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Abstract

An Empirical Study of Feature Selection in Binary

Classification with DNA Microarray Data

by

Michael Louis Lecocke

Motivation: Binary classification is a common problem in many types of research

including clinical applications of gene expression microarrays. This research is com-

prised of a large-scale empirical study that involves a rigorous and systematic com-

parison of classifiers, in terms of supervised learning methods and both univariate

and multivariate feature selection approaches. Other principle areas of investigation

involve the use of cross-validation (CV) and how to guard against the effects of op-

timism and selection bias when assessing candidate classifiers via CV. This is taken

into account by ensuring that the feature selection is performed during training of

the classification rule at each stage of a CV process (“external CV”), which to date

has not been the traditional approach to performing cross-validation. Results: A

large-scale empirical comparison study is presented, in which a 10-fold CV procedure
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is applied internally and externally to a univariate as well as two genetic algorithm-

(GA-) based feature selection processes. These procedures are used in conjunction

with six supervised learning algorithms across six published two-class clinical mi-

croarray datasets. It was found that external CV generally provided more realistic

and honest misclassification error rates than those from using internal CV. Also, al-

though the more sophisticated multivariate FSS approaches were able to select gene

subsets that went undetected via the combination of genes from even the top 100 uni-

variately ranked gene list, neither of the two GA-based methods led to significantly

better 10-fold internal nor external CV error rates. Considering all the selection bias

estimates together across all subset sizes, learning algorithms, and datasets, the av-

erage bias estimates from each of the GA-based methods were roughly 2.5 times that

of the univariate-based method. Ultimately, this research has put to test the more

traditional implementations of the statistical learning aspects of cross-validation and

feature selection and has provided a solid foundation on which these issues can and

should be further investigated when performing limited-sample classification studies

using high-dimensional gene expression data.
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Chapter 1

Introduction

1.1 Microarrays Overview

DNA microarray technology has greatly influenced the realms of biomedical research,

with the hopes of significantly impacting the diagnosis and treatment of diseases.

Microarrays have the ability to measure the expression levels of thousands of genes

simultaneously. They measure how much a given type of messenger RNA (mRNA)

is being made in a tissue sample at a given moment, which gives a good idea of how

much of a corresponding protein is produced. Hence, a “signature” of a tumor can

be obtained from the readings of mRNA abundance in the tumor cells. The wealth

of gene expression data that has become available for microarray data analysis has

introduced a number of statistical questions to tackle. Some questions are targeted

towards various preprocessing stages of a microarray experiment such as RNA hy-

1
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bridization to arrays, image processing, and normalization, while others are geared

towards assessing differential expression and identifying profiles for classification and

prediction. Within the framework of tumor classification, the types of goals that have

been explored include discovering or identifying previously unknown tumor classes,

classifying tumors into previously known classes, and identifying “marker genes” that

characterize various tumor classes. The focus of this research is targeted not towards

the statistical issues involved during various preprocessing stages of a microarray

experiment, but instead towards the issue of feature subset selection (i.e., variable

selection) – in particular, feature subset selection within the framework of a binary

classification problem.

1.2 Motivation

This research is composed of a large-scale empirical analysis focused on the com-

parison of several popular supervised learning techniques in conjunction with several

feature (gene) subset selection approaches within the context of binary classification

of microarray data. The motivation behind this research is to obtain a comprehensive

understanding of a variety of popular supervised learning methods as well as both

univariate and multivariate feature selection methods, as applied in a binary classifi-

cation setting with gene expression data - a type of comprehensive analysis that has

not been conducted to this extent, and that would offer valuable insights regarding

how to most effectively and honestly conduct microarray analysis research (namely
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feature selection and classification).

With respect to the feature selection aspect of this research, several issues should

be noted. First off, the prediction rule may not even be able to be formed using allp

variables (e.g., if using Fisher’s linear discriminant analysis). Even if all the variables

could be taken into account in forming the prediction rule, some of them may possess

minimal (individual) discriminatory power, potentially inhibiting the performance of

the prediction rule when applied to new (unclassified) tumors. Also, it has been

reported that as model complexity is increased with more genes added to a given

model, the proportion of training samples (tissues) misclassified may decrease, but

the misclassification rate of new samples (generalization error) would eventually be-

gin to increase; this latter effect being the product of overfitting the model with the

training data [19, 26, 36, 40, 41]. The motivation for performing a multivariate feature

selection technique (namely, a genetic algorithm (GA)-based approach) is grounded

in the fact that the merits of implementing multivariate feature selection in the con-

text of microarrays in general have been given relatively little attention compared to

the much more widespread use of univariate approaches such as the simple T-test. In

terms of ease of implementation and computation, T-tests applied on a gene-by-gene

basis have of course been preferred over multivariate feature selection approaches.

However, there are other considerations that should be given more attention than

has been given in the past with respect to feature subset selection within the context

of microarrays. Because univariate approaches can only consider a single gene at a
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time, the possibility of detecting sets of genes that together jointly discriminate be-

tween two classes of patients is greatly reduced. After all, the gene subsets formed

from a ranked list of the top X univariately significant genes may not include genes

that are not discriminatory in a univariate sense yet still offer independent prognostic

information when considered jointly with other genes. In implementing a GA-based

search technique, the potential to select combinations of genes that are jointly dis-

criminatory would be greater than if one combined individually predictive genes from

a univariate screening method. Part of this research includes a study on how effective

the more sophisticated GA-based feature selection approaches really are in detecting

discriminatory genes that would be otherwise undetected among the top X genes

selected by univariate screening methods. Discovery of key genes needed for accurate

prediction could pave the way to better understand class differences at the molecular

level, which could hopefully provide more information about how to select important

biomarkers to be used in the development of clinical trials for predicting outcome and

various forms of treatment.

Ultimately, with a collection of genes that has high discriminatory power, an

effective prediction rule can be developed based on these genes and used to allocate

subsequent unclassified tissue samples as one of two classes (e.g., cancer or normal,

or perhaps one of two subtypes of a particular cancer). Regarding the formation of

prediction rules, aside from selecting an appropriate feature selection approach and

classification technique, there is also the need to assess the candidate prediction rules
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in an effective and honest manner. A customary approach to estimate the error rate of

a prediction rule would be to apply the rule to a “held-out” test set randomly selected

from among a training set of samples. However, with microarray data, one usually

does not have the luxury of withholding part of a dataset as an independent test set,

as a result of the small number of samples (usually between 10 and 100, significantly

smaller than the thousands of genes involved). As an alternative, cross-validation

(CV) is very often used. With microarray classification problems, the practice has

generally been to perform CV only on the classifier construction process, not taking

into account feature selection. Leaving out feature selection from the CV process

will inevitably lead to problems with selection bias (i.e., with overly optimistic error

rates), as the feature selection would not be based on the particular training samples

used for each CV stage. To prevent this from happening, the feature selection should

be performed based only on those samples set aside as training samples at each stage

of the CV process, external to the test samples at each stage. This issue constitutes

a prominent area of investigation within this research.

Overall, as a result of this research conducted over multiple published microarray

datasets, one may be able to determine whether the success of the results obtained is

really a product more of the structure of the data or of the classification process itself

- a question that today remains unresolved. To address this overriding question, how-

ever, other statistical questions involved in microarray classification research, which

to date remain largely unsettled, are investigated. Although many of these were dis-
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cussed above and in the previous section, the following section outlines them within

the framework of two “research phases.”
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1.3 Areas of Investigation

• Phase I: Exhaustive and compreshensive analysis of multiple public datasets

– How to go about a systematic comparison of feature selection techniques

and learning methods for 2-class microarray datasets?

– Implementation of univariate (rank-based, unequal variance T-test) and

multivariate (two variations of GA) approaches to feature subset selection

(FSS)

– Implementation of various learning algorithms in conjunction with FSS

(e.g., SVM, DLDA, k-NN (k = 1, 3, 7, 15) )

– Performance evaluation: 10-fold cross-validation

∗ With respect to FSS, consider classification and FSS performed per

CV run (inclusion of FSS in CV process, serving as safeguard against

selection bias)

∗ Consider both single-run and repeated runs of CV

• Phase II: Reflection & Interpretation

– Modularizing – What is the best marriage (if any) among FSS, learning

algorithm, and gene subset size?

– Should a univariate or multivariate feature subset selection (FSS) approach

be implemented? In a resubstitution setting (i.e., training set only), do the
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more sophisticated GA-based approaches actually detect discriminatory

genes that would be otherwise undetected among the top X genes of a

univariate screen? Can one deduce from the data structure which type of

feature selection approach to use?

– What type of supervised learning algorithm would be best suited to a

particular dataset? Can one deduce from the data structure which type of

approach to use?

– Is there a gene subset size that leads to the smallest predictive errors of

a given classification process across a series of datasets, or perhaps on a

dataset-by-dataset basis?

– Is there a particular combination of learning algorithm and feature selec-

tion that consistently works best among a series of datasets, or does the

best combination depend heavily on the particular dataset (where the no-

tion of ”best” refers to lowest error rates, based on gene subset sizes that

are as minimal as possible)?

– What effect does building the feature selection process into each stage of a

10-fold CV approach to assessing the predictive accuracy have? Is there a

selection bias incurred from not building the feature selection into the CV

process?
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• Plan:

– Develop strategies for a rigorous & systematic comparison of supervised

learning algorithms and feature selection techniques

– Develop classification schemes that are efficient, accurate, and honest (i.e.,

consider the effect of selection bias, if possible)

– Reach conclusions regarding prediction rules that could be generalizable

to other microarray datasets

– Provide fertile ground upon which a number of other interesting research

problems can be investigated in the future



Chapter 2

Background

2.1 Introduction

First of all, a brief explanation of some key underlying aspects of this research will

be discussed. In particular, some space will be given to summarizing both the notion

of supervised learning in general as well as several popular techniques of supervised

learning that are used in this research (results of which are discussed in Chapter

4). Next, some comments on feature (variable) subset selection (FSS) are provided.

Following this is some general information on two general approaches to FSS, namely

univariate (“filter”) methods and multivariate methods. It is in this discussion of

multivariate FSS methods that some of the basic ideas behind genetic algorithms

are provided. Concluding the background material of this research are sections that

discusses the importance of cross-validation as a means of assessing prediction rules

10
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formed for performing classification using microarray data.

2.2 Supervised Learning: A General Overview

Although unsupervised learning techniques (clustering) has been among the most

widely applied methods of analyzing gene expression data classification problems,

supervised learning approaches have become increasingly popular in recent years.

Some basic notions and several popular techniques of supervised learning are discussed

in this section.

To begin with, gene expression data for p genes over each of N mRNA samples

can be expressed as an N x p matrix X = (xij) (i = 1, ..., N and j = 1, ..., p). Each

value xij corresponds to the expression level for gene j in sample i. Each sample

has associated with it a gene expression profile xi = (xi1, xi2, . . . , xip) ∈ Rp, along

with its class designation yi (response, or dependent variable), which is one of K

predefined and unordered values among {k1, k2, . . . , kK}; for this study, the setting is

binary classification, so yi ∈ {0, 1}. Using the observed measurements X, a classifier

for K classes is thus a mapping G : Rp → {0, 1, ..., K − 1}, where G(x) denotes the

predicted class, ŷ = k, for a sample with feature vector x.

The samples already known to belong to certain classes,

L = {(x1, y1), (x2, y2), . . . , (xnL
, ynL

)}, constitute the training (or learning) set. The

training set is used to construct a classifier, which is then used to predict the classes of

an independent set of samples (the test set T = {(x1, y1), (x2, , y2), . . . , (xnT
, ynT

)}).
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This way, the class ŷi, (i = 1, 2, ..., nT ) predictions for each test set expression profile

xi can be made. Of course, with the true classes yi, (i = 1, 2, ..., nT ) of the test set

known, a misclassification error rate (MER) can then be computed.

2.3 Supervised Learning: Some Popular Existing

Methods

This section includes discussion of several popular types of supervised learning tech-

niques that are implemented in this reserach. These are also methods that have been

widely used not only with respect to microarray classification, but also in many other

applications of statistical learning.

2.3.1 Standard Discriminant Analysis

Fisher’s technique of linear discriminant analysis (LDA) [16] was one of the earliest

formal statistical methods to ever be developed, and is still widely used today, some

69 years later. Fisher’s LDA merely searches for a “sensible” rule to discriminate

between classes, by searching for the linear discriminant function a’x that maximizes

the ratio of the between-groups sum of squares to the within-groups sum of squares.

This ratio is given by a’Ba/a’Wa, where B and W represent the p x p matrices of

between-groups and within-groups sum of squares, respectively. If a is the vector that

maximizes the above ratio, the function a’x is known as Fisher’s linear discriminant
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function, or the first canonical variate. Mardia et al. [25] show that the vector a in

Fisher’s linear discriminant function is the eigenvector of W−1B corresponding to the

largest eigenvalue. In general, the matrix W−1B has no more than

m = min(p, K − 1) non-zero eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm, with correspond-

ing linearly independent eigenvectors v1,v2, . . . ,vm denoting the first, second, and

subsequent canonical variates.

For gene expression levels x = (x1, x2, . . . , xp), the (squared) Euclidian distance

is given below, in terms of the discriminant variables ul = xvl, l = 1, 2, . . . , m, from

the 1 x p vector of averages x̄k (for class k), for the training set L.

dk(x) =
m∑

l=1

((x − x̄k)vl)
2 (2.1)

The predicted class for expression profile x is the class with mean vector nearest

x in the discriminant variables space, and is described below:

C(x,L) = argmink dk(x) . (2.2)

One should refer to Mardia et al. [25] to see how Fisher’s discriminant function

can also arise in a parametric setting. In particular, for k = 2 classes, Fisher’s LDA

results in the same classifier as that derived from the maximum likelihood discriminant

rule for multivariate normal class densities with equal covariance matrices.

Dudoit et al. [15] provide some information on classification rules when the

class conditional densities Pr(x|y = k) are already known. In a situation of this
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nature, there is no need for a training set, and the class of an expression profile

x = (x1, x2, . . . , xp) is predicted as shown below by the maximum likelihood discrim-

inant rule, in which the predicted class is the one that gives the biggest likelihood to

x.

C(x) = argmaxk Pr(x|y = k) . (2.3)

It should be noted that a training set could be necessary even if the distributional

forms are known, to estimate the parameters of the class conditional densities. In

this case, the rule becomes the sample maximum likelihood discriminant rule, and a

training set is used to obtain the sample mean vectors and covariance matrices. That

is, µ̂k = x̄k and Σ̂k = Sk. If a constant covariance matrix is used, the pooled estimate

is used as follows:

Σ̂k =
∑

k

{
(nk − 1) Sk

(n − K)

}
. (2.4)

The maximum likelihood discriminant rule for multivariate normal class condi-

tional densities (x|y = k) ∼ N(µk, Σk) is a quadratic discriminant rule, as shown

below:

C(x) = argmink { (x− µk) Σ−1
k (x − µk)

′ + log |Σk| } . (2.5)

Several special cases of the multivariate normal rule are given by Dudoit et al.

[15]. Each is based on a particular choice of covariance matrix for the class conditional
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densities.

