled ascertainment procedure. Wakeley et al. (2001) used the model of
stepwise change of population size N,(t) = N, for t < t,, and N,(t) = N, for
t >ty (Ne, Neg are present and ancestral effective population sizes; stepwise
change of population size occurs at t = ¢4 generations before now) with addi-
tional, hidden, population subdivision (Wakeley 2001). Fitting their model to
SNP data from (Wang et al. 1998), (Cargill et al. 1999) and (Altshuler et al.
2000) they aimed at estimating ratios Ne,/N, and t;/2N,. Due to divergent
shapes of likelihood surfaces and limited accuracy of computed likelihoods,
they were not able to find unique maximum points, but parameter - space
regions corresponding to highest likelihoods were not inconsistent with the
hypothesis of population growth. Moreover, unmodeled ascertainment led to
less likely shapes of parameter regions, and comparison of cases of modeled
and unmodeled population structure seemed to support the latter scenario.

In this paper we accept basic hypotheses used in the above mentioned
studies: unlinked SNP sites and low intensity mutation. We address the



problem: "How reliable and accurate are estimates of population growth pa-
rameters, based on SNP data?”. This problem was not fully explored in
previous studies due to computational difficulties. Here we use the method
for analytical calculation of distributions of coalescence times in time - vary-
ing population size evolution (Polanski and Kimmel, 2002) which greatly
improves efficiency of numerical computations, and allows us to perform
number of computational experiments enough to determine distributions and
confidence regions of parameter estimates. Since it was demonstrated in sev-
eral studies, e.g., (Kuhner et al. 1998), (Pybus et al. 2000), (Polanski et
al. 1998), that population genetics processes can lead to unstable or biased
parametric and non parametric estimates of population size history, then ex-
ploring variabilities and biases of estimates of population growth parameters,
based on SNP frequencies, seems a reasonable step towards understanding
observational SNP data.

2 Methods

We analyze the situation where the data under study comes from a number
of unlinked SNP sites, obtained at random positions in the genome. Denote
number of SNP loci by K, and let the observed diallelic data be given by

X ={X1, Xy, X} = {(@f.2]). @5 2f), .. @f2l)} ()

where xf is the number of copies of less frequent (rare) allele, z¥ - number
of copies of more frequent one, in the sample of ny = xf + zI" taken at
SNP site no k. It is possible that zf = zf for some indices k. We assume
that it is not known which one of the two alleles is mutant and which is
ancestral (wild). Due to independence between sites, the likelihood function
for the whole sample L(P|X), given the vector of parameters P related to
populations demographic history, is the product of likelihoods L(P|X}) for
sites 1,2,..K :

K
L(P1X) = [] L(P|X) (2)

k=1
We accept standard coalescent assumptions. Random variables given by
coalescence times for the sample of size n are denoted by T,,, T}, 1,...,T5, and
their realizations by corresponding small letters t,,¢,_1,...,%3. Times be-
tween coalescence events are denoted by S,,, Sp_1,...,52, and s,, S,_1, ..., S9;



this notation is shown in figure 1, for n = 5. When referencing times T}, or
Sk we do not add index n that would define the sample size. The underlying
value of n is always clear from the context. Mutation is modeled by a Pois-
son process with intensity p per generation, per site. Following discussions
in referenced papers (Wang et al. 1998) and (Nielsen 2000) we use statistics
which follow from passing to the limit y — 0.

2.1 Case with no ascertainment condition

In the situation where DNA sample is scanned for SNPs unconditionally,
probability L(P|Xj) on the right hand side of (2) is given by (Nielsen 2000,
eqns (5)-(6), Griffiths and Tavare, 1998, eq. (1.3) and X-Y Fu, 1995, eq.
(14))

E[S(Xi)|P]
L(P|Xy) = ——+— 3
where T%; is the sum of branch lengths in coalescent tree
ng ng
Ty =Y jS; =T+ T, (4)
7j=2 7j=2

and S(Xj) is the sum of lengths of all edges in which a single mutation
could cause the site pattern X;. The expectation in numerator in (3) can be
computed as

E[S(X,JP]ijE(Sij@m(ffﬁfié@) NG

In the above, 5%%5 is a Kronecker delta function.

