The following are a list of symbols used in "Multitype infinite-allele branching processes in continuous time" by T.O. McDonald and M. Kimmel.

Notation for Markov Process (Section 2)

$lpha_{i,j}(t)$	Frequency spectrum is the number of $i\mbox{-type}$ labels having j individuals alive at time t
$\beta_r(t)$	$E_r\left[\sum_{n=1}^{N(t)} \boldsymbol{\rho}_n \boldsymbol{M} \mathbf{q}_{i,j} (t-T_n)^{\top}\right]$
$\delta_{n,w}$	Indicator that the n^{th} split was from a type w individual
λ	Eigenvalue with maximum real part of \boldsymbol{A}
$ ilde{\mathbf{Z}}(t)$	k-type branching process that counts the number of individuals alive at time t with the ancestral label
\mathbf{e}_i	Unit vector with zeros in all entries and 1 at the $i^{\rm th}$ element
$\mathbf{q}_{i,j}(t)$	$(q_{1,i,j}(t),\ldots,q_{k,i,j}(t))$
u	Right eigenvector of \boldsymbol{A} associated with the eigenvalue λ
v	Left eigenvector of \boldsymbol{A} associated with the eigenvalue λ
$\mathbf{Z}(t)$	$k\mbox{-type}$ branching process that counts the number of individuals alive at time t
A	Infinitesimal generator of the mean process, ${\pmb A} = {\pmb D}_{\bf a} ({\pmb M} - {\pmb I})$
D_{a}	$\operatorname{diag}(\mathbf{a})$
M(t)	Mean offspring matrix of $\mathbf{Z}(t)$
M	Mean offspring matrix containing entries m_{ij}
ν	Probability that an offspring is a new label
$\phi_{i,j}(t)$	Expectation of the frequency spectrum, $\phi_{i,j}(t) = E[\alpha_{i,j}(t)]$
$\rho_{n,w}$	$P(\delta_{n,w} = 1)$
$ ilde{q}_{r\mathbf{j}}(t)$	Probability of a type r ancestor having ${\bf j}$ descendants at time t
a_i	The rate parameter for the lifetime distribution of a type i individual
$A_i(\mathbf{s};t)$	Ancestral p.g.f. for $\tilde{Z}_i(t)$

$E_r[\cdot]$	Expectation given a single r -type ancestor
$f_i(\mathbf{s})$	Offspring p.g.f. for a type i individual
$H_i(\mathbf{s})$	Ancestral label offspring p.g.f. for a type i individual
$I_{0,r,i,j}(t)$	I(the ancestor is type r and has j type descendants with the ancestral label at time t)
$I_{n,m,l,i,j}(t)$	I (the $m^{\text{th}} l$ -type individual born at time T_n acquires a new label and has j i -type descendants with that same label at time t)
$K_i(t)$	Number of type i labels with individuals alive at time t
m_{ij}	Mean number of type j offspring from type i parent
N(t)	Number of splits in $(0, t]$
$q_{r,i,j}(t)$	Probability of a type r ancestor having j type i descendants at time t
T_n	The n^{th} splitting time of $\mathbf{Z}(t)$
$U_{n,i}$	Number of type i offspring from the $n^{\rm th}$ split in the process

Notation for General Branching Process (Section 3)

0	The ancestor of the population
α	Malthusian parameter
$\alpha_{i,\Gamma}(t)$	Frequency spectrum for a set, Γ
*	Composition operation consisting of a transition on the state space and convolution on \mathbb{R}^+
$ar{\xi}(t)$	$\int_{S \times \mathbb{R}^+} e^{-\alpha t} h(s) \xi(ds \times dt)$
eta	Mean age at progeny production
$\check{\mu}(r,A\times B)$	Reproduction kernel for offspring with new labels
$\check{\xi}(t)$	Point process of progeny with a new label
$\chi_{\mathbf{x}}(a)$	A random characteristic for individual ${\bf x}$
$\gamma(k,\omega)$	Indicator that the $k^{\rm th}$ daughter of an individual with life history ω has the same label as its parent
$\hat{g}_{\alpha} = \hat{g}(\alpha)$	$\int_{\mathbb{R}^+} e^{-\alpha t} g(du)$

$\hat{q}(r,i,lpha)$	Laplace transform of $q_{r,s,0}(t)$
$\mathbf{x} = (x_1, \dots, x_n)$	An individual in the population; the x_n^{th} daughter of the x_{n-1}^{th} daughter of the of the x_1^{th} daughter of the ancestor
$\mathbf{x}_{[k]}$	the k^{th} ancestor of x
S	$\sigma\text{-algebra generated by }\Omega$
$\mu(r,A\times B)$	Reproduction kernel, or expectation of $\xi(A\times B)$ at time t
$\omega = \omega_{\mathbf{x}}$	Life history of an individual \mathbf{x}
Ω	Set of all possible life histories
$\phi_{i,\Gamma}(t)$	Expectation of $\alpha_{i,\Gamma}(t)$
$\pi(A)$	Eigenmeasure for $\hat{\mu}_{\alpha}(r, ds), \pi(A) = \int_{S} \hat{\mu}_{\alpha}(r, A) \pi(dr)$
Π_r	The probability measure for the life history associated with a type r individual
ψ	Life length of an individual
$ ho(k,\omega)$	Type of the $k^{\rm th}$ daughter of an individual with life history $\omega\in\Omega$
$\sigma_{\mathbf{x}}$	Birth time of \mathbf{x}
$ au(k,\omega)$	Age of an individual with life history $\omega\in\Omega$ at the time of birth of its $k^{\rm th}$ daughter
$\tilde{\mu}(r, A \times B)$	Reproduction kernel for offspring with the same label as the parent
$ ilde{\xi}(t)$	Point process of progeny with the parent label
$\tilde{q}_{r0}(t)$	Probability of extinction of $\tilde{\mathbf{Z}}(t)$ given a type r ancestor
$\tilde{Z}_s(t)$	Number of s-type individuals alive at time t with the ancestral label
$\xi(A\times B,\omega)=\xi(t)$	Reproduction process of an individual with life history ω with $\rho(i,\omega)\in A$ and $\tau(i,\omega)\in B$
$\{Y(t)\to\infty\}$	Nonextinction set, or set of processes that do not ever go extinct
$g_{lpha}(u)$	$e^{-lpha t}g(u)$
h(r)	Eigenfunction for $\hat{\mu}_{\alpha}(r, ds), \pi(r) = \int_{S} h(s)\hat{\mu}_{\alpha}(r, ds)$

Ι	The set of all descendants of the population
$K_i(t)$	Number of type i labels represented by individuals alive at time t excluding the ancestral label
$n(\mathbf{x})$	The generation of \mathbf{x}
$N_i(t)$	Total number of type i labels ever existing up to time t excluding the ancestral label
$q_{r,s,0}(t)$	Probability that there are no type s individuals a live at time t given a type r ancestor
S	The type-space for individuals
$S_{\mathbf{x}}$	Shift operator that treats ${\bf x}$ as an ancestor
w_t	Intrinsic martingale associated with the branching process
Y(t)	Number of births up to time t
$Z^{\chi}(t)$	A branching process counted by characteristic χ up to time t