• If the densities have an identical covariance matrix, Σ, the rule is linear and

based on the square of the Mahalanobis distance [25]

C(x) = argmink (x − µk) Σ−1 (x − µk)
′ . (2.6)

• If the densities have the same diagonal covariance matrix

Σ = diag(σ2
1, σ

2
2, . . . , σ

2
p), the rule is known as the diagonal linear discriminant

rule (DLDA):

C(x) = argmink

p∑

i=1

{
(xi − µki)

2

σ2
ki

}
. (2.7)

• If the densities have diagonal covariance matrices

Σk = diag(σ2
k1, σ

2
k2, . . . , σ

2
kp), the rule is known as the diagonal quadratic dis-

criminant rule (DQDA):

C(x) = argmink

p∑

i=1

{
(xi − µki)

2

σ2
ki

+ log σ2
ki

}
. (2.8)

2.3.2 k-Nearest Neighbors

The k-nearest neighbors methodology is based on a distance function that describes

the “closeness” of training points to a particular observation in the test set. The

general idea, in a very simple case, is that for any test point x0, one finds the k

training points x(i), i = 1, 2, . . . , k closest in distance to the test point and then

makes a classification based on majority vote among the k-nearest neighbors [19].
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The notion of “closeness” implies some sort of metric, so for simplicity it can be

Euclidian, Mahalanobis, or really any distance metric in the feature space:

deucl(xi,xj) =

√∑

g

wg(xgi − xgj)2 (2.9)

where wg = 1 for (unstandardized) Euclidean distance, wg = 1
s2
g

for standard deviation-

standardized distance, and wg = 1
R2

g
for range-standardized distance.

dmaha(xi,xj) =
√

(xi − xj)S−1(xi − xj)′ (2.10)

where S is any p x p positive definite matrix (usually the sample covariance matrix of

the p variables); if S = Ip , dmaha = deucl. Dudoit et al. [15] describe this methodology

for microarray data based on a different distance function, 1−the correlation. That

is, for two gene expression profiles, x = (x1, x2, . . . , xp) and x’ = (x′
1, x

′
2, . . . , x

′
p), their

correlation is given by

rx,x’ =

∑p

i=1(xi − x̄)(x′
j − x̄′)

√∑p

i=1(xi − x̄)2
√∑p

i=1(x
′
i − x̄′)2

(2.11)

Again, one first determines the k nearest observations within the training set and

then makes the class prediction based on which class is the most common (e.g., has

the highest proportion) out of the k closest observations. Cross-validation can be

used to determine k. For example, with leave-one-out CV, the distance from each

of the training set observations to the remainder of the training set observations is

computed, and a class prediction can be made for each observation. With the true
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classes known, one can compare the prediction with truth, obtain a cross-validation

error rate, and ultimately keep the value of k that yields the smallest error rate. More

on cross-validation can be found in Section 2.5. Another issue to keep in mind is that

standard k-NN algorithms equally weight all the k neighbors. However, by assigning

distance weights to each of the neighbors based on their distance from the test sample

(where weighting is done inversely proportional to distance from the test sample), a

more sensitive rule can be obtained [14]. As discussed in Ripley [32], however, this

type of weighting scheme has proven to be controversial. Overall, several choices

must be made with respect to k-NN, including what distance function to use, what

number of neighbors to use, whether or not to weight the votes based on distance,

and of course what features to include in the classifier.

2.3.3 Support Vector Machines

The power of support vector machines (SVM’s) [37] lies in their ability to map in-

put vectors into a (possibly) higher dimension, in which the data can be separated

in linear (or nonlinear) fashion using a separating hyperplane. SVM’s always look

for a global optimized solution and avoids over-fitting, so they potentially have the

advantage of being able to deal with high-dimensional datasets. An important fea-

ture of SVM’s is that the separating hyperplane can be determined without defining

the actual feature space. In the binary classification framework with training data

L = {(x1, y1), (x2, y2), . . . , (xnL
, ynL

)}, with class labels yi ∈ {−1, 1}, i = 1, 2, ..., nL
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( {−1, 1} just used as an example for binary labels), the idea is to use a maximum

margin separating hyperplane between the positive and negative samples in a higher-

dimensional feature space. The “margin” is defined as the minimum distance from the

hyperplane to the nearest data instance of each class. Hence, the “maximum margin”

separating hyperplane is that which maximizes the margin and can be completely

defined by a linear combination of the input vectors, each of which is multiplied by

some weight. The hyperplane is defined by

w · x + b = 0 (2.12)

where the vector w defines a direction perpendicular to the hyperplane and b is the

bias of the plane from the origin (i.e., varying b moves the hyperplane parallel to

itself). The hyperplane of Equation 2.12 satisfies the following conditions:

xi · w + b > 0 if yi = 1 and xi · w + b < 0 if yi = −1 i = 1, 2, ..., nL (2.13)

So, combining the two equations above, an equivalent decision surface can be

obtained as

yi(xi · w + b) − 1 ≥ 0 i = 1, 2, ..., nL (2.14)

The hyperplane that optimally separates the data into two classes can be shown to

be the one that minimizes the functional ‖w‖2

2
(where ‖w‖2 represents the Euclidian
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norm of w), so the optimization can be reformulated into an equivalent unconstrained

problem using Lagrangian multipliers. As a quadratic optimization problem, then,

the functional would be the following, with the α′
is the Lagrange multipliers:

L(w, b, α) =
‖w‖2

2
−

nL∑

i=1

αiyi(xi · w + b) +

nL∑

i=1

αi (2.15)

Minimizing with respect to w and b, the solution can be shown to be w0 =

∑nL

i=1 yiαixi, and inserted into Equation 2.15 yields the following, which has to be

maximized with respect to the constraints αi ≥ 0 :

W (α) =

nL∑

i=1

αi −
1

2

nL∑

i=1

nL∑

j=1

αiαjyiyj(xi · xj) (2.16)

Once the solution has been found (i.e., α0 = (α0
1, α

0
2, ..., α

0
nL

) ), the optimal separat-

ing hyperplane can be found to be w0 =
∑

support vectors yiα
0
i xi and b0 = −1

2
w0·(xr+xs)

, where xr and xr are any support vectors from the two classes. Finally, the classi-

fier can be constructed as shown below (note that only the vectors xi which lead to

non-zero Lagrangian multipliers α0
i are referred to as “support vectors”):

f(x) = sign(w0 · x + b0) = sign

(
∑

support vectors

yiα
0
i (xi · x) + b0

)
(2.17)

In the event the data are not separable, slack variables ξi can be introduced

to measure the amount by which the constraints are violated. Again the margin is

maximized, now taking into account a penalty proporional to the amount of constraint
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violation. Formally, ‖w‖2

2
+ C(ξi) is minimized with respect to

yi(xi ·w + b) ≥ 1 − ξi i = 1, 2, ..., nL, ξi ≥ 0 (2.18)

where C is a parameter chosen a priori, defining the cost of constraint violation. As

before, the Lagrangian is formed as follows:

L(w, b, α) =
‖w‖2

2
+ C

(
nL∑

i=1

ξi

)
−

nL∑

i=1

αiyi(xi ·w + b) +

nL∑

i=1

(αi − ξi)−

nL∑

i=1

ξi (2.19)

where αi and ξi are associated with the constraints in Equation 2.14 and 0 ≤ αi ≤ C .

The solution is determined by the saddle point of this Lagrangian in a similar fashion

as before.

Finally, in the event that the decision surface is non-linear, SVM’s can perform

non-linear mapping of the input vectors into a higher-dimensional space by specifying

a non-linear mapping a priori. The extension to non-linear boundaries is achieved

through the use of kernel functions (rather than dot products between two data

instances as before). Popular choices of kernel functions are [19]:

• dth-degree polynomial: K(x,xi) = 1 + (x · xi)

• radial basis: K(x,xi) = exp
(
−‖x − xi‖

2)

• neural network: K(x,xi) = tanh(κ1(x · xi) + κ2 , where κ1 and κ2 are user-

defined.
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Using Lagrange multiplier analysis similar to Equations 2.15 and 2.16 , replacing the

dot product with a given kernel function K(xi,xj), the classifier is given by,

f(x) = sign
(
yiα

0
i K(xi,x) + b0

)
(2.20)

For more details on SVM theory or further references, the reader is referred to

[13] or [37].

2.4 Feature Subset Selection (FSS)

In general, feature (variable) selection is an extremely important aspect of classifi-

cation problems, since the features selected are used to build the classifier. Careful

consideration should be given to the problem of feature subset selection with high-

dimensional data. With respect to microarray data, this of course amounts to re-

ducing the number of genes used to construct a prediction rule for a given learning

algorithm. To borrow terminology from the machine learning literature, there are

two basic methodologies for the problem of feature subset selection – a “wrapper”

(multivariate) approach and a “filter” (univariate) approach. In the former, the fea-

ture selection criterion depends on the learning algorithm used to build the prediction

rule, while in the latter, the selection criterion is independent of the prediction rule.

One should note that although wrapper methods could likely perform better than

straightforward univariate approaches, they could do so at the risk of eventually find-

ing a gene subset that performs well on the test set by chance alone. There is also
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of course the negative aspect of significantly larger amounts of computation time be-

ing used with wrapper approaches (especially if used in a cross-validation setting).

Kohavi and John provide more extensive insights on these these two approaches [22].

There are several reasons for performing feature reduction. First of all, whereas

two variables could be considered good predictors individually, there could be little to

gain by combining more than one variable together in a feature vector, as a result of

potential high correlation between the variables. It has been reported that as model

complexity is increased with more genes added to a given model, the proportion of

training samples (tissues) misclassified may decrease, but the misclassification rate of

new samples (generalization error) would eventually begin to increase; this latter effect

being the product of overfitting the model with the training data [19, 26, 36, 40, 41].

Further, if another technology will be used to implement the gene classifier in practice

(e.g., to develop diagnostic assays for selected subsets of genes), the cost incurred is

often a function of the number of genes. Along these lines, one should keep in mind

that genes selected for their discriminatory power among two classes should later be

validated for biological relevance through further experimental studies. In this way,

the process of feature selection can function as an excellent way to begin identifying

differentially expressed subsets of genes for future clinical research. Finally, there is

the obvious issue of increased computational cost and complexity as more and more

features are included.
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2.4.1 Univariate Screening (“Filter”) Approach to FSS

Filter approaches have for years been the most common methodology used in statis-

tics. The features are selected based solely on the training data during a preprocessing

stage (i.e., prior to running the learning algorithm). In doing so, they don’t take into

account any biases resulting from the learning algorithm. A couple of filtering feature

selection methods were implemented on various gene expression datasets in the study

of Xiong et al. [41]. One of the approaches that has been used extensively has been

the simple t-test used to measure the degree of gene expression difference between

two types of samples. In general, the top K genes in terms of T-statistics are retained

for use in the discriminant analyses. Another type of filtering performed in the study

of Xiong et al. [41] was based on the prediction strength statistic first proposed by

Golub et al. [18]. Using the means and standard deviations of the (log) expression

levels of each gene g in the cancerous and normal tissue samples, the K genes with

highest (i.e., most informative) correlation strength statistic given by

P (g) =
µ1(g) − µ2(g)

s1(g) + s2(g)
(2.21)

were retained for use in the discriminant analyses. In the comparison study of dis-

crimination methods by Dudoit et al. [15], another filtering scheme used was based

on the ratio of the between-groups to within-groups sum of squares of the genes. This

statistics was used to take into account a large number of genes that exhibited nearly

constant expression levels across observations (samples). That is, for gene j,
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BSS(j)

WSS(j)
=

ΣiΣkI(yi = k)(x̄kj − x.j)
2

ΣiΣkI(yi = k)(xij − xkj)2
(2.22)

where x.j denotes the average gene expression level of gene j across all samples and

xkjdenotes the average gene expression level of gene j across samples belonging to

class k. This gene selection method operates by considering only the p genes that

have the largest BSS/WSS statistic for use in the classification algorithm. They also

used a variant of Golub’s PS statistic to compare with their filtering scheme (for more

details on this variant, see [15]). The important thing to keep in mind, however, is

that with these filter-based methods the effectiveness of the selected feature subsets

is not directly measured by the learning algorithm to which they are applied. Fur-

thermore, any possible interaction effects among combinations of genes are not able

to be captured with this methodology.

2.4.2 Multiple Comparisons

In performing microarray analyses in which univariate-based feature selections are

implemented to identify genes that are significantly differentially expressed between

two conditions (say, normal and tumor), one important issue to keep in mind is that of

multiple comparisons. Perhaps the best way of discussing this is in terms of multiple

hypothesis testing, in which hypothesis tests are to be performed on all genes of a

given microarray to determine whether each one is differentially expressed or not. As

in classical hypothesis testing, a null hypothesis would be formed to compare with an
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alternative hypothesis. In gene expression studies, the null hypothesis would be that

there is no change in expression levels between two (or more) experimental conditions,

and the alternative would then be that there is a change. If the test statistic falls into

some pre-selected rejection region, then the null hypothesis would be rejected in favor

of the alternative. When testing each individual gene for differential gene expression,

two types of errors could be committed. When the test statistic is significant, but the

gene is not truly differentially expressed, a Type I error would be committed (false

positive). When the test statistic is not significant, but the gene is truly differentially

expressed, a Type II error would be committed (false negative). In the context of

multiple hypothesis testing, though, the situation is very complicated, since each

gene would have potential Type I and II errors. Further, one should determine how

to measure the overall error rate.

More precisely, take the significance level α to be the acceptable probability of a

Type I error. When a t statistic for a gene is more extreme than the threshold tα,

the gene would be called differentially expressed. However, if it occurred just as a

result of random effects, a Type I error would be committed (with probability α). If

no mistake is made, though, the correct conclusion for that given gene would occur

with probability:

Prob(correct) = 1 − p (2.23)

Now, taking into account the multiple comparisons since there are, say, G total
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genes being tested, the ultimate goal would be to make the correct conclusion for all

the genes. The probability of making the correct decision for all the genes (assuming

the events are independent) would thus be:

Prob(all correct) = (1 − p) · (1 − p) · · · · · (1 − p) = (1 − p)G (2.24)

Hence, the probability of being wrong for at least one of the genes would be the

complement of the above probability:

Prob(wrong somewhere) = 1 − (1 − p)G (2.25)

This would also represent the significance level of the entire experiment, often

referred to as the family-wise error rate (FWER). Rewriting Equation 2.25, one has:

αGl = 1 − (1 − αg)
G (2.26)

where αGl represents the probability of a Type I error at the overall (global) level

and αg represents the Type I error at the individual gene level. Ultimately one wants

to determine the value of αg such that the global Type I error is no bigger than αGl. A

traditional correction that has been used for multiple corrections is that of Bonferroni

[10, 11]. For small αg, he noted that the first two terms of the binomial expansion of

(1 − αg)
G could be used to approximate Equation 2.26:

αGl = 1 − (1 − αg)
G = 1 − (1 − G · αg + · · · ) ≈ G · αg (2.27)
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Hence, the Bonferroni correction for multiple comparisons would be given as:

αg =
αGl

G
(2.28)

However, the Bonferroni correction is unsuitable for microarray analyses because

of the large number of genes involved, which causes the required individual gene

significance level to decrease at a very fast rate (see Table 2.1).

Table 2.1: Bonferroni Significance Levels Needed at Individual Gene Level to Ensure
Overall Significance Level of 0.05

Gene Subset Size Bonferroni

1 0.05
10 0.005
25 0.002
50 0.001
100 0.0005
1000 0.00005
10000 0.000005
15000 0.0000033

Clearly, if a gene is still significant after the Bonferroni correction, then it is truly a

differentiallyexpressed gene between two groups. However, if a gene is not significant

after this correction, it could still be truly differentially expressed.

The Holm step-down group of methods are less conservative than the Bonferroni

approach. Here, the genes are arranged in order of increasing p-value (arising from a

simple T-test between two groups such as normal and tumor), and successive smaller

adjustments are made on a gene-by-gene basis. That is, the threshold is not unique for

all genes, a la the Bonferroni correction. Each gene has its own pi value, corresponding
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to the probability that its test statistic occurred by chance alone (under a true null

hypothesis that the average expression between normal and tumor patients is the

same). The adjusted p-values depend on each gene’s position in the ordered list of

raw (uncorrected) p-values. The thresholds are given as αGl

G
for the first gene, αGl

G−1

for the second gene, and so on until αGl

1
for the last gene (with highest raw p-value).

The null hypotheses Hi, i = 1, 2, ..., k are rejected, where k is the largest i for which

the following holds:

pi <
αGl

G − i + 1
(2.29)

Both Bonferroni and Holm-based corrections for multiple comparisons assume the

genes are independent, however. To take into account the often complex depen-

dencies among genes in an organism, the false discovery rate (FDR) procedure of

Benjamini and Yekutieli [9] allows for some dependencies among genes. Similar to

the Holm step-down method, the FDR approach again orders the genes in order of

increasing p-values. However, now the thresholds are based also on the proportion

p0of null hypotheses Hi that are actually true. Of course, this is not known, so p0can

be conservatively estimated as 1 (meaning all null hypotheses are actaully true no

differentially expressed genes exist). The thresholds are given as pi < i
G

αGl

p0

for the

ithp-value. Hence, they would be (assuming p0 = 1) as follows: 1
G
αGl for the first

gene, 2
G
αGl for the second gene, and so on until αGl for the last gene (with highest raw

p-value). The null hypotheses for those genes with p-value lower than their threshold



29

would be rejected. Thus, the null hypotheses Hi i = 1, 2, ..., k are rejected, where k

is the largest i for which pi < i
G
αGl.