2.2 Modeling ascertainment

Wakely et al. (2001) have an exhaustive discussion of possible ascertainment
schemes and the corresponding models. Here we analyze the case, easily
treated analytically, where DNA reading for larger sample is preceded by
SNP discovery procedure based on the smaller number of chromosomes 7 4.
Assume that n4 = 2 and that the ascertainment sample n, = 2 is included in
the data sample of size n; at k-th SNP locus. Then the likelihood L(P|X})



becomes (Renwick et. al, 2002), (Yang et al., 2000), (Eberle and Kruglyak,
2000), (Nielsen 2000)

E[S(Xy)| Plryzy
nk(nk — 1)E(T2)

L(P|Xy) = (6)

2.3 Expectations of coalescence times

Likelihoods of samples depend on expected values of times E(S;|P) and
E(Tx|P) in the coalescence process. In previous studies, for the case of evo-
lution with varying population size, these expectations were computed by
Monte Carlo simulations. Here we compute expectations by using analyti-
cal expressions for marginal distributions of coalescence times (Polanski and
Kimmel 2002). This saves a lot of computational effort and improves accu-
racy. Let us assume that the effective population size history is described by
a function

Ne(t), t €< 0,00) (7)

where time ¢ is measured in number of generations from now to the past.
For a random sample of n DNA sequences, joint probability density function
of the distribution of their coalescence times T,,,7T,, 1,...,T5 is given by the
expression (Griffiths and Tavare, 1994)

n 4 % do
p(tn,tnl,...,tQ):‘l_[QNE(Z.) exp —/ sz(a) (8)

J

NS,

tj+1

Marginal distributions 7, (t,), 7p 1(tn_1), ..., m2(t2) of times T, T, 1, ..., T»
were computed by Polanski and Kimmel, 2002, as follows

w(1)) = 3 Aoy (1) ©)
where g(y) (1) = 52 exp (—6420 ) and 47 = 11 )/ 11 [9) - ()] 43 = 1.

l
’ s#l s#l
Denote by €(1) expected value 0 =g° tq(l)(t)dt. Then from (9) expected

values of times E(S;|P) and E(Tx|P), with P = N,(t), can be expressed as

E(Sj|Ne(t)) = Aie( ) + z": Blje(é) (10)

i€
2
l=j+1



and

E(T|N.(1) = Y. (Ai?e@) R 6(@)) -
=2 l=j+1
where: B) = Sl:[j (3) /SHJ [(5) - (é)] '
B s;_él
P can be specified as a finite dimensional vector by assuming parametric

form for N.(t). For exponential model
Ne(t) = Nege™™, (12)

N,(t) - effective population size, r - growth exponent, it becomes (Slatkin
and Hudson, 1991)

exp(Le) :

where Ei denotes exponential integral (Gradshteyn, Ryzhik, 1980, §4.331.2).
For stepwise model

Nefort <t
N,(t) = ¢ ¥ 14
(1) { Neofort > tg 7 (14)
N., Ne, - present and ancestral effective population sizes, stepwise change of
population size occurs at ¢t = ¢, generations before now, it becomes

o) = EY) [1 - (1 - %) exp(— (2]3]:5)] . (15)

From (13) and (15) it is clear that for exponential scenario P = rN,g, and
for stepwise scenario P = (P, P,) = (4, %). From now on we introduce
Nea
N -

notation k =N, and 7 = 4, § =
€

3 Results

We have performed several series of numerical simulations, where SNP data
were generated according to distributions (3)-(6). We have changed between
the following parameters:



(1) Scenario of population growth (between exponential and stepwise),

(2) Values of entries of true parameters x, and 7, d.

(3) Ascertainment procedure (present or absent).

Sample size was assumed n = 20, and number of SNP loci was taken
K = 50, in all simulations. Population size history parameters, x, and 7, 9,
were estimated by maximizing the likelihood function (2). We researched the
effect on the estimates of parameters, of unmodeled ascertainment, i.e., on
the estimates obtained when data was generated using expression (6), while
likelihood function was computed using (5).

We have also reexamined observational data on SNPs from the paper
(Picoult Newberg et al.1999), using experiences which follow from our com-
putational experiments.

The obtained results are summarized below.