Finally, a more general permutation-based method of adjusting for multiple com-

parisons was proposed by Westfall and Young [39]. Their approach fully takes into

account all dependencies among genes, which of course is important for highly corre-

lated genes. The method proceeds by initially randomly changing the measurements

between the two groups (or, by randomly permuting the labels). New p-values are

computed based on the new arrangements, and the values are corrected using the

Holm step-down procedure discussed previously. This procedure of re-labeling and

testing is repeated thousands to tens of thousands of times. A final p-value for gene

i is given as the proportion of times the t-statistic based on the original labels, ti, is

less than or equal to the test statistic from a random permutation, as shown below:

p − value(gene i) =
Number of permutations for which u

(b)
j ≥ ti

Total number of permutations
(2.30)

where u
(b)
j are the corrected values as done in Holm’s method for permutation b.

Although this approach takes into account dependencies among genes, its main

disadvantage is that it is an empirical process that requires a very large amount of

computation and time to run, especially as the number of permutations are increased

(a minimum of 1000 are often suggested).
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2.4.3 Multivariate Approach to FSS

The idea behind this methodology is to incorporate feature selection more directly

into a supervised learning algorithm and use the marriage of these two tasks as a

more accurate tool for biomarker identification and the creation of an optimal class-

fication rule. All genes are potential candidates, such that one isn’t working from

a filtered list of genes based on univariate screening. Instead, the feature selection

can be accomplished in such a way that all individual genes as well as potentially all

combinations of genes can be considered and evaluated in terms of how well they clas-

sify within the context of the particular learning algorithm. Multivariate approaches

to feature selection are often referred to as “wrapper” approaches in the machine

learning literature, since the result of the learning algorithm is used by the feature

selection method to assess the effectiveness of the feature subset. The feature selec-

tion method generates feature subsets in an iterative manner, and these subsets are

considered “candidate” solutions. Selected qualities of the candidate solutions are

then evaluated, and the iterative process continues until a prespecified termination

criterion is reached. Of course, since the learning algorithm is asked to be run with

all sets of features considered, there is a trade-off in that computation time could

become very intensive with multivariate feature selection methods.

Two multivariate methods were implemented in the Xiong et al. study [41]. The

first one was a Monte Carlo (MC) method in which n randomly selected subsets of

size K were obtained (where n was taken to be 200000 and K started at 1). K
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was increased by 1 each time, with the MC process continuing until a prespecified

classification accuracy threshold was reached, or until a prespecified subset size K

was reached. The second type of method implemented in this study was a stepwise

forward selection (SFS) procedure, in which all possible combinations of two genes

were initially considered, with the top pair in terms of classification accuracy being

retained. Next, the classification accuracy was determined based on these two genes

and each of the remaining genes (hence composing a triplet of genes now). The

gene that leads to the highest classification accuracy is then included in the steadily-

increasing optimal subset of genes, and the process continues by adding one gene at

a time until a prespecified classification accuracy threshold was reached, or until a

prespecified subset of K genes is obtained. A modification of this stepwise algorithm,

the sequential floating forward selection algorithm (SFFS), attempts to take into

account the “nesting effect” problem, where once a particular feature is included in

the optimal subset, it cannot be discarded later. For more details, SFFS is discussed

in Xiong et al. [41] and further in Pudil et al. [31]. It should be noted that both

backward and forward selection wrapper approaches were also implemented in the

study conducted by Ambroise and McLachlan [7].

One multivariate feature selection method that has received quite a bit of at-

tention, and one I intend to investigate as an integral part of this research, is an

evolutionary algorithm known as a genetic algorithm [17], first proposed by John

Holland [20]. Genetic algorithms are discussed in much more detail in Section 2.4.4.
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Ultimately, the hope with multivariate feature selection methods is to avoid the

limitations of univariate approaches; namely, that among some chosen gene subsets

from univariate screening, there could be many genes that happen to be highly corre-

lated with one another, offering little relevant information. Further, the selection of

these genes could prevent the inclusion of other genes that may have lesser individual

significance in terms of being differentially expressive, but when considered together

with other genes, form a group that is significantly differentially expressed between

two classes. Some genes may be highly differentially expressed within a particular

subcategory of tumor but not in another. That is, samples of one class may be at

different developmental stages of a cancer, which could cause some (very informative)

t-statistics to be quite small and go unnoticed. Multivariate feature selection methods

such as genetic algorithms could pick these up and hence provide very informative

insights about the predictive structure of the data, let alone improve classifier perfor-

mance. A solid understanding of the predictive structure of the data would greatly

help to better understand class differences at the biological level, which could hope-

fully provide valuable information regarding the selection of important biomarkers to

be used in the development of clinical trials for predicting outcome and various forms

of treatment.
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2.4.4 A Modular Multivariate Approach in an “Evolution-

ary” Way

Evolutionary algorithms, and in particular, genetic algorithms (GA’s), apply the

principles of natural evolution and selection as a means of determining an optimal

solution to a feature subset selection problem. Biologically speaking, the character-

istics of an organism are determined by its genetic information, which is stored in

chromosomes. This information can of course be passed onto future generations with

selection depending on fitness. However, this information can also be altered along

the way, as a result of genetic functions such as crossover and mutation. In essence,

mutation in GA’s is inspired by the role played by mutation within an organism’s

DNA in natural evolution, as the GA periodically makes mutations in at least one

member of the population of chromosomes. Crossover in GA’s is analogous to the role

played by sexual reproduction in the evolution of living organisms, or more specifi-

cally, by the crossover of DNA strands that occurs during reproduction. This genetic

function seeks to combine elements of existing solutions together and hence form a

new solution (or “offspring”) with some features from each “parent.” Finally, a third

parallel between GA’s and natural evolution is the selection process. Coinciding with

the “survival of the fittest” notion of evolution, GA’s perform a selection process in

which the “most fit” members of the population survive, whereas the “least fit” ones

are dismissed.

In the context of GA’s as an optimization problem within the setting of a classi-



34

fication problem based on gene expression data, the “chromosome” is represented by

a set of genes, and each of these chromosomes (among a population of possible chro-

mosomes) is considered a candidate solution to apply to the classification problem.

Each chromosome can be thought of as a point in the high-dimensional search space

of candidate solutions. The chromosomes are often encoded as bit strings (where

each locus has two possible alleles: 0 and 1). Whether or not a chromosome is passed

onto the next generation depends on its fitness. That is, its passage depends on the

closeness of its particular properties to those which are desired, where the notion of

“closeness” depends on the fitness function chosen for use in the GA (in practice the

fitness function being some type of supervised learning algorithm). As one would

expect, the better the fitness, the greater the chance a given chromosome has to be

selected and passed on. As discussed above, there can occur random combinations

and/or changes among the passed chromosomes, which would of course induce varia-

tions in later generations of “offspring.” Ultimately, optimal (or as close to optimal as

possible) candidate solutions are generated after evolving through many generations.

By implementing an algorithm such as a GA, one can take into account the discrim-

ination capabilities of not only individual genes, but also combinations of genes – as

mentioned in Section 2.4.3, a very important characteristic of multivariate feature

selection methods. Consequently, as an inherently multivariate method, it is quite

possible that GA’s could find that whereas certain genes individually may not have

significant discriminatory power, when considered in combination with other genes,
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are significant in terms of how well they discriminate classes. A potential drawback

to keep in mind with GA’s is that a solution is considered better only with respect to

other presently known solutions, and hence no single optimal solution is ever really

attained. Further, as is the case with other multivariate feature selection methods,

there is the issue that a GA never really knows when to stop iterating, aside from being

provided with a prespecified number of iterations, time allotment, and/or candidate

solutions to reach. More details on GA’s being used in conjunction with a supervised

learning algorithm (e.g., k-NN) are provided in Section 3.4.2. For more information

on GA’s in general, including theory behind them as well as various applications of

them, the reader is referred to [27].

2.5 Assessing the Performance of a Prediction Rule:

Cross-Validation

A rather simple (and perhaps ideal) approach to estimate the error rate of the predic-

tion rule would be to apply the rule to a “held-out” test set randomly selected from

among the training set samples. This “holdout” approach is preferred over using the

whole training set to perform feature selection, build the classifier, and estimate the

classification error rates (resubstitution (training error) estimation). This latter type

of error estimation may decrease as the complexity of the classifier increases, but

the generalization error would at some point then begin to increase since the model
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would have adapted itself too closely to the training data (i.e., overfit the data) [19].

However, it should be noted that the “holdout” approach has the obvious disadvan-

tage that the size of the training set, from which the prediction rule is generated, is

reduced. Often, especially when the training set size is small to begin with (as is usu-

ally the case with microarray data), this is not a desirable approach since one would

ideally like to use as much of the available samples as possible for feature selection

and construction of the prediction rule.

As an alternative to the “holdout” approach, cross-validation is very often used,

especially when one does not have the luxury of withholding part of a dataset as an

independent test set and possibly even another part as a validation set (usually the

case with microarray data). Further, the repeatability of results on new data can

be assessed with this approach. Cross-validation can come in a number of different

flavors. In general, however, all CV approaches can fall under the “K-fold CV”

heading. Here, the training set of samples is divided into K non-overlapping subsets

of (roughly) the same size. One of the K subsets is “held-out” for testing, while

the prediction rule is trained on the remaining K − 1 subsets. Thus, an estimate

of the error rate can be obtained from applying the prediction rule to the test set.

This process repeats K times, such that each subset is treated once as the test set.

Ultimately, the average of the resulting K error rate estimates forms the K-fold CV

error rate. Equation 2.31 below describes the standard K-fold CV misclassification

error rate (MER) calculation (where the two class labels have unit difference, and the
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predictions ŷi, (i = 1, 2, ..., ntest) take on these values; e.g., 0 and 1).

MERK−fold =
1

K

K∑

k=1

MERk , where (2.31)

MERk =
1

ntest

ntest∑

i=1

|yi − ŷi| , and (2.32)

ntest =
N

K
(2.33)

Leave-one-out CV (LOO) occurs when K = N , where K represents the total

number of available samples. In this case, each sample serves as its own test set.

However, in the case of LOO CV, although it is nearly unbiased, it is generally highly

variable and requires considerable computation time. In general, there is a bias-

variance tradeoff with the selection of K, as larger values of K generally yield smaller

bias but less stability (higher variance) than smaller values of K. It should also be

noted that the CV process could be repeated multiple times, using different partitions

of the data each run and averaging the results, to obtain more reliable estimates.

Overall, Hastie et al. [19] suggest that 5- or 10-fold CV is a good compromise [19].

Further, at the expense of increased computation cost, repeated- (10-) run CV has

been recommended as the procedure of choice for assessing predictive accuracy limited

sample classification processes in general, including those based on gene expression

data [12, 21].
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2.6 Two Approaches to Cross-Validation:

Internal and External CV

With microarray classification problems, the practice has generally been to perform

CV only on the classifier construction process, not taking into account feature se-

lection. The feature selection process is applied to the entire set of data (“internal”

cross-validation [7, 14, 26]). Although the intention of CV is to provide accurate esti-

mates of classification error rates, using CV in this manner means that any inference

made would be made with respect to the classifier building process only. However,

because the significant genes are usually unknown to begin with, the idea is to make

inference taking into account the feature selection process also. Leaving out feature

selection from the cross-validation process will inevitably lead to a problem with se-

lection bias (i.e., overly optimistic error rates), as the feature selection would not be

based on the particular training set for each CV stage. To prevent this selection bias

from occurring, an “external” cross-validation process should be implemented follow-

ing the feature selection at each CV stage [7, 14, 26]. That is, the feature selection

is performed based only on those samples set aside as training samples at each stage

of the CV process, external to the test samples at each stage. Unfortunately, one

cannot guarantee that the same subset of genes chosen per CV stage would be the

same as originally obtained when all the training samples were considered. Hence,

with external CV, a final model can be specified, but not in terms of which subset of
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genes in particular make up the model. Rather, one would have the best model in

terms of what size subset of genes yielded the lowest CV misclassification error rate;

plus of course a model based on a CV approach that takes into account the effect of

selection bias. This notion of selection bias, as well as another type of bias that is

investigated, optimism bias, are discussed in the following section.

2.7 Optimism Bias and Selection Bias

Several measures of bias are considered in this study. First of all, the difference

between the internal CV misclassification error rate (MER) and the resubstitution

(training) MER, for any given subset size of genes, is referred to as the optimism bias:

ôb = MERIntCV − MERResub. (2.34)

This estimate represents the bias incurred from using the same data to both train

the classifier and estimate the performance of the classifier. Feature subset selection

for both MER’s used in this computation is based on using all samples of each dataset.

Positive values of this estimate signify that the MER’s based on internal CV were

higher than those based on using all the data to both train and test the classification

rule, and vice-versa for negative values.

Taking this a step further, another bias estimate of great interest used in this

study is the selection bias, given by:
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ŝb = MERExtCV − MERIntCV . (2.35)

This estimate represents the bias incurred from using the same data to both select

the gene subsets and estimate the performance of the classification rule based on these

subsets. Positive values of this estimate signify that the MER’s based on including the

feature subset selection in the CV process were higher than those based on performing

the feature selection outside the CV process using all the samples of a given dataset,

and vice-versa for any negative values.

Finally, consider the selection and optimism bias estimates of Eqns. 2.34 and 2.35,

respectively, as the two components that comprise a third bias estimate – measure of

total bias:

t̂b = ŝb + ôb (2.36)

= MERExtCV − MERResub (2.37)

This estimate represents the bias incurred from using the same data to select

gene subsets, train the classifier, and estimate the performance of the classifier. It

also takes into account the bias from using the same data to select the gene subsets

and estimate the performance of the classification rule based on these subsets. In a

sense then, computing this difference between the 10-fold external CV error and the

resubstitution error can also provide one with a measure of the degree of overfitting,

where overfitting refers to the situation when a model fits training data well, but not
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so well with respect to independent test data. In the case of total bias, the external

CV MER would be treated as the test set performance, while the resubstitution MER

would of course be treated as the training set performance.



Chapter 3

Previous Work & Results

3.1 Introduction

This chapter includes a review of the principle work done in the fields of feature selec-

tion and supervised learning, as applied to gene expression analysis using microarrays.

With respect to feature selection in particular, there is discussion of both univariate

methods and multivariate methods that have been applied, the latter including some

initial work implementing the genetic algorithm. Also included in this chapter are

summaries of the published microarray datasets that have been analyzed in the stud-

ies discussed (all publically available for download). Of these datasets, there are six

that are also analyzed in this research. The analyses and results obtained from these

six datasets are discussed in Chapters 4, 5, and 6.

42
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3.2 Published Dataset Descriptions

• Alizadeh et al. lymphoma dataset [5]

http://www-genome.wi.mit.edu/cancer

This dataset is composed of gene expression levels measured by a specialized cDNA

microarray, the Lymphochip, which contain genes that are differentially expressed in

lymphoid cells or known to be immunologically or oncologically important. There

are 4026 genes over 47 mRNA samples (24 germinal center B-like diffuse large B-cell

lymphoma (DLBCL) and 23 B-like DLBCL). See [5] for more details on this dataset.

• Perou et al. breast cancer dataset [29]

http://genome-www.stanford.edu/sbcmp

This dataset consists of gene expression levels from cDNA microarrays containing

5776 human sequences over 27 samples (14 human mammary epithelial cells and 13

breast tumors). See [29] for more details on this dataset.

• West et al. breast cancer dataset [38]

http://data.cgt.duke.edu/west.php

This dataset consists of gene expression levels measured from Affymetrix high-density

oligonucleotide chips (HuGeneFl) using the GeneChip software. Each chip contains

7129 probe sets (including 6817 human genes) over 49 breast tumor mRNA samples.

Because it is believed that both estrogen receptor (ER) status and lymph node status
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are important prognostic factors for the development of breast cancer, two different

two-class problems were analyzed in the original study: ER+ (25 samples) vs. ER- (24

samples) and lymph node status (i.e., affected node present or node+ (25 samples)

vs. affected node absent or node- (24 samples)). See [38] for more details on this

dataset.

Public Datasets Analyzed in this Research

• Alon et al. colon cancer dataset [6]

http://microarray.princeton.edu/oncology/affydata/index.html

This dataset consists of gene expression levels measured from Affymetrix oligonu-

cleotide arrays (HU6000; quantization software uncertain) for 2000 genes across 62

samples. The binary classes used for analysis are normal (22 samples) and tumor (40

colon tumor samples). As discussed in [24], five colon samples previously identified as

being contaminated were omitted (N34, N36, T30, T33, and T36), leaving the total

sample size for analysis at 57. See [6] for more details on this dataset.

• Golub et al. leukemia dataset [18]

http://www.broad.mit.edu/cgi-

bin/cancer/publications/pub paper.cgi?mode=view&paper id=43

This dataset consists of gene expression levels (presumably measured from the

GeneChip software) from Affymetrix chips (HuGeneFl). The oligonucleotide arrays
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have 7129 probe sets over 72 samples. The binary classes used for analysis are acute

myeloid leukemia (AML; 25 samples) and acute lymphoblastic leukemia (ALL; 47

samples). See [18] for more details on this dataset.

• Nutt et al. brain cancer dataset [28]

http://www.broad.mit.edu/cgi-

bin/cancer/publications/pub paper.cgi?mode=view&paper id=82

This dataset consists of gene expression levels measured from Affymetrix high-

density oligonucleotide chips (U95Av2) using the GeneChip software. Each array

contains 12625 probe sets over 50 samples. The binary classes used for analysis

are glioblastoma (28 samples) and anaplastic oligodendroglioma (22 samples). The

downloaded raw expression values were previously normalized by linear scaling such

that the mean array intensity for active (“present”) genes was identical for all the

scans. See [28] for more details on this dataset.

• Pomeroy et al. brain cancer dataset [30]

http://www.broad.mit.edu/mpr/CNS

This dataset consists of gene expression levels measured from Affymetrix high-

density oligonucleotide chips (HuGeneFl) using the GeneChip software. Each chip

contains 7129 probe sets. To facilitate the binary classification framework, dataset

’A2’ from the project website was used, in which 60 medulloblastoma (MD) samples

formed one class and the remaining 30 samples classified as “Other” for the second
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class (Note: of these 30, there were 10 malignant gliomas (MG), 10 atypical ter-

atoid/rhaboid tumor (AT/RT), 6 supratentorial primitive neuroectodermal tumors

(PNET), and 4 normal cerebellum samples). See [30] for more details on this dataset.

• Shipp et al. lymphoma dataset [33]

http://www.broad.mit.edu/mpr/lymphoma

This dataset consists of gene expression levels measured from Affymetrix chips

(HuGeneFL) using the GeneChip software. Each oligonucleotide array contained

7129 probe sets over 77 samples. The two classes used for analysis are diffuse large

B-cell lymphoma (DLBCL; 58 samples) and follicular lymphoma (FL; 19 samples).

See [33] for more details on this dataset.

• Singh et al. prostate cancer dataset [34]

http://www.broad.mit.edu/cgi-

bin/cancer/publications/pub paper.cgi?mode=view&paper id=75

This dataset consists of gene expression levels measured from Affymetrix chips

(HU95Av2) using the GeneChip software. The number of arrays available for analysis

was 102, with each containing 12600 probe sets. The two classes used for analysis are

normal (50 samples) and prostate cancer (52 samples). See [34] for more details on

this dataset.
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3.3 Univariate Screening

There has been a large amount of work done with respect to univariate feature selec-

tion in conjunction with classification of microarray data. As discussed throughout

Section 2.3, Dudoit et al. [15] provide an in-depth comparative study of several super-

vised learning methods (LDA, DLDA, DQDA, CART, k-NN) for tumor classification

using microarray data based on filtered (univariately screened) sets of genes. As dis-

cussed in Section 2.4.1, the gene selection method implemented by Dudoit et al. [15]

operates by considering only the p genes that have the largest ratio of between to

within-sum-of-squares for use in the classification algorithm. A similar type of uni-

variate screening also compared in this comparative study was the PS statistic [18].

More recently, Dudoit and Fridlyand [14] also apply univariate screening via both

t-test (using the expression values) and a rank-based t-test, the Wilcoxon Test, to

analyze the datasets of West et al. [38] and Pomeroy et al. [30]. The classification

schemes they used were k-NN, DLDA, DQDA, boosting with trees, random forests,

and SVM’s.

Starting with the more recent results of Dudoit and Fridlyand [14], for the k-NN

analyses, no value of k above 5 was considered. Leave-one-out cross-validation was

used in obtaining these classifieres. Also, for each CV training set, feature selection

was performed, to ensure that it was taken into account when evaluating the classi-

fiers’ performances. In general, there appeared to be no significant advantage to using

more complicated classification algorithms that require more tuning parameters (i.e.,
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boosting trees, random forests, and SVM’s versus simpler algorithms such as DLDA

or k-NN), especially considering the very poor results obtained with random forests.

With respect to k-NN, boosting, and SVM’s, the number of neighbors, boosting it-

erations, and combination of cost parameter and kernel choice, respectively, did not

have a significant impact on the results. As far as how many genes to include in

the classifiers, there was little significant change in general as more genes were added

to the models, especially for gene sets of 100 or less. However, for the gene sets of

500 or greater, there did appear to be slight increases in the misclassification results.

The boosting and random forest classifiers were generally insensitive to the number

of features used to build them, as expected since they have their own built-in feature

selection abilities. As far as comparing the rank-based Wilcoxon test statistic and the

regular t-statistic for feature selection, there seemed to be less change across subset

sizes with the Wilcoxon test results than with the t-test results.

As an additional study, Dudoit and Fridlyand compared the effect of feature selec-

tion performed on the entire training set (internal LOO CV) and on each individual

training set of a LOO CV (external LOO CV). As discussed in Section 2.5, the former

does not lead to as realistic and honest estimates of the generalization error, since

they generally tend to be overly optimistic. This statement holds true in their results,

as the internal LOO CV method did indeed lead to misclassification results that were

severely biased downward compared to the external approach.

Some earlier studies by Dudoit, et al [15] on the leukemia dataset of Golub (dis-
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tinguising ALL from AML [18]) show similar types of results to the above. They

implemented k-NN, LDA, DLDA, DQDA, classification trees (CART), bagging with

trees (variations including parametric multivariate normal (MVN), non-parametric

(standard bagging), and convex pseudo-data (CPD)), and boosting with trees. In

this study, repeated (150) runs of training/test set partitions were performed, with

feature selection performed only on each training set. The ratio of training to test set

samples was 2:1. The data were preprocessed such that there were 3571 genes to be

analyzed for each of the 72 samples (see [15] for more details on the preprocessing).

The dataset was already divided into a training set of size 38 and test set of size 34.

For this dataset, the top 40 genes in terms of the largest BSS/WSS ratio (see Section

2.4.1) were retained for inclusion in the classifiers. Aggregating methods performed

were boosting (using 50 “pseudo” training sets) and CPD bagging. Increasing the

number of bagging or boosting iterations didn’t have much impact on the classifiers’

performance. Relatively low test set error rates are obtained for each of 150 different

runs, where a random sampling scheme was presumably used to re-create additional

training and test sets for the remainder of the runs. The number of neighbors for

k-NN was selected by cross validation (details of which are unclear), and for about

half of the runs k was 1 or 2, and in general less than 7. DLDA yielded much better

error rates than did LDA and DQDA. Hence, it could be said that for this dataset at

least, better error rates were obtained by ignoring correlations between genes.

Overall, the highest error rates were found when LDA was used, while DLDA
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(median error rate of 0) and k-NN provided the best error rates, followed by the

best of the aggregating classifiers (boosting CART). As discussed in [15], the poor

performance of LDA could be attributed to the fact that this classifer borrows strength

from the majority of the data (unlike the more local k-NN method), so some samples

may not be well represented by the discriminant variable of this dataset. Also, because

of the ”large p, small N” situation, the BSS and WSS matrices may not provide

good estimates of the corresponding population quantities. The authors also briefly

investigated the effect of increasing the number of features to include and reported

that increasing the number of features to 200 did not have a significant impact on

the performances of the classifiers.

For the above study and the previous one of Dudoit and Fridlyand [14], the general

conclusion was that the simpler classification methods performed better than the more

complicated ones. However, as discussed in [15], a couple of important factors other

than generalization misclassification error that should be considered when choosing

a classifier are simplicity and insight about the predictive structure of the data itself.

For example, although DLDA is simple and generated low error rates, it does not

take into account the effect of gene inter-correlations, which are important biological

factors that should not be disregarded lightly.

The feature selection aspect of microarray classification is the stage where inves-

tigation of gene interactions could (and probably should) be conducted. The above

results were all based on univariate screening as the feature selection mechanism,
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which as discussed in Section 2.4.1, is not conducive to detecting groups of significant

genes. Also, they aren’t able to avoid the possibility of including redundant sets of

genes among a list of genes (i.e., genes that are highly correlated with one another).

3.4 Multivariate Feature Selection

This section includes discussion on two general approaches to multivariate feature

selection – a Monte Carlo approach and a couple of variations of the traditional

stepwise forward selection approach. Their application in previous studies and the

results of these studies are provided in this section as well.

3.4.1 MC and SFS Approaches

As discussed in Section 2.4.3, there were two multivariate feature selection methods,

an MC method and the SFS methods, implemented in the Xiong et al. study [41].

There were three binary classification datasets used in this study: the colon dataset

of Alon et al. [6], the leukemia dataset of Golub [18], and a breast cancer dataset of

Perou et al. [29]. The authors found that using optimal or near-optimally selected

subsets of genes can generate very high classification results (i.e., low misclassification

rates). These results were based only on using LDA for the classification of tumor

and normal samples. It should also be noted that these authors used a “holdout”

method to evaluate the performance of the selected genes within the LDA analyses.

An interesting caveat of this study was that the authors divided the data into a
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training and test set in the following proportions: (50%, 50%), (68% and 32%),

and (95% and 5%), respectively, and then averaged the results of 200 runs of each

of these approaches. That is, no cross-validation was implemented to assess the

predictive accuracy of the classification processes. In this study, it was found that

both multivariate methods performed better than the univariate-based T-test and PS

statistic methods that had been used previously. It was also found that the stepwise

method required less computation time than did the MC method. It should be noted

that the accuracy of classification for forming gene subsets (only sizes 1,2, and 3

considered) was based on the total collection of tissue samples, which allowed for the

presence of selection bias [7].

On the other hand, external CV was implemented on two published datasets in

Ambroise and McLachlan [7]. The samples were randomly divided into 50 different

training and test set partitions, with the CV performed only on the training data.

They used two schemes for feature selection and classification – backward selection

with SVM and forward selection with LDA. No univariate-based approach to perform

the feature selection was implemented. They considered the effect of selection bias

by performing external 10-fold CV and internal LOO CV (although unfortunately no

internal 10-fold and external LOO results were provided). The average values of the

error rate estimates across the multiple runs were obtained for both approaches for

each dataset. They found that the internal LOO CV led to overly optimistic error

rates compared to the external 10-fold CV process, for both classification schemes
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and datasets.

The focus of the multivariate-based feature selection aspect of this research, how-

ever, will be on the use of genetic algorithms, which have received very limited use in

the context of binary classification with gene expression data. An example of how a

GA has been used in this context is presented in the following section.

3.4.2 Genetic Algorithms: GA + kNN

3.4.2.1 Procedures

The GA was used in conjunction with the k-NN supervised learning technique in a

couple of studies [23, 24]. For the Li et al. study [24], the authors looked at the

binary classification problems with the colon microarray data of Alon et al. [6] and

the lymphoma data of Alizadeh et al. [5]. One should recall from Section 3.2 that

five samples were omitted from the colon data, and both datasets were divided into

a training set and test set (although the exact breakdown of numbers of particular

classes within the training and test sets was not made clear). The basic GA/k-NN

process is discussed next.

An initial population of chromosomes was created, in which each “chromosome”

consisted of a prespecified number of randomly selected (distinct) genes from a pool

of 2000 genes (choices of chromosome length d were 5, 10, 20, 30, 40, and 50). Since

the number of possibilities of selecting 50 genes, for example, from a pool of 2000

is about 10100, investigating all these is clearly is not a practical approach. Sub-
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populations (“niches”) were created, and typically there were 10 of these allowed

to evolve in parallel per run, with 150 chromosomes in each niche. Each of the

sub-populations were evolved independently. However, at each generation, the top

chromosome (one from each of them) were identified and combined to replace the

10 least fit chromosomes in each niche in the following generation. Hence the best

chromosomes were preserved at each generation.

The notion of “best” was determined by the fitness function used, the k-NN

method. That is, the fitness, or merit, of each chromosome was determined by its

ability to accurately classify the training set samples according to the k-NN method.

For this fitness function, the class of each chromosome selected was compared to

that of its three nearest neighbors, in terms of Euclidean distance in d-dimensional

space. Their choice of k was chosen large enough to ensure tight clusters could

be formed and to reduce computation time that would have otherwise been more

intense with larger values of k. They employed an “all or nothing” (or “concensus”)

voting approach, in which a score of 1 was given to the particular sample only if all

four chromosomes belonged to the same class. The scores were then summed across

samples to determine the goodness-of-classification of each chromosome and hence

form a sum they refer to as the “cross-validation R2”. Thus, the maximum value

of this statistic would be the number of training samples, ntrain. A proportion of

correctly classified samples could then be given by the ratio R2

M
. A fitness score was

given to each of the chromosomes based on this classification measure. When no



55

chromosomes among the first population achieve a targeted R2 (at least 31/34 for the

lymphoma data and 38/40 for the colon data), a second population of chromosomes

was generated based on the survival-of-the-fittest principle. The best chromosome

from each niche is passed onto the subsequent niche deterministically, and the other

149 probabilistically based on the fitness score assigned to them.

The probabilistic way in which mutation was performed was such that each chro-

mosome was selected from its parent niche based on a probability proportional to its

fitness score rank. If a chromosome were selected for transmission, between 1 and

5 of its genes were randomly selected for mutation with probabilities 0.53125, 0.25,

0.125, 0.0625, and 0.03125, respectively. Hence, a single-gene mutation is assigned

the highest probability. With this mutation number determined, genes outside the

chromosome replace those selected to be changed.

The entire procedure was repeated until the targeted cross-validated R2 for the

training set was achieved in any of the 10 niche runs (typically 10-50 generations

needed per run), at which point that chromosome was saved and the GA/k-NN pro-

cess restarted. The procedure ended when a pre-specified large number of chromo-

somes (not necessarily distinct) was reached (10000 for this study). With 10000

“large-R2” chromosomes now saved, the frequency with which genes were selected is

investigated; the reason being that these genes were part of chromosomes that dis-

criminated fairly well between the two classes of a given dataset. To validate a set

of top (i.e., most frequently selected) genes, the set of genes is used for classification
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of the test set samples. For each d, each of the test set samples were classified using

sets of these top-ranked genes. A sample would be classified as germinal center B-like

DLBCL if all of its 3 nearest training set neighbors were of the same class (consensus

rule), and similarly for the other class. Otherwise, the sample would be given an

“unclassifiable” label.

For the lymphoma data, a systematic difference based on t-statistics was noted

between the training and test sets from the original assignment of [5], in which the first

34 (of 47) samples were assigned to the training set. Hence, for this “new” original

assignment, the lymphoma samples were randomly reshuffled before assignment. Two

other types of assignments were also carried-out for both datasets: a random one

in which ntrain samples were randomly selected from the entire data set to be the

training set, and a discrepant one in which the last ntrain samples were assigned to

the training set. Each of the three training sets of each dataset were used in the

GA/k-NN process described above, and the genes selected for each were compared to

estimate the dependence of gene selection on training set makeup. For this stability

study, the chromosome length was 40. This length was chosen based on sensitivity

and reproducibility studies also performed in this report, where it was shown that the

selection of optimal genes was insensitive to the choice of d (see [24] for more details

on these two studies).
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3.4.2.2 Results

For the lymphoma data, the 50 most frequently selected genes from each of the three

types of training sets for each dataset were used to classify the corresponding test

set samples. Classification was done based on majority, not concensus, rule (i.e., 2

or 3 neighbors must agree with the test case). The only discrepancies found were in

the reshuffled training sample assignment, where only two samples were misclassified.

For the colon data, only one sample was misclassified across all three types of training

assignments.

Tuning parameter issues involved in this process included the choice of chromo-

some length d, termination criterion R2, number of near-optimal chromosomes, and

number of top genes for test set classification. For choices of d, smaller values (5˜10)

led to faster computational time than did larger values (up to 50). However with

only a small chromosome length, a few genes dominated the selection process. As d

increased, the gene selection process stabilized. For sample classification, the choice

of d had little impact on the classification results, although d = 2050 provided the

best overall results.

For the choice of R2, it was reported that preliminary studies showed that gene

selection is more sensitive to the choice of termination criterion than is test set classifi-

cation. A less stringent criterion such as R2 = (ntrain−2)/ntrain or (ntrain−1)/ntrain

may cause the relative rank order of genes to vary, but had little impact on the se-

lection of the most important genes. A less stringent statistic could have helped in
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terms of computation time, as well as allowing for a higher probability of genes of

predictive importance being retained even if they may have failed for a few samples.