3.1 Exponential model

Assume that the true value of the parameter of exponential model (12) is
k =1, and that the DNA sample is scanned for SNPs unconditionally. Sam-
ple size is n = 20 and number of SNP loci K = 50. When we (A) simulate
frequencies of SNP alleles, by generating 50 independent realizations of the
distribution given by (3) and (5), and (B) try to restore value of the parame-
ter x by maximizing likelihood (2), (3), (5), then typical log likelihood curve
looks like that shown in fig. 2, upper plot. As steps (A) and (B) are repeated
many times, the second possible shape of log likelihood curve, shown in fig.
2, lower plot, is also observed (about 10% of simulations). This curve has no
maximum corresponding to £ > 0; K.y = 0 is the most likely estimate. Re-
peating (A) and (B) 1000 times we got approximate distribution of estimate
Kest- The estimated cumulative probability function for this distribution is
presented in fig. 3. As seen from fig. 3, the distribution of k. has an atom
(of weight 0.104) at K.y = 0, corresponding to log likelihood curves from
lower plot of figure 2. It is also rather heavy tailed, with values reaching far
above the true P = 1. Similar observations were made for the case of mod-
eled ascertainment procedure, when probability distribution for X, is given
by (6).

Using the method as above, we have estimated probability distributions
corresponding to true values of x : 0.1, 1, 10,100 and 1000 for both cases
of unconditional scan for SNP in DNA data, and ascertainment procedure
based on two chromosomes. With the notation,



- median(Kes)
- P_q - probability that k.y = 0

- Pyg_1.1 - probability that 0.9x < kes; < 1.1k, where & is the true value
of the parameter

- Py5_o - probability that 0.5k < K. < 2k,

- P0.1,10 - probablhty that 0.1k < Kest < 10/43,

results of performed simulations are presented in table 1 (a) (the case
of unconditional scan for SNP in DNA data), and (b) (the case where as-
certainment procedure is based on two chromosomes, as given by expression

(6)).

3.2 Stepwise change model

We assumed that ascertainment method is based on two chromosomes as
given by expression (6) and n = 20, K = 50. Again we used the procedure of
(A) generating K = 50 independent realizations of the distribution (3), (5),
(15), and (B) restoring values of 7, § by maximizing likelihood (2). Typical
plots of log likelihood level curves, on the plane 7 - ¢, for true values of
parameters 7 = 0.01, § = 0.01 (left plot) and 7 = 0.01, § = 0.01 (right
plot) are presented in fig. 4. Regions bounded by level curves max —0.5, are
shaded grey. Graphs of log likelihood function, on the plane 7 - §, show very
long ridges of almost the same value of likelihood. The ranges of likely values
of parameters cover many decades of log scales.

We have repeated steps (A)-(B) 500 times for combinations of parameters
from fig. 4. Fig. 5 shows two dimensional histograms of the estimates 7.,
0es¢ Obtained from maximizations of log likelihoods. Data in fig. 5 are not
suitable to estimate confidence regions or moments of estimates. They show,
however, possible ranges of parameters.

3.3 Unmodeled ascertainment

By unmodeled ascertainment we mean the situation where generation of data
in the above step (A) is done basing on the expression (6), while retrieving



parameters in step (B) uses expression (5). Table 2 shows statistics of esti-
mates Kes; obtained in 1000 repeats of steps (A)-(B) under unmodeled ascer-
tainment. In the exponential scenario of growth, unmodeled ascertainment
results in large bias in estimate of k - most often estimate falls to k.5 = 0.

In order to study results of unmodeled ascertainment in the stepwise sce-
nario of population history, we have taken the same data (SNP frequencies)
which was previously used to draw contour lines in fig. 4 left plot (true values
of parameters 7 = 0.01, 6 = 0.01). Fig. 6 shows comparison of log likelihood
contour lines for modeled and unmodeled ascertainment. Left plot in fig. 6,
is the same as left plot in fig. 4, while right plot in fig. 6 shows log likelihood
level curves computed with unmodeled ascertainment, i.e., computed not by
formula (6), but with the use of expression (5). Comparing left and right
plots in fig. 6. one can see that, for our data, unmodeled ascertainment
shifts values of parameters corresponding to highest likelihoods towards the
range of larger ¢.