In choosing the number of top genes for classification, too many genes could add

irrelevant information to the classification. Using a concensus rule of classification for

k-NN, the authors found that anywhere between 50 and 200 top genes led to the best

classification of the test data. This number could change with choice of classification

algorithm. This report made clear that not all genes contain relevant information,

since including all 4026 genes with a concensus rule k-NN classification yielded only

31% classification accuracy on the test set. With a majority rule, only 61% accuracy

was obtained. In previous work [23], similar results were found for the colon [6] and

leukemia [18] datasets (2-class case between ALL and AML samples).

Finally, for the previous GA/k-NN study of Li et al. [23] looking at the colon and

leukemia datasets, the same basic GA/k-NN process was used. For the colon data, an

initial population of chromosomes was created, in which each “chromosome” consisted

of 50 randomly selected selected (distinct) genes from the pool of 2000 genes. Sub-

populations (“niches”) were created, typically 10 per run, with 150 chromosomes per

niche. Each of the sub-populations were evolved independently. At each generation,

the top genes (one from each of them) were identified and combined to replace the

10 least fit chromosomes in each niche in the following generation. Hence the best

chromosomes were preserved at each generation. For the colon dataset, the GA/k-

NN method led to 6348 chromosomes selected (implementing a 3-NN scheme with



59

concensus rule). Again taking the 50 most frequently selected genes, these genes

were used to classify 20 test set samples (first 42 samples being the training set and

the other 20 the test set; both with ratios 2:1 of tumor:normal samples). When

only the top gene was used for classification, there were 7 misclassifications and 2

samples that were unclassifiable. When using between 25 and 110 of the top genes,

the predictive ability stabilized, but adding too many genes beyond 110˜120 only led

to an increased number of unclassifiable samples as a result of high-dimensional noise

being introduced. Including all 2000 genes, for example, led to 8 of the 20 samples

being unclassifiable, again showing that not all gene expression data is necessary for

discriminating between the normal and tissue samples.

For comparison purposes, the same GA/k-NN method was applied to the leukemia

dataset (recall from Section 3.2 the assignment of samples to training and test sets).

Here, a different set of top 50 genes was selected than that found in the original

study of Golub et al. [18] (which used the univariate PS statistic approach discussed

in Section 2.4.1). Test set classification using 3-NN and concensus rule showed only

one sample (of 34) was misclassified. Another analysis was done using 5-NN (again

concensus rule), which led to similar results, with the exception of now incurring one

unclassifiable sample. For more details on these analyses, refer to Li et al. [23].
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3.5 What’s Next: A Large-Scale Investigation

Much of the work done to date with respect to binary classification of microarray

data has been based on univariate-based feature selection approaches. Of course, if

among the thousands of features (genes), there exist several dominant individually

predictive genes, then perhaps simple univariate gene ranking approaches would suf-

fice. Nonetheless, however, based on the results of Section 3.4 above, I believe there is

definitely cause to further investigate the merits of a multivariate, modular approach

to feature subset selection for binary classification with high-dimensional data from

microarrays. In doing so, currently existing methods of performing feature selection

in this context should be rigorously assessed. Biologically, it is known that genes work

together, so it seems reasonable to further investigate performing variable selection

in a multivariate manner. At the same time, it should also be noted that biological

interaction among genes does not necessarily imply that the genes will be jointly pre-

dictive in a classification problem. An evolutionary algorithm such as a GA, which

has had relatively little use in the context of microarrays, has the advantage of being

able to find at least near-optimal solutions (i.e., subsets of jointly significant genes) to

use for the classification of microarray data in a “large p, small N setting”, in which

there are simply too many genes to find truly optimal combinations of genes through

a completely exhaustive search of the high-dimensional feature space. Further, there

are solutions that otherwise would have very likely not been found by combining in-

dividually predictive genes found from univariate screening (as discussed in Sections
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2.4.1 and 3.3).

The work of Li et al. [24] provided some promising results on the use of GA’s in

conjunction with k-NN as the fitness function. However, I believe some modifications

to their method are in order. First of all, with respect to the final solution selected,

they essentially ignore all the candidate chromosomes (i.e., solutions, or combina-

tions of genes) generated by the GA process, since they resorted back to a rank-based

selection approach by choosing the top genes from among the most frequently se-

lected genes among all the candidate chromosomes. With respect to the k-NN fitness

function, the authors described a cross-validated R2 as a goodness-of-classification

measure to describe the number of correctly classified samples, based on a concensus

rule. However, for some datasets one might incur a more serious problem with un-

classifiable samples than was the case with their analyses if the k nearest neighbors

of a sample don’t satisfy the concensus vote required for classification. Overall, a

simpler and less computationally intense fitness function should be investigated.

Ultimately, on a much broader scale, is the question of whether the success of the

classification accuracy results from a given prediction rule is really a product more of

the structure of the data or of the classification process itself – a question that today

unfortunately remains unresolved. To address this question, however, a number of

other very important and currently open-ended issues should be investigated in a

larger-scale empirical comparative study than any that has been undertaken to date.

First of all, not only should one seek to determine what type of feature selection ap-



62

proach should be used, but also what type of learning algorithm and what gene subset

size are best suited for performing binary classification based on gene expression data

from a given dataset. With respect to the notion of “best” predictor gene sets, the

hope is that the final group of genes selected are strongly correlated with (predictive

of) class distinction as much as possible, but also as uncorrelated as possible with

each other. Of course, based on this final subset, there is then the question regard-

ing how successful they are in discriminating between two classes when applied to

an independent test set. Cross-validation is an important technique for assessing the

predictive accuracy of classification processes with microarray data, where one usually

does not have the luxury of withholding samples as test and/or validation sets. Other

key CV-related issues that warrant further investigation include the effect external

vs. internal CV when assessing the predictive accuracy of a given prediction rule and

how effective external CV really is in taking into account selection bias, for a number

of different types of classifiers across a number of two-class gene expression datasets

(i.e., for univariate- and GA-based feature selection techniques, various supervised

classification algorithms, and various gene subset sizes). On the gene detection front,

another issue to investigate is how effective a GA-based feature selection approach

really is in detecting genes that would be otherwise undetected by univariate screen-

ing methods. As a result of conducting a large-scale empirical study over multiple

published two-class microarray datasets – a type of comparative study that to this

date has not been undertaken – the hope is that more insights into all these issues
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can be obtained.



Chapter 4

Univariate-Based FSS Results

4.1 Introduction

This is the first of three chapters presenting the results obtained in this research. This

chapter includes results obtained using a univariate-based means of feature subset

selection in conjunction with six different types of classifiers. To assess the predictive

accuracy of the various models, both external and internal single- and repeated- (10-)

run 10-fold cross-validation was used. All analyses of this chapter were performed

using the R statistical software package [35] on a Red Hat Linux machine (dual

Intel(R) 3.06 GHz processors and 4 GB memory).

64
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4.1.1 Supervised Learning Methods

In this study, three well known and widely used choices of supervised learning algo-

rithms were implemented – support vector machines (SVM’s; linear kernel), diagonal

linear discriminant analysis (DLDA), and k-nearest neighbors (k-NN). Each of these

three methods have been shown to be successful learning algorithms for the problem

of classification using gene expression data. Also, each of them function in inherently

different ways. For these reasons, they have been selected for use in this large-scale

empirical study. For k-NN, it should be noted that four different variations are imple-

mented (k=1, 3, 7, 15, to cover a wide range of k; Euclidean distance metric). Hence,

the total number of different learning algorithms studied was actually six. For more

details on each of these classifiers, the reader should refer to [14] and [15].

4.1.2 Feature Subset Selection

Rank-based, unequal variance T-tests were performed on each of the genes from the

designated training sets of samples selected from the datasets being studied. In each

training set, this resulted in an ordered (by increasing p-value) list of “top genes” for

use in generating various “top gene subset size” models for each of the six classifiers

implemented. Note that the training set could either be all N samples of a given

dataset if “internal” 10-fold CV is being used, or 90% of the N samples if “external”

10-fold CV is being used (see Section 4.1.3).

For the “internal” CV results, in which all samples were used in performing the
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T-tests, the final list of ordered genes, along with their (raw) p-values, are provided

in Tables A.1 – A.6 of Appendix A. Note that these lists include only up to the top

25 genes. It should also be noted that the first column of these tables, “Gene Index”,

refers to the row (or column, depending on how one imports the dataset) number

of that particular gene, so the reader is referred to the original dataset for cross-

referencing any gene of interest (see Section 3.2 for more information pertaining to

each dataset’s website where the data was downloaded). Included in each of these ta-

bles are the adjusted p-values from the Benjamini-Yekutieli (“BY”) FDR adjustment,

Holm step-down adjustment, Bonferroni correction, and finally the Westfall-Young

(“WY”) permutation-based correction. As expected, the importance of taking into

account multiple comparisons was evident, as the p-values were not as small once

they were adjusted, especially as one proceeds down the list of top genes for each of

the datasets. For each dataset, it should be noted that the top 25 genes across all

methods still maintained significant p-values (at the 0.05 significance level); only the

last 5 of the 25 genes listed from the Nutt dataset had permutation-based p-values

slightly above the 0.05 level. If one were to actually report particular top gene subsets

for model specification and their associated p-values, it would be more accurate to

report results from one of the adjusted p-value approaches. For more details on these

corrections for multiple comparisons, refer to Section 2.4.2.
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4.1.3 Internal and External CV

To assess the predictive accuracy of the classification processes, a classic 10-fold cross-

validation approach was used. Although the commonly used leave-one-out approach

of CV is nearly unbiased, it can provide highly variable MER estimates. In addition,

because repeated-run CV is implemented in this research, the computation burden

of leave-one-out CV would be quite heavy compared to a lower-fold variation of CV.

For this research, 10-fold CV, which yields a slightly more biased but less variable

estimate of the misclassification error rate (MER), is used. 10-fold CV has also been

shown to be a reliable approach for assessing the predictive accuracy for limited

sample classification problems in general, including those based on gene expression

data [12, 19, 21]. By “classic” CV, the key is that each of the ten test set partitions are

mutually exclusive to each another. This chapter includes results of both internal and

external CV, as well as resubstitution error rate results (i.e., “apparent”, or training,

error rate; the estimation of misclassification error based on using all samples to both

build each model as well as evaulate each model). With respect to the resubstitution

errors, one would expect these curves to all have very low, if not perfect, MER’s.

Refer to Section 2.5 for more on cross-validation in general.

4.1.4 Single and Repeated- CV runs

Also included in this chapter are results based on either the standard single-run 10-

fold CV process, or a repeated- (10-) run process of the 10-fold CV. The latter refers
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to running the standard 10-fold CV process 10 separate times and averaging the

resulting ten misclassification rates to obtain the final misclassification error rate,

providing for a more stable, Monte Carlo type of estimate. Equation 2.31 describes

the standard (single-run) K-fold CV MER calculation (for this study, K = 10), where

the two class labels have unit difference, and the predictions ŷi, (i = 1, 2, ..., ntest)

take on these labels; e.g., 0 and 1).

For each of the classifiers implemented for a given dataset, the same ten training

and test set partitions for a given iteration were used to maintain consistency in

interpreting the repeated-run 10-fold CV results for each dataset. That is, iteration 1

of 10 would use the same set of ten training and mutually exclusive test set partitions

across all the classifiers. Iteration 2 of 10 would do the same, followed by iterations

3, 4,..., and 10 of 10. There could of course be some overlap among training and/or

test set samples from iteration to iteration, but this is inevitable for the repeated-run

analyses.

4.1.5 Plot Breakdowns

This chapter begins with plots of misclassification error rates (MER’s) vs. top gene

subset size, for four different “flavors” of 10-fold CV process, with discussion following

the first two plots (internal CV; Figures 4.2 and 4.3) and the second two plots (external

CV; Figures 4.4 and 4.5). The “flavors” are as follows:

• single-run 10-fold internal CV (Figure 4.2)



69

• repeated (10)-run 10-fold internal CV (Figures 4.3)

• single-run 10-fold external CV (Figures 4.4)

• repeated (10)-run 10-fold external CV (Figures 4.5)

Other repeated-run-based plots are also included in this chapter. These include

resubstitution error plots, external CV vs. internal CV plots, and finally plots looking

at the effect of both optimism and selection bias incurred from performing resubstitu-

tion error assessment over internal CV and from performing internal CV over external

CV, respectively. For each of the above analyses, there are six individual plots corre-

sponding to the six datasets, each of which contains six MER curves corresponding to

each of the six classifiers considered across the selected “top” gene subset sizes. From

these plots, any effects of the datasets, classifiers, as well as of the gene subset sizes on

the misclassification rates should be seen. The choice of which top gene subset size to

use for each dataset was made ensuring that a full range of the possible magnitudes

of subset sizes was taken into account for each dataset. Since some datasets were

bigger than others, their plots obviously included larger-sized gene subsets.

4.2 Preprocessing of Datasets

As discussed in Section 3.2, there were 6 datasets analyzed in this research, all of

which are from Affymetrix microarrays [1, 2, 3, 4]:



70

• Alon et al. colon cancer dataset (2000 genes; 57 samples: 20 (35%) normal and

37 (65%) tumor) [6]

• Golub et al. leukemia dataset (7129 genes; 72 samples: 25 (35%) AML and 47

(65%) ALL)[18]

• Nutt et al. brain cancer dataset (12625 genes; 50 samples: 28 (56%) glioblas-

toma and 22 (44%) anaplastic oligodendroglioma) [28]

• Pomeroy et al. brain cancer dataset (7129 genes; 90 samples: 60 (67%) MD

and 30 (33%) other) [30]

• Shipp et al. lymphoma dataset (7129 genes; 77 samples: 58 (75%) DLBCL and

19 (25%) FL) [33]

• Singh et al. prostate cancer dataset (12600 genes; 102 samples: 50 (49%) normal

and 52 (51%) tumor) [34]

The only preprocessing that was done on each of the datasets was to normalize

the arrays such that they each have zero mean and unit variance (an approach also

used in the comparative gene expression study of Dudoit et al. [15]). Standardization

of microarray data in this manner achieves a location and scale normalization of

the arrays. This was done to ensure that all the arrays of a given dataset were

independent of the particular technology used (i.e., reduce the effect of processing

artefacts, such as longer hybridization periods, less post-hybridization washing of the

arrays, and greater laser power, to name a few). This way, for a given dataset, the
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values corresponding to individual genes can be compared directly from one array to

another. Further, it’s been shown that this type of normalization has been effective in

preventing the expression values of one array from dominating the average expression

measures across arrays [42]. Currently there is no universally accepted means of

normalizing microarray data.

4.2.1 An Initial Glimpse of the Datasets:

Unsupervised Learning via Multimensional Scaling

To get an initial idea of how difficult the classification task will be for each dataset,

a popular type of unsupervised learning technique, multidimensional scaling (MDS),

is applied to each of the datasets, using all samples and all genes in each case. By

unsupervised, the goal is to be able to visualize groups (clusters) among the data

without the use of any classes defined a priori, as is done with supervised learning

methods. The technique of MDS is a method that maps data points in Rp to a lower

dimension manifold. For binary classification with gene expression data then, MDS

takes each gene expression profile xi = (xi1, xi2, . . . , xip) ∈ Rp, i = 1, ..., N and maps

this data to two-dimensional space. The general idea of MDS is to represent the

expression profiles as points in some lower-dimensional space than the original space

such that the distances between points in the reduced space correspond to the dissim-

ilarities between points in the original space. If acceptably accurate representations

can be obtained in say, two dimensions, MDS can serve as a very valuable means to
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gain insight into the structure of the dataset. Of particular interest in this research

would be to obtain a visualization of the expression data which can then be used to

give a potentially meaningful interpretation of the relationships between the samples

in the data. The distances need not be based on Euclidean distance (Equation 2.9)

and can actually represent many types of dissimilarities between sample points (e.g.,

1 − correlation measure, as discussed in Section 2.3.2). The distance information is

provided by an N x N distance matrix. If a dataset can be easily classified, one would

expect to see clear separation between two groups of sample points (corresponding

to the two classes). Because this technique is being used merely for the purpose of

getting some initial visual ideas of the ease of separability of the two classes for each

dataset, further details on MDS are not discussed here. For more details, the reader

is referred to [19, 25].

The plots presented in Figure 4.1 show the first two MDS coordinates for each

of the six datasets (all genes and all samples used). The results are based on using

1−correlation as the same measure on the normalized expression values. The reader

is referred to Section 3.2 for more clarification of what the two classes represent in each

of the plots. As seen in Figure 4.1, it would seem to be a more difficult classification

task for the Nutt dataset since the two groups demonstrate considerable overlap.