3.4 Observational data from (Picoult Newberg et al.1999)

Observational data from (Picoult Newberg et al.1999) were previously used
by Nielsen (2000) in conjunction with the model of exponential population
expansion. Nielsen (2000) confined his analysis to 37 polymorphic SNP sites
from 44 shown in table 4 (Caucasians) in (Picoult Newberg et al.1999). He
omitted 7 monomorphic sites from this table. Here we take both two - element
ascertainment sample and data sample of 44 SNP sites table 4 (Caucasians)
in (Picoult Newberg et al.1999). In the notation from Wakeley et al. (2001),
we use ng = 0, no = 2, and np = 16. This approach is consistent with
expression (6). In our notation n = 18, and K = 44. Log likelihood curve
for parameter k for exponential model for these data is presented in figure
7. This curve attains maximum which leads to estimate k.5 = 0.0732. Level
curves of log likelihood resulting of fitting stepwise change model to these
data are given in fig. 8. Maximization procedure launched for these data
gives following values: 7., = 107913, §,,, = 107194 These values cannot
be accepted as estimates of true parameters, but are quite consistent with
ranges seen in fig. 5.



4 Discussion

We have evaluated probability distributions of estimates of parameters of
population growth, based on data on frequencies of alleles of unlinked SNP
sites in DNA. We were able to perform more, and more accurate, computa-
tional experiments than it was done in previous studies. Our study explores
variability of estimates of exponential or stepwise scenarios of population
growth, obtained when one uses time dependent coalescence process act-
ing together with mutation of very low intensity to model SNP frequencies
(Nielsen, 2000, Wakeley et al., 2001). Sample size, n = 20, and number of
SNP sites K = 50, which we used in our simulations, are comparable to those
reported in observational studies.

Probability distributions of maximum likelihood estimates of parameter
k for exponential scenario have atoms at x = 0 and long tails to the right.
Comparing probabilities P_g, Pyg 1.1, Pos 2 and Py1 10, in table 1 (a)(b),
corresponding to different values of true x, shows that quality of estimation
of k is highest for true x = 10 and deteriorates for both k < 10 and s > 10.
This irregular behavior is consistent with the result published by Pybus et
al., (2000). Figure 2 in (Pybus et al., 2000) presents lower bounds of biases
and variabilities of estimates of parameters r and N, of exponential model.
Method for estimating lower bounds uses the assumption that coalescence
times t,,t, 1, ..., t2 are known exactly (Felsenstein, 1992). Lower bounds of
biases and variabilities of estimates of  and N,y depend only on the product
of the true parameters k = rN,. Moreover, changing x has always oppo-
site effects on estimates 7.5 and Negeq, if bias and variability of 7.y increase
then corresponding parameters for N,g.s; decrease, and conversely. We have
repeated computations from Pybus et al. (2000) with the following modi-
fication: we have studied variability of estimate k.5 of product parameter
rather then estimates r.y and Neges; separately. By variability of estimate
we mean std(kes;)/k (k - true value of the parameter). The result, based on
10000 repeats of log likelihood maximization, on the grid 7, N, € [1072 +10?]
is shown in fig. 9. Variability curve shown in fig. 9 takes its minimum at
k = 10, consistently to our findings.

For stepwise scenario, log likelihood functions of 7 and ¢ typically have
very long ridges (over many decades of the scale) of almost the same value of
log likelihood. Probability density functions of estimates 7., and d.g cover
very wide range values (107'® — 10'%). Therefore parameters of stepwise
change cannot be obtained by maximization of log likelihood. Instead (like
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in the study by Wakeley et al. 2001) one can only look at shapes of regions
which correspond to high probabilities.

Unmodeled ascertainment has a very strong effect on estimation of pa-
rameter k of exponential growth. As seen from table 2, estimates K.g, in this
case, are almost always equal to zero. In comparison, the same effect for the
case of stepwise scenario, presented in fig. 5, seems much weaker. However:
(1) The comparison in fig. 5 is only qualitative, since it does not concern
numbers but only shapes of level curves; (2) There is a strong dependence of
the effect of unmodeled ascertainment on true values of parameters 7 and .
For values other than those in fig. 5, qualitative effect can be much bigger
(results not shown here).

Observational data from (Picoult Newberg et al.1999), (Caucasians), are
not inconsistent with the hypothesis of population growth. However, there
are some problems which need verification. We have compared our estimates
of population history to those done previously by Rogers and Harpending
(1994), Polanski et al. (1998), Weis and Haeseler (1998), Slatkin and Hudson
(1991). Using predictions done by the above authors, reasonable ranges of
values of growth parameters seem: for exponential scenario x = 100 = 1000,
for stepwise scenario 7 = 0.005 =+ 0.05,9 = 0.001 = 0.01. Under exponential
scenario, our estimated value k., = 0.0732 is in large discrepancy with the
above. It seems that there are three possible explanations: (1) The model for
ascertainment procedure is still not enough adequate. Since ascertainment
has very strong effect on the estimate (table 2) it must be modeled rather
precisely to get reliable estimates of parameters. When comparing simple
model (6) to the description of 4 filtering steps in (Picoult-Newberg, 1999)
one can argue that a better model of ascertainment may be necessary. (2)
For values of k in the range 100+ 1000, variability of estimate does not leave
Kest close to zero or equal to zero very improbable (table 1). (3) Exponential
model of population size history is not adequate. In our opinion joint effect
of (1) and (2) is quite probable.

In contrast to the above, stepwise scenario with e.g., 7 = 0.01, § = 0.05
seems to fit quite well to observational data. This can be seen by comparing
fig. 8 where level curves of log likelihood for data from (Picoult-Newberg,
1999) are shown with fig. 4, for similar parameters. It was not necessary
to add mechanism like population substructure (Wakeley et al. 2001). The
model is flexible enough without that assumption. However, a fit based on
comparisons of shapes of likelihood level curves, rather then on values of
estimated parameters, is much less reliable. Probably, its reliability could be
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improved by increasing number of SNP loci.
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Figure 1. Notation for ancestral history of a sample of
DNA sequences. Coalescence times for the sample of size
n = 5 are denoted by 75,7}, ..., T5, and their realiza-

tions by corresponding small letters t5,t4,...,%s. Times
between coalescence events are denoted by S5, Sy, ..., So,
and S5, S4, ..., So;
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lations. Upper plot: Curve which gives estimate k5 > 0.
Lower plot: Curve which attains maximum at k.gy = 0.
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Figure 3. Cumulative probability function for distri-
bution of estimate k.g, obtained from 1000 repeats of
maximization procedure. True value of the parameter
was k = 1.0.
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Figure 4. Plots of log likelihood level curves, on the
plane 7 — 0 for stepwise model of population history.

Regions bounded by level curves max —0.5, are shaded
grey. Maxima are: —85.09, —112.97.
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Figure 6. Left plot is the same as left plot from fig.
4. Right plot: contour lines of log likelihood computed
not by formula (6) as in the left plot, but with the use of
expression (5). Shaded regions are max —0.5. Maxima:
—85.09 for left plot, —86.98 for right plot.
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Figure 7. Likelihood curve for parameter s resuling
from fitting exponential model to data from (Picoult New-
berg et al.1999). Likelihood curve attains its maximum
at Kest = 0.0732.
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Figure 8. Level curves of likelihood resulting of fitting
stepwise change model to data from (Picoult Newberg
et al.1999). Region bounded by level curve max —0.1 is
shaded grey. Maximum: max = —98.02.
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Figure 9. Lower bound of variability std(kes)/k of
estimate k.i obtained with the use of the method from
Pybus et al. 2000.
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Table 1. Results of 1000 simulations of the procedure

(A) - (B) for estimation of parameter x. (a) The case of
unconditional scan for SNP in DNA data. (b) The case
where ascertainment is based on two chromosomes.

(a) Unconditional scan for SNP in DNA data

true k | median(kest) | P=o | Po.o—1.1 | Pos—2 | Poi—10
0.1 0.082 0.424 1 0.016 0.109 |0.455
1 1.032 0.106 | 0.072 0.429 |0.872
10 9.672 0.014 | 0.107 0.594 |0.981
100 102.415 0.144 | 0.07 0.498 |0.811
1000 ]997.63 0.254 1 0.071 0.351 |0.607

(b) Ascertainment based on two chromosomes

true x | median(kest) | P=o | Po.o—1.1 | Fos—2 | Po.i—10

0.1 0.058 0.44710.01 0.1 0.411
1 0.980 0.120 1 0.057 |0.418 | 0.84
10 9.468 0.009 [ 0.096 | 0.615 | 0.989
100 99.300 0.118 1 0.101 | 0.571 |0.860

1000 | 1031.97 0.19110.064 |0.430 |0.743
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Table 2. Estimation of k in exponential scenario of pop-
ulation history, under unmodeled ascertainment. N~ de-
notes number of cases, in 1000 repeats of steps (A)-(B),
such that k. > 0. Sample size: n = 20, number of SNP
loci: K = 50.

true kK | Nxg
0.1 0

1 2
10 19
100 1
1000
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