On the other hand, one would expect the classification task for the Alon and Golub

datasets to be considerably less difficult since they show much better group separation.

To see if these conjectures are true, the remainder of this chapter is devoted to the
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construction and predictive accuracy assessment of the various classifiers considered

for each of the six datasets.
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Figure 4.1: MDS Plots for Each Dataset (Measure=1-corr)
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4.3 Internal CV Results

This section includes results based on a) running the standard 10-fold internal CV

process once and b) running the standard 10-fold internal CV process 10 separate

times and averaging the resulting ten misclassification rates, to obtain the final mis-

classification error rate.
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Figure 4.2: 1 × 10-Fold CV; Univ FSS Based on All Samples
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Figure 4.3: 10 × 10-Fold CV; Univ FSS Based on All Samples
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With respect to the internal 10-fold CV process, in comparing the single- and

repeated-run results shown in this section, the repeated runs approach of the CV

process yielded slightly smoother curves overall. The Alon and Golub datasets (Fig-

ures 4.2 A, B and 4.3 A, B) had the lowest MER’s in general for all the classifiers (all

≤ 0.10), followed by the Pomeroy, Shipp, and Singh datasets (Figures 4.2 D,E,F and

4.3 D,E,F). The MER’s of these latter three were all generally between 0.10 and 0.20,

except for the DLDA curves in each, which were marked by a relatively large increase

for gene subset sizes of 1000 and greater. A similar large increase in error rates for

DLDA was also present with the Shipp data (Figures 4.2 E and 4.3 E), again taking

place around gene subset size 1000. On the other hand, the Nutt dataset (Figures 4.2

C and 4.3 C) was marked by much higher MER’s (mostly in the range of 0.2 and 0.3)

than the other five datasets across all the gene subset sizes. Also, there seemed to be

less variation among the classifer curves for the Alon, Golub, and Pomeroy datasets

than in the other three. It was not immediately clear from these plots that one par-

ticular classifier was obviously better than any of the others across all the datasets.

One should note that the SVM classifier for the Shipp and Singh results seemed to

be significantly better than the other datasets for gene subset sizes (≥ 100), while

the DLDA classifier results for the Pomeroy, Shipp, and Singh datsets seemed to be

significantly worse than the rest for even bigger gene subset sizes (≥ 1000). The

SVM classifier was also the least variable among the six classifiers in all the datasets.

SVM seemed to be consistently one of the best classifiers in each of the datasets. No



79

gene subset size stood out as the best, as none of the classifiers’ curves showed any

dominant upward or downward trend with increasing gene subset size.

There appeared to be a dataset-learning algorithm interaction (i.e., for any given

number of genes, the rank ordering of the learning algorithms varies from dataset

to dataset), as well as some interaction between learning algorithm and gene subset

size (i.e., for any dataset, the rank ordering of learning algorithms varies from subset

size to subset size). The results also suggested that minimal interaction between

dataset and gene subset size was present (i.e., for any learning algorithm, the rank

ordering of the datasets varies only slightly from gene subset size to gene subset

size). Looking at all three of these experimental parameters together, it seem that

a three-way interaction among them exists, since the effect of the number of genes

used for classification seemed to be dependent on both the classfier and the dataset.

The situation was further complicated because not only does the magnitude of the

effect of the number of genes used change, but also the nature of the effect (i.e.,

monotonic or not) changes with the choice of both dataset and learning algorithm.

Interactions aside, it appeared that dataset had the biggest main effect on the error

rates, followed by the size of the top gene subset, with learning algorithm having the

least effect (although the SVM curves of Figures 4.2 and 4.3 at least, tended to be

among the best across gene subset sizes, for all datasets except the Nutt one).
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4.4 External CV Results

This section includes results based on a) running the standard 10-fold external CV

process once and b) running the standard 10-fold external CV process 10 separate

times and averaging the resulting ten misclassification rates, to obtain the final mis-

classification error rate.
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Figure 4.4: 1 × 10-Fold CV with Univ FSS Built-in
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Figure 4.5: 10 × 10-Fold CV with Univ FSS Built-in
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With respect to the external 10-fold CV process, in comparing the single- and

repeated-run results shown in Figures 4.4 and 4.5, one should immediately note that

performing repeated runs of the CV process led to smoother curves overall. The

repeated-run MER curves for these external CV results were marked by more im-

provement in stability over the corresponding single-run results than was the case

with the internal CV repeated-run results’ improved stability over their correspond-

ing single-run results (discussed in Section 4.3). This was expected with taking the

average MER’s from multiple runs of the process, rather than just taking a single

run’s results. Otherwise, the same general conclusions found with the internal CV

analyses are reached and discussed here. Figures 4.4 and 4.5 show that the classifiers’

MER curves, except for DLDA in a few datasets, all seemed to follow a general de-

creasing (or constant) pattern with increasing subset size, especially with respect to

subset sizes ≤ 5. The Nutt results (Figures 4.4 C and 4.5 C) were marked by much

higher MER’s (mostly in the range of 0.20 and 0.30) in general across all the gene

subset sizes. The Alon and Golub results (Figures 4.4 A, B and 4.5 A, B) possessed

the lowest MER’s in general (mostly in the range of 0.05 and 0.10) across subset sizes,

followed by the Pomeroy, Shipp, and Singh datasets (generally between 0.1 and 0.2)

(Figures 4.4 D,E,F and 4.5 D,E,F). Also, there seemed to be less variation among the

classifer curves for the Alon, Golub, and Pomeroy datasets than in the other three.

In general, it was not totally clear from these plots that one particular classifier was

obviously better than any of the others across all the datasets, as they were all quite
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similar to each other. However, as was the case with the corresponding internal CV

plots of Section 4.3, SVM at least seemed to consistently be one of the best classifiers

in each of the datasets (aside from the Nutt data, where it was generally unusually

higher than the other classifiers for a large number of subset sizes). The SVM curves

were generally marked by a typical pattern of slightly improved performance with in-

creasing number of top genes. The Singh and Nutt data were exceptions to this trend

with SVM, as the curves in these cases showed no dominant upward or downward

trend across subset sizes. With respect to the DLDA curves it was interesting to note

that they seemed to decrease in the range of the top 1 to 10 genes, followed by a

steady (or slight increase) from 10 to 100 genes, and then quickly increased beyond

the top 100 genes. A final note on these plots is that the SVM classifier curves for the

Shipp and Singh datasets seemed to be significantly better than the other classifiers’

curves for some of the larger gene subset sizes (≥ 100), while the DLDA classifier

results for the Pomeroy, Shipp, and Singh datsets seemed to be significantly worse

than the rest for even bigger gene subset sizes (≥ 1000). The SVM classifier was also

the least variable among the six classifiers in all the datasets. As far as what size of

gene subset was best, this was not immediately clear, as it varied from classifier to

classifier across top gene subset sizes, for each dataset.

Overall, similar to what was discussed in Section 4.3, Figures 4.4 and 4.5 suggest

that there appeared to be a dataset-learning algorithm interaction, as well as some in-

teraction between learning algorithm and gene subset size. The results also suggested
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that an interaction between dataset and subset size is present, albeit very slight. Fi-

nally, taking all three parameters together, the presence of a three-way interaction

among them was evident (as discussed in Section 4.4). Considering each parameter

individually, it appears that dataset had the biggest main effect on the error rates,

followed by the size of the top gene subset, with learning algorithm apparently having

the least effect (although the SVM curves of Figures 4.4 and 4.5, at least, tended to

be among the best across gene subset sizes, for each of the datasets except the Nutt

one).

4.5 Resubstitution, Internal & External CV, & Se-

lection & Optimism Bias:

A Closer Look at the Repeated-Run CV Ap-

proach

4.5.1 Resubstitution, Internal CV, and External CV MER’s

A closer look at the repeated-run 10-fold CV results is provided in Figures 4.6 – 4.11.

Included in each plot are the internal CV and external CV MER curves together for

a given classifier and dataset. Also included in each plot are the resubstitution error

rates.
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Figure 4.6: 10 × 10-Fold CV; Internal CV vs. External CV; Univ FSS; Alon Data
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Figure 4.7: 10 × 10-Fold CV; Internal CV vs. External CV; Univ FSS; Golub Data
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Figure 4.8: 10 × 10-Fold CV; Internal CV vs. External CV; Univ FSS; Nutt Data
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Figure 4.9: 10 × 10-Fold CV; Internal CV vs. External CV; Univ FSS; Pomeroy
Data
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Figure 4.10: 10× 10-Fold CV; Internal CV vs. External CV; Univ FSS; Shipp Data
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Figure 4.11: 10× 10-Fold CV; Internal CV vs. External CV; Univ FSS; Singh Data
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Several things should be noted from these plots. First off, with respect to the

resubstitution error curves, the ones for the 1-NN classifier were always 0, as one

would expect. In general most of the classifiers’ resubstitution error rates across all

datasets (but the Nutt one) were relatively stable, except perhaps for the DLDA ones

from the Shipp and Singh datasets, for gene subset sizes greater than 1000. The

Nutt dataset was marked by unstable resubstitution curves for all classifiers (except

1-NN). As discussed in Sections 4.3 and 4.4, the Alon and Golub datasets had the

lowest MER curves for all the classifiers across the gene subset sizes for both the

external CV and internal CV analyses, followed by the Pomeroy, Shipp, Singh, and

Nutt datasets. Finally, one can see that the MER curves from the Shipp, Singh, and

especially Nutt datasets were in general more variable than those of the other three

datasets, for each of the classifiers.

Regarding the internal and external CV curves, as expected, the internal and

external CV results for any given classifier and dataset combination were the same for

the maximum possible number of top genes model. On the whole, it was interesting

to see that the external CV results appeared to be slightly less variable than the

internal ones across the subset sizes, for all classifiers and datasets. Also, one can see

that the external CV error rates were greater than the internal ones, as the former

were based on CV in which the feature selection process was also included in the CV

procedure. It should be noted, though, that for all datasets but the Nutt one, the

discrepancy between the external CV results and internal CV results for all classifiers
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was not too substantials. Further, with external CV, selection bias was taken into

account. This issue is discussed along with optimism bias further in the following

section.
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4.5.2 Optimism Bias, Selection Bias, and Total Bias

Figures 4.12, 4.13, and 4.14 illustrate how the optimism bias, selection bias, and “total

bias” (optimism bias + selection bias) estimates, respectively, vary by classifier within

dataset across gene subset sizes (see Equations 2.34, 2.35, and 2.37).
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Figure 4.12: 10 × 10-Fold CV; Univ FSS; Optimism Bias vs. Gene Subset Size
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Figure 4.13: 10 × 10-Fold CV; Univ FSS; Selection Bias vs. Gene Subset Size
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Figure 4.14: 10 × 10-Fold CV; Univ FSS; Total (Sel + Opt) Bias vs. Gene Subset
Size
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It should be observed from the plots in Figure 4.12 – 4.14 that the Alon and Golub

datasets generally had smaller optimism, selection, and total bias values across the

subset sizes than the other datasets, for all classifiers, while the Nutt dataset generally

had the highest amount of all three bias values among all the classifiers, across subset

sizes. No subset size emerged with significantly better (or worse) bias values across

learning algorithms and datasets. With respect to the optimism bias plots in Figure

4.12, among the learning algorithms, DLDA yielded the lowest optimism bias values

for all six datasets, while 1-NN generally led to the highest bias values. Since all

the curves were predominantly positive across subset sizes and datasets, it was clear

that there was at least some penalty in terms of higher MER when not using all the

samples to both build the classifier and evaluate the classifier. With respect to the

selection bias plots in Figure 4.13, it should be observed that the Alon, Singh, and

Golub datasets were all marked by little selection bias across all subset sizes. The

Nutt, Shipp, and Pomeroy datasets all had slightly higher selection bias, especially

the Nutt dataset, whose selection bias curves for all classifiers were also much more

variable than those of the other datasets. No particular learning algorithm emerged

with significantly better (or worse) bias values across the subset sizes and datasets.

In addition, the fact that all the curves were predominantly positive across subset

sizes and datasets indicated there was at least some penalty in terms of higher MER

when performing external 10-fold CV instead of the internal CV approach. Finally,

looking at the “total bias” plots in Figure 4.14, the Nutt dataset again had the largest
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total bias values. Overall, there was clearly some bias present for all the classification

schemes, across all the datasets. To the extent that “total bias” measures overfit, the

results indicate that overfitting was not a consistent function of the number of genes

included.

Concluding this section is a table summarizing the means and standard deviations

of each of the three bias estimates across gene subset sizes, for each dataset and learn-

ing algorithm combination. The empirical grand means across all gene subset sizes,

datasets, and learning algorithms for each of the three bias estimates are provided

in the last row of Table 4.1. Overall, considering all datasets, classifiers, and gene

subset sizes together, the average optimism, selection, and total bias estimates were

only 4.7%, 2.6%, and 7.3%, respectively. It should be noted that if the Nutt data

were excluded, these averages became 3.6%, 1.9%, and 5.5%, respectively.

4.6 Final Thoughts

To begin with, for both the internal and external CV analyses, the repeated-run

analyses generally led to less variable MER curves than did the single-run analyses.

This finding was more evident with the external CV results than with the internal

CV results. As far as whether any set of MER curves from the external CV results of

Section 4.4 were lower than their corresponding results from the internal CV results

of Section 4.3, the latter were perhaps only slightly better across gene subset sizes

than their external CV counterparts, but not by a substantial amount at all. Also, it
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should be noted that the internal CV MER curves were less stable than those from

the external CV approach. Hence, having the feature selection process built into

the CV procedure helped avoid the effect of selection bias, and not at the expense

of significantly higher MER’s. For both implementations of CV, the SVM classifier

generally yielded the lowest and least variable MER curves across the datasets. With

respect to datasets, the Alon and Golub datasets generally yielded the lowest error

rates across all the learning algorithms, while the Nutt dataset was marked by the

highest ones. This reinforces what was suggested in the MDS plots in Section 4.2.1.

With respect to classifiers, the SVM classifier for the Golub, Shipp, and Singh results

seemed to be significantly better than the other datasets for the largest subset sizes,

while the DLDA classifier results for the Pomeroy, Shipp, and Singh datasets seemed

to be significantly worse than the other datasets for the largest subset sizes. Based

on the results of both the external and internal CV analyses, there appeared to be a

dataset-learning algorithm interaction, as well as some interaction between learning

algorithm and subset size and between dataset and subset size. Taking all three

parameters together, the presence of a three-way interaction among them was evident.

Considering each parameter individually, it appeared that dataset had the biggest

main effect on the error rates, followed by the size of the top gene subset, with

learning algorithm having the least effect.

Directly comparing the external and internal CV approaches, it was found that

the selection bias estimates across the majority of the gene subset sizes were positive,
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indicating there was at least some penalty, albeit not substantial, in terms of higher

MER when performing external 10-fold CV instead of the internal CV approach, as

expected. In addition, there seemed to be a bigger selection bias for the smaller sized

gene subsets (i.e., especially sizes ≤ 10) than for the bigger sized subsets – an obser-

vation consistent from classifier to classifier. Only the Nutt dataset had noticeably

higher selection bias estimates than those of the other datasets, but even then, on av-

erage it was 10%. Similarly, it was found for all datasets that there was a fair amount

of optimism bias present among the classification rules used, as a result of using the

same samples to both build the classifier as well as estimate the performance. Again

though, the optimism bias estimates across all the learning algorithms and subset

sizes were very small. Only the Nutt dataset had higher optimism bias estimates,

especially with the 1-NN classifier (on average across all classifiers, though, only 6%

for the Nutt data). To the extent that the “total bias” estimates measure overfit, the

results indicate that overfitting is not a consistent function of the number of genes

included in a given model.
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Table 4.1: Optimism, Selection, & Total Bias Across All Subset Sizes; Univ FSS

Dataset

Learning Opt.Bias Sel.Bias Tot.Bias

Algorithm Mean (SD) Mean (SD) Mean (SD)

Alon SVM 0.019 (0.013) 0.009 (0.011) 0.027 (0.013)

DLDA 0.010 (0.015) 0.014 (0.010) 0.024 (0.015)

1-NN 0.041 (0.018) 0.011 (0.016) 0.051 (0.025)

3-NN 0.016 (0.016) 0.011 (0.014) 0.026 (0.019)

7-NN 0.013 (0.013) 0.014 (0.015) 0.026 (0.016)

15-NN 0.010 (0.010) 0.012 (0.012) 0.022 (0.014)

Golub SVM 0.020 (0.011) 0.012 (0.016) 0.032 (0.018)

DLDA 0.017 (0.033) 0.021 (0.020) 0.037 (0.037)

1-NN 0.045 (0.018) 0.013 (0.019) 0.058 (0.020)

3-NN 0.025 (0.018) 0.012 (0.017) 0.036 (0.024)

7-NN 0.009 (0.010) 0.016 (0.018) 0.025 (0.020)

15-NN 0.016 (0.019) 0.014 (0.019) 0.030 (0.019)

Nutt SVM 0.166 (0.066) 0.087 (0.042) 0.253 (0.052)

DLDA 0.056 (0.045) 0.070 (0.027) 0.126 (0.029)

1-NN 0.243 (0.043) 0.050 (0.046) 0.293 (0.033)

3-NN 0.066 (0.031) 0.047 (0.040) 0.113 (0.056)

7-NN 0.043 (0.034) 0.052 (0.033) 0.095 (0.032)

15-NN 0.031 (0.033) 0.050 (0.035) 0.081 (0.036)

Pomeroy SVM 0.067 (0.032) 0.030 (0.028) 0.097 (0.026)

DLDA 0.018 (0.017) 0.043 (0.024) 0.061 (0.021)

1-NN 0.120 (0.036) 0.017 (0.020) 0.138 (0.043)

3-NN 0.026 (0.023) 0.022 (0.020) 0.048 (0.028)

7-NN 0.015 (0.012) 0.025 (0.021) 0.040 (0.022)

15-NN 0.021 (0.024) 0.027 (0.021) 0.049 (0.023)

Shipp SVM 0.043 (0.026) 0.028 (0.029) 0.071 (0.037)

DLDA 0.004 (0.005) 0.028 (0.031) 0.032 (0.031)

1-NN 0.114 (0.045) 0.024 (0.033) 0.138 (0.052)

3-NN 0.044 (0.021) 0.027 (0.032) 0.071 (0.034)

7-NN 0.019 (0.017) 0.031 (0.034) 0.050 (0.034)

15-NN 0.012 (0.009) 0.029 (0.035) 0.041 (0.034)

Singh SVM 0.068 (0.034) 0.017 (0.013) 0.085 (0.032)

DLDA 0.008 (0.008) 0.019 (0.012) 0.027 (0.012)

1-NN 0.151 (0.054) 0.010 (0.014) 0.161 (0.049)

3-NN 0.060 (0.036) 0.012 (0.015) 0.072 (0.026)

7-NN 0.034 (0.019) 0.012 (0.014) 0.046 (0.013)

15-NN 0.017 (0.013) 0.012 (0.017) 0.029 (0.013)

Grand Avg 0.047 (0.024) 0.026 (0.023) 0.073 (0.028)



Chapter 5

Multivariate-Based FSS Results

5.1 Introduction

Much of the work done to date with respect to binary classification of microarray data

has been based on univariate-based feature selection approaches. Of course, simple

univariate gene ranking approaches would suffice if, among the thousands of genes,

there exist a number of dominant (individually predictive) genes. However, based

on the results discussed in Section 3.4, I believe there is definitely cause to further

investigate the merits of a multivariate, modular approach to feature subset selection

for binary classification with high-dimensional data from microarrays. Biologically, it

is known that genes work together, so it would at least seem reasonable to consider

performing feature selection in a multivariate manner. At the same time, though, it

should be noted that biological interaction among genes does not necessarily imply

103
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that the genes will be jointly predictive in a classification problem. An evolutionary

algorithm such as the genetic algorithm has the advantage of being able to find at

least near-optimal solutions (i.e., subsets of jointly significant genes) to use for the

classification of microarray data in a setting in which there are simply too many genes

to find optimal combinations of genes through a completely exhaustive search of the

high-dimensional feature space. Further, with univariate screening to form a list of

genes based on their individual predictive power, it is suspected that there would

be solutions that would not be found by combining top individually predictive genes

formed from the list (as discussed in Sections 2.4.1 and 3.3).

This chapter includes misclassification error rates obtained using a multivariate-

based means of feature subset selection, the genetic algorithm, in both a single-

and two-stage setting, in conjunction with six supervised learning algorithms (SVM,

DLDA, and k-NN (k = 1, 3, 7, 15)). Both internal and external 10-fold cross-validation

were used to estimate the predictive accuracy of the various classification processes.

These analyses are done with respect to various gene subset sizes: 1, 2, 3, 4, 5, 10,

15, 20, and 25). The same six published microarray datasets and preprocessing used

for the CV analyses with univariate-based feature subset selection are used in this

chapter (refer to Section 4.2 for more details on the datasets). All analyses of this

chapter were performed using the R statistical software package [35] on a Red Hat

Linux machine (dual Intel(R) 3.06 GHz processors and 4 GB memory).
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5.1.1 Internal CV, External CV, and Repeated Runs with

the GA

One of the more interesting aspects with respect to the results of this chapter is that

half of them are based on implementing the GA in a manner not before investigated in

the microarray classification and feature sleection litearture. That is, the GA feature

selection processes are built into each stage of a 10-fold CV process (external CV)

such that the effect of selection bias can be taken into account, as was successfully

done with the univariate feature selection approach of Chapter 4. The other half

of the results are based on an internal CV approach, in which the GA is performed

’up-front’, prior to the CV process, using all the samples of each datset. For more

motivation on these two approaches to CV, refer to Section 4.1.3. Repeated (10) runs

of the GA process are used to provide more stable estimates of the 10-fold CV error

rates. The repeated runs are implemented via the genalg software (discussed further

in Section 5.1.3), which provides the user with the opportunity to run the entire GA

multiple (10) times for each microarray dataset. In the case of external CV, the GA

is applied 10 times for each of the 10 training subsets of samples corresponding to

each stage of the 10-fold CV process. The same 10 training subsets for each of the

datasets were used across learning algorithms to maintain consistency in interpreting

the 10-fold CV results among the classifiers.
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5.1.2 Single- and Two-Stage GA-Based Approaches

A multivariate-based means of feature subset selection, the genetic algorithm (GA),

was used to perform gene selection. For more details on the GA in general, the reader

is referred to [17, 20, 27]. Both a single-stage and a two-stage GA feature selection

process was implemented.

For the single-stage GA approach, the GA considers all p genes of each dataset.

The number of d-gene solutions (“chromosomes”) selected by each implementation

of the single-stage GA is 1000, so over 10 iterations, a “superpopulation” of 10000

candidate solutions are obtained. The number of generations to run for each iteration

of the GA was set to 250, which was large enough to ensure convergence of the 1000

solutions. For the two-stage approach (“GA-GA”), the first GA stage takes into

account all p genes, while in the second stage, the algorithm is applied to a reduced

set of genes based on the initial GA’s selection results for each training subset of the

datasets. For each training set of data, for a given subset size d, the union of all genes

selected among the final generation’s population of 1000 solutions of d genes from the

first stage of GA, for all 10 iterations of the GA, is retained as the reduced gene pool

to use for the second stage of GA. That is, the second stage’s GA procedure uses as its

initial gene pool all genes that appeared at least once among the “superpopulation”

of 10000 solutions obtained from the initial GA stage. This way, genes that may

appear in a small proportion of the 1000 solutions of any iteration, but appear in

multiple iterations of the GA for a given set of training data, have a better chance of
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being considered for use in building classifiers based on a given gene subset size and

an appropriate learning method. Thus, the idea behind the second implementation

of the GA would be to attempt to select the ’best of the best’ genes from a given

training dataset. It should be noted that for the second stage GA, the number of

d-gene solutions selected by each implementation of the GA was reduced to 500, since

the initial gene pool was reduced considerably (number of generations remained at

250).

5.1.3 Genalg Files and Parameterization

The code used is a C++ program named genalg from the Department of Applied

Mathematics and Biostatistics at the University of Texas M.D. Anderson Cancer

Center [8]. The GA portions of this research were run at M.D. Anderson on Condor,

a specialized workload full-featured batch management software system of roughly

80 machines used for handling multiple computationally intensive jobs in parallel (on

Windows-based platforms). In this program, the fitness function used to evaluate

the candidate d-gene solutions is mahalanobis distance (refer to Equation 2.10). For

more information on the genalg software, the reader should refer to [8].

The GA software requires a couple of parameterization files in addition to the

datafiles – a meta file and a driver file. The meta file, which only needs to be created

once for each dataset the GA is to be run on, provides basic information about the

dataset as described below:
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• <numPeaks> = number of rows p in the dataset (i.e., the number of genes;

varies by dataset)

• <numSamples> = number of columns N in the dataset (i.e., the number of

samples; varies by dataset)

• <classVector> = a binary vector of length N denoting which samples are of

one class and which are of the other (e.g., cancer (1) and normal (0); varies by

dataset)

• <dataFileName> = dataset that this meta file describes (tab-delimited dataset

with no header files; p rows and N columns),

Parameters to be specified for the implementation of the genetic algorithm are spec-

ified in the driver file as follows (if possible, values used in this research are given in

parentheses following each parameter):

• <numRuns> = number of iterations to run the genetic algorithm (10)

• <numIndividuals> = population size; i.e., number of d-length solutions gen-

erated per generation (1000 for first stage of GA and 500 for second stage of

GA)

• <numFeatures> = number of genes d to consider for each solution of the pop-

ulation during the GA runs (d = 1 : 5,10, 15, 20, 25), where d is specified by

this parameter
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• <numGenerations> = number of generations to run for each iteration of the

GA (250; large enough to have convergence of solutions)

• <probMutation> = probability in each generation of a feature being randomly

changed (0.001; standard value assigned to this parameter in GA applications)

• <outputFilePrefix> = prefix that every output file from a given run will begin

with (varies by dataset)

• <outputFrequency> = output will be written to file every g generations, where

g is specified by this parameter (the first and last generations are always written

to file) (10)

• <metaFileName> = name of meta file (varies by dataset)

5.1.4 Plot Breakdowns

All results shown in this section are based on error rates obtained from 10-fold exter-

nal and internal cross-validation, with the single-stage and two-stage GA processes

serving as the feature selection mechanisms. The same variety of plots generated for

the error rates based on univariate feature selection are also presented here. These

results include resubstitution, external CV, and internal CV curves plotted against

gene subset size, as well as plots investigating the effect of both optimism and selec-

tion bias as a function of subset size. The choice for gene subset sizes to use for all

datasets was made taking into account the feasibility of the computation that would
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be involved in running the GA as well as the desire to maintain relatively small gene

subset sizes. In this work, no subsets larger than 25 genes were considered, as pre-

liminary investigation showed no significant increase nor decrease in error rates for

these sizes, for all datasets and learning algorithms. This choice of subset size was

further supported by the univariate-based results of Chapter 4, in which the advan-

tages gained by having gene subset sizes larger than about 25 were not significantly

better, at the expense of having a more complicated model in terms of higher number

of genes).

5.2 Resubstitution, External & Internal CV, & Se-

lection & Optimism Bias

Similar to what was done in Chapter 4, in this section, a direct comparison of the

10-fold external and internal cross-validation results for both the single-stage and

two-stage GA-based feature selection approaches is provided in this section. Also

included are results in which the differences among the resubstitution errors, external

CV errors, and internal CV errors are computed as a function of subset size, as a way

of assessing the optimism, selection, and total bias incurred.
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5.2.1 Resubstitution, Internal CV, and External CV MER’s

The results of this section compare the 10-fold external and internal CV error rates,

as well as the resubstitution errors, across gene subset sizes for both the single-stage

and two-stage GA-based feature selection approaches.
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Figure 5.1: 10-Fold CV; Internal CV vs. External CV; 1- and 2-Stage GA FSS; Alon
Data
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Figure 5.2: 10-Fold CV; Internal CV vs. External CV; 1- and 2-Stage GA FSS;
Golub Data
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Figure 5.3: 10-Fold CV; Internal CV vs. External CV; 1- and 2-Stage GA FSS; Nutt
Data
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Figure 5.4: 10-Fold CV; Internal CV vs. External CV; 1- and 2-Stage GA FSS;
Pomeroy Data
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Figure 5.5: 10-Fold CV; Internal CV vs. External CV; 1- and 2-Stage GA FSS;
Shipp Data
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Figure 5.6: 10-Fold CV; Internal CV vs. External CV; 1- and 2-Stage GA FSS;
Singh Data
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From the plots, one can see that the resubsitution error curves for the 1-NN

classifier were always 0, as one would expect. Focusing on the datasets, one should

note that the Alon and Golub results possessed the lowest MER’s in general across

subset sizes (mostly in the range of only 0.05 and 0.10 for the external results; around

0.05 for the internal ones), while the Nutt dataset had the highest MER’s (mostly

between 0.30 and 0.50 for the external CV results; between 0.10 and 0.35 for the

internal results). Also, there seemed to be slightly more variation among the CV

curves and even the resubstitution curves across subset sizes for the Nutt data than

in the other five datasets. The other three datasets were quite comparable in terms of

their error rates across subset sizes. With respect to the single-stage vs. two-stage GA

procedure, the more complicated two-stage one surprisingly did not offer a noticeable

advantage in terms of lower error rates over the simpler single-stage one. In terms

of learning algorithms, it was not totally clear from these plots that one particular

algorithm was significantly better than any of the others across all the datasets. As

far as what size gene subset was best, this was not immediately clear either, as it

varied from classifier to classifier across subset sizes, with no dominant upward or

downward trend with increasing size, for each dataset.

Similar to what was found from the univariate-based feature selection results of

Chapter 4, there appeared to be a dataset-learning algorithm interaction (i.e., for

any given number of genes, the rank ordering of the learning algorithms varied from

dataset to dataset), an interaction between learning algorithm and gene subset size
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(i.e., for any dataset, the rank ordering of learning algorithms varied from gene subset

size to gene subset size), and perhaps minimal interaction between dataset and gene

subset size may have been present (i.e., for any learning algorithm, the rank order-

ing of the datasets varied only slightly from gene subset size to gene subset size).

Looking at all three of these experimental parameters together, it would seem that

a three-way interaction among them exists, since the effect of the number of genes

used for classification seemed to be dependent on both the classfier and the dataset.

Interactions aside, it appears that dataset had the biggest main effect on the error

rates, followed by the size of the gene subset size, with classifier apparently having

the least effect.

Finally, focusing on the internal and external CV curves for all the datasets, one

can see that the external CV error rates were greater than the internal ones, as ex-

pected. However, for all datasets but the Nutt one, the discrepancy between the

external and internal CV results for all classifiers was not too substantial. Further-

more, in using external CV, not only were the error rates comparable, selection bias

was taken into account, providing for more honest estimates of the misclassification

error rates. The effects of optimism and selection bias are investigated further in the

following section.
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5.2.2 Optimism Bias, Selection Bias, and Total Bias

For the single-stage GA results, Figures 5.7, 5.9, and 5.11 illustrate how the optimism

bias, selection bias, and “total bias” (optimism bias + selection bias) estimates, re-

spectively, vary by classifier within dataset across gene subset sizes (see Equations

2.34, 2.35, and 2.37). The analogous optimism, selection, and total bias plots for the

double-stage GA results are shown in Figures 5.8, 5.10, and 5.12, respectively.
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Figure 5.7: 10-Fold CV; 1-Stage GA FSS; Optimism Bias vs. Gene Subset Size

5 10 15 20 25

−
0

.1
0

.1
0

.2
0

.3
0

.4

Gene Subset Size

o
p

ti
m

is
m

 b
ia

s

SVM
DLDA
1−NN
3−NN
7−NN
15−NN

A 
 Alon

5 10 15 20 25

−
0

.1
0

.1
0

.2
0

.3
0

.4

Gene Subset Size

o
p

ti
m

is
m

 b
ia

s

SVM
DLDA
1−NN
3−NN
7−NN
15−NN

B 
 Golub

5 10 15 20 25

−
0

.1
0

.1
0

.2
0

.3
0

.4

Gene Subset Size

o
p

ti
m

is
m

 b
ia

s

SVM
DLDA
1−NN
3−NN
7−NN
15−NN

C 
 Nutt

5 10 15 20 25

−
0

.1
0

.1
0

.2
0

.3
0

.4

Gene Subset Size

o
p

ti
m

is
m

 b
ia

s

SVM
DLDA
1−NN
3−NN
7−NN
15−NN

D 
 Pomeroy

5 10 15 20 25

−
0

.1
0

.1
0

.2
0

.3
0

.4

Gene Subset Size

o
p

ti
m

is
m

 b
ia

s

SVM
DLDA
1−NN
3−NN
7−NN
15−NN

E 
 Shipp

5 10 15 20 25

−
0

.1
0

.1
0

.2
0

.3
0

.4

Gene Subset Size

o
p

ti
m

is
m

 b
ia

s

SVM
DLDA
1−NN
3−NN
7−NN
15−NN

F 
 Singh



122

Figure 5.8: 10-Fold CV; 2-Stage GA FSS; Optimism Bias vs. Gene Subset Size
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Figure 5.9: 10-Fold CV; 1-Stage GA FSS; Selection Bias vs. Gene Subset Size
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Figure 5.10: 10-Fold CV; 2-Stage GA FSS; Selection Bias vs. Gene Subset Size
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Figure 5.11: 10-Fold CV; 1-Stage GA FSS; Total (Sel + Opt) Bias vs. Gene Subset
Size
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Figure 5.12: 10-Fold CV; 2-Stage GA FSS; Total (Sel + Opt) Bias vs. Gene Subset
Size
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In general, regardless of whether single- or double-stage GA was used as the

feature selection process, it should be noted from Figures 5.7 – 5.12 that all datasets

except the Nutt one possessed very little optimism, selection, and total bias across

all gene subset sizes. Further, the bias curves for all classifiers of the Nutt dataset

were also much more variable than those of the other datasets. The Alon and Golub

datasets generally had smaller values of all three bias values for all the classifiers, as

was the case with the univariate-based feature selection approaches. No particular

subset size emerged with significantly better (or worse) bias values across learning

algorithms and datasets. Focusing on the optimism bias plots of Figures 5.7 and

5.8, among the learning algorithms, DLDA was among the lowest bias curves for all

six datasets, while 1-NN generally led to the highest bias values. As seen with the

univariate-based results of Chapter 4, the optimism bias values were predominantly

positive across subset sizes and datasets, indicating there was at least some penalty

in terms of higher MER when not using all the samples to both build the classifiers

and evaluate the classifiers. For the selection bias plots of Figures 5.8 and 5.9, it

should be noted that no particular learning algorithm emerged with significantly

better (or worse) bias values across the subset sizes and datasets. The fact that

all the curves were predominantly positive across subset sizes and datasets indicated

there was at least some penalty in terms of higher MER when performing external 10-

fold CV instead of the internal CV approach. These findings were also evident in the

univariate-based feature selection results of Chapter 4. Finally, looking at the “total
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bias” plots in Figures 5.11 and 5.12, the Nutt dataset again had the largest total bias

values. Overall, as was the case with the univariate results, there was clearly some

optimism and selection bias present for all the classification rules and across all the

datasets. To the extent that “total bias” measures overfit, the results indicate that

overfitting was not a consistent function of the number of genes included.

Concluding this section are a couple of tables summarizing the means and standard

deviations of the optimism, selection, and total bias estimates across gene subset

sizes, for each combination of dataset and learning algorithm. Table 5.1 contains the

single-stage GA-based feature selection results, while Table 5.2 contains the results

from the two-stage GA feature selection approach. The empirical grand means across

all subset sizes, datasets, and learning algorithms for each of the three bias estimates

are provided in the last row of each of the tables. Overall, considering all datasets,

classifiers, and gene subset sizes together, the average optimism, selection, and total

bias estimates for the GA-based results were only 3.6%, 6.5%, and 10.1%, respectively.

For the two-stage GA-based results, these averages were virtually identical at 3.7%,

6.3%, and 10.0%, respectively. It should be noted that if the Nutt data were excluded,

these averages became 3.1%, 4.5%, and 7.5% for the single-stage GA results and 2.9%,

4.4%, and 7.4% for the two-stage GA results.
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5.3 Final Thoughts

For both implementations of GA-based feature selection, for all datasets except the

Nutt one, the discrepancy between the external CV results and internal CV results

for all classifiers was not very substantial at all. External CV, however, allowed for

selection bias to be taken into account and hence provided for more honest estimates

of the misclassification error rates. Among the datasets, the Alon and Golub results

possessed the lowest CV MER’s in general across subset sizes, while the Nutt dataset

had the highest MER’s. This reinforces what was shown in the MDS plots in Section

4.2.1. Also, with the Nutt dataset, there seemed to be more variation among the CV

and resubstitution curves across subset sizes than in the other five datasets. The other

three datasets were quite comparable in terms of their error rates across subset sizes.

Considering the two GA-based feature selection approaches, the more complicated

two-stage one did not offer a noticeable advantage over the single-stage one. In terms

of learning algorithms, no particular algorithm emerged as significantly better than

any of the others across all the datasets. As far as what subset size was best, this

was not immediately clear, as it varied from classifier to classifier across subset sizes

for each of the datasets.

Based on the internal and external CV results, there appeared to be a dataset-

classifier interaction, as well as some interaction between classifier and gene subset

size and between dataset and subset size. Taking all three parameters together,

the presence of a three-way interaction among them was evident. Considering each
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parameter individually, it appeared that dataset had the biggest main effect on the

error rates, followed by subset size and classifier. Further investigating internal CV,

external CV, and resubstitution errors, the optimism and selection bias estimates

across the majority of the gene subset sizes were positive, indicating there was at

least some penalty in terms of a) higher MER when not using all samples to both

train and evaluate a given classifier, and b) performing external 10-fold CV instead the

internal CV approach. A direct comparison of the repeated-run internal and external

10-fold CV error rates based on the univariate feature selection and the internal and

external 10-fold CV results based on the two GA feature selection approaches are

provided in the next chapter.
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Table 5.1: Optimism, Selection, & Total Bias Across All Subset Sizes; 1-Stage GA

Dataset

Learning Opt.Bias Sel.Bias Tot.Bias

Algorithm Mean (SD) Mean (SD) Mean (SD)

Alon SVM 0.006 (0.013) 0.042 (0.024) 0.048 (0.028)

DLDA 0.005 (0.008) 0.041 (0.026) 0.047 (0.021)

1-NN 0.026 (0.019) 0.033 (0.025) 0.059 (0.030)

3-NN 0.014 (0.012) 0.040 (0.038) 0.054 (0.038)

7-NN 0.012 (0.013) 0.051 (0.032) 0.064 (0.030)

15-NN 0.019 (0.019) 0.036 (0.039) 0.055 (0.028)

Golub SVM 0.003 (0.007) 0.052 (0.026) 0.055 (0.030)

DLDA 0.001 (0.012) 0.024 (0.028) 0.025 (0.035)

1-NN 0.035 (0.020) 0.035 (0.033) 0.070 (0.023)

3-NN 0.012 (0.016) 0.032 (0.022) 0.043 (0.027)

7-NN 0.017 (0.016) 0.020 (0.017) 0.037 (0.025)

15-NN 0.014 (0.019) 0.014 (0.028) 0.028 (0.024)

Nutt SVM 0.021 (0.025) 0.237 (0.066) 0.259 (0.062)

DLDA 0.037 (0.058) 0.149 (0.060) 0.186 (0.062)

1-NN 0.198 (0.107) 0.094 (0.129) 0.291 (0.069)

3-NN 0.067 (0.042) 0.179 (0.125) 0.246 (0.101)

7-NN 0.047 (0.039) 0.170 (0.094) 0.217 (0.068)

15-NN 0.028 (0.023) 0.169 (0.069) 0.197 (0.069)

Pomeroy SVM 0.012 (0.018) 0.088 (0.037) 0.100 (0.031)

DLDA 0.005 (0.010) 0.091 (0.021) 0.096 (0.024)

1-NN 0.141 (0.079) 0.044 (0.040) 0.185 (0.063)

3-NN 0.048 (0.035) 0.070 (0.043) 0.119 (0.051)

7-NN 0.049 (0.036) 0.040 (0.048) 0.089 (0.035)

15-NN 0.020 (0.025) 0.040 (0.059) 0.059 (0.046)

Shipp SVM 0.014 (0.013) 0.056 (0.027) 0.069 (0.028)

DLDA 0.014 (0.011) 0.068 (0.031) 0.082 (0.029)

1-NN 0.128 (0.049) 0.036 (0.053) 0.163 (0.056)

3-NN 0.052 (0.038) 0.029 (0.058) 0.081 (0.041)

7-NN 0.023 (0.022) 0.034 (0.055) 0.056 (0.038)

15-NN 0.026 (0.027) 0.020 (0.060) 0.046 (0.056)

Singh SVM 0.013 (0.009) 0.090 (0.053) 0.103 (0.054)

DLDA 0.004 (0.009) 0.071 (0.045) 0.075 (0.044)

1-NN 0.126 (0.098) 0.036 (0.060) 0.162 (0.060)

3-NN 0.033 (0.019) 0.043 (0.058) 0.076 (0.046)

7-NN 0.033 (0.021) 0.032 (0.057) 0.065 (0.041)

15-NN 0.011 (0.018) 0.029 (0.072) 0.040 (0.071)

Grand Avg 0.036 (0.028) 0.065 (0.049) 0.101 (0.044)
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Table 5.2: Optimism, Selection, & Total Bias Across All Subset Sizes; 2-Stage GA

Dataset

Learning Opt.Bias Sel.Bias Tot.Bias

Algorithm Mean (SD) Mean (SD) Mean (SD)

Alon SVM 0.006 (0.013) 0.030 (0.015) 0.036 (0.025)

DLDA 0.007 (0.009) 0.037 (0.021) 0.044 (0.018)

1-NN 0.036 (0.023) 0.019 (0.027) 0.056 (0.032)

3-NN 0.009 (0.011) 0.031 (0.043) 0.040 (0.039)

7-NN 0.011 (0.010) 0.036 (0.030) 0.047 (0.027)

15-NN 0.027 (0.024) 0.027 (0.052) 0.053 (0.034)

Golub SVM 0.002 (0.007) 0.045 (0.024) 0.048 (0.024)

DLDA -0.001 (0.011) 0.032 (0.021) 0.031 (0.027)

1-NN 0.036 (0.025) 0.044 (0.036) 0.080 (0.030)

3-NN 0.020 (0.014) 0.030 (0.032) 0.049 (0.034)

7-NN 0.011 (0.019) 0.023 (0.020) 0.034 (0.029)

15-NN 0.010 (0.016) 0.019 (0.021) 0.029 (0.029)

Nutt SVM 0.013 (0.018) 0.268 (0.078) 0.281 (0.066)

DLDA 0.049 (0.057) 0.179 (0.069) 0.228 (0.094)

1-NN 0.189 (0.086) 0.145 (0.109) 0.334 (0.052)

3-NN 0.109 (0.075) 0.148 (0.138) 0.256 (0.089)

7-NN 0.054 (0.054) 0.109 (0.132) 0.163 (0.091)

15-NN 0.038 (0.035) 0.100 (0.138) 0.138 (0.112)

Pomeroy SVM 0.007 (0.011) 0.098 (0.035) 0.105 (0.033)

DLDA 0.015 (0.015) 0.095 (0.022) 0.110 (0.030)

1-NN 0.128 (0.093) 0.068 (0.054) 0.196 (0.062)

3-NN 0.049 (0.036) 0.078 (0.028) 0.127 (0.042)

7-NN 0.023 (0.019) 0.080 (0.036) 0.104 (0.034)

15-NN 0.015 (0.016) 0.065 (0.042) 0.080 (0.034)

Shipp SVM 0.008 (0.011) 0.057 (0.029) 0.065 (0.025)

DLDA 0.012 (0.012) 0.044 (0.026) 0.056 (0.023)

1-NN 0.125 (0.044) 0.034 (0.064) 0.160 (0.062)

3-NN 0.039 (0.022) 0.034 (0.055) 0.073 (0.055)

7-NN 0.021 (0.021) 0.040 (0.045) 0.061 (0.046)

15-NN 0.024 (0.021) 0.053 (0.040) 0.078 (0.039)

Singh SVM 0.009 (0.012) 0.074 (0.046) 0.082 (0.047)

DLDA 0.004 (0.008) 0.061 (0.034) 0.065 (0.034)

1-NN 0.123 (0.099) 0.028 (0.064) 0.151 (0.057)

3-NN 0.048 (0.025) 0.011 (0.054) 0.058 (0.041)

7-NN 0.030 (0.023) 0.026 (0.069) 0.056 (0.055)

15-NN 0.023 (0.012) 0.015 (0.073) 0.038 (0.073)

Grand Avg 0.037 (0.028) 0.063 (0.051) 0.100 (0.046)



Chapter 6

Univariate or Multivariate:

Comparing the Results

6.1 Introduction

This chapter reflects on the results of Chapters 4 and 5. Some time will first be

given to looking at how effective the single- and two-stage GA-based feature selection

processes were at selecting jointly discriminatory subsets of genes that would other-

wise not be detected by combining individually predictive genes from the univariate

screen. In addition, a direct comparison will be made among the univariate- and

multivariate-based approaches, in terms of the 10-fold internal and external CV error

curves across a selected group of gene subset sizes, for all learning algorithms and

datasets. All analyses of this chapter were performed using the R statistical software

133
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package [35] on a Red Hat Linux machine (dual Intel(R) 3.06 GHz processors and 4

GB memory).

6.2 Gene Selection: Univariate vs. Multivariate

This section investigates whether or not the GA feature selection approaches were

capable of detecting jointly discriminative groups of genes that would not be easily

selected by combining individually predictive genes from the simpler T-test feature

selection approach. Results for this section were generated in a resubstitution setting.

That is, results were based on performing the feature selection processes on all samples

of each dataset. This way, specific genes could be easily monitored, as opposed to

having the gene subsets vary at each stage of a 10-fold CV procedure. Although for

modeling purposes these particular genes would lead to biased results when using

cross-validation to assess the predictive accuracy since the same samples would be

used for both training and prediction purposes, the purpose of this study is to allow

for some quick insights into whether or not the multivariate-based feature selection

approaches were able to choose subsets of genes that would have gone otherwise

undetected from the univariate approach.

Tables A.7 – A.18 of Appendix A show the genes selected after both the first and

second stages of GA, for each of the subset sizes considered. It should be noted that

the columns entitled “Gene Index” provide the row (or column, depending on how

one imports the dataset) number of each particular gene, so the reader is referred to
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the original dataset for cross-referencing any gene of interest (see Section 3.2 for more

information pertaining to each dataset’s website where the data was downloaded).

Regarding the subset sizes, it should be noted that they are the same ones used in

the multivariate-based results of Chapter 5, since they represent a common subset

from those also considered from the univariate results of Chapter 4, for all six datasets.

In addition, these subset sizes yielded desirable CV error rates in both analyses. The

low error rates and small subset sizes are both favorable aspects to consider when

designing models for use in classifying gene expression data. The tables show where

on the univariate ranked gene list each of the selected genes was positioned, as well

as each gene’s p-value. From these tables, it is interesting to note where many of

the genes selected by the GA-based feature selection schemes were located on the

univariate-based feature selection list. For all situations except the 1st stage GA

results from the Shipp dataset, the gene subsets of size 1 and 2 were made up of

the same genes from the univariate and both GA feature selection schemes. Beyond

these subset sizes, though, the matches were not exact. In fact, considering as many

as the top 100 genes of the univariate list, the GA-based processes selected genes that

were not even considered within these top 100 univariately selected genes. Table 6.1

provides a breakdown of the percentage of genes (relative to each gene subset size)

among the GA-based feature selection processes that were not even among the top

100 univariately significant genes, for all six datasets.

Another interesting aspect with respect to the effect of performing the second
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stage of GA is to consider how many genes selected for the final subsets after the

two-stage GA process were not among the final subsets after the first stage of GA.

Table 6.2 shows a breakdown of what percentage of genes (relative to each subset size

of genes) fell into this category.

Table 6.1: Percentage of Genes Per Subset Size Not Within Top 100 Univ List
(Feature Selection Based on All Samples)

Alon Golub Nutt Pomeroy Shipp Singh

Size GA1 GA2 GA1 GA2 GA1 GA2 GA1 GA2 GA1 GA2 GA1 GA2

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.0 0.0 0.0 0.0
3 66.7 66.7 33.3 33.3 33.3 66.7 33.3 100.0 100.0 66.7 0.0 33.3
4 50.0 50.0 50.0 25.0 75.0 75.0 50.0 50.0 75.0 100.0 50.0 50.0
5 20.0 60.0 40.0 20.0 100.0 80.0 80.0 60.0 60.0 80.0 60.0 60.0
10 70.0 70.0 60.0 60.0 70.0 90.0 70.0 80.0 70.0 80.0 60.0 60.0
15 73.3 66.7 60.0 80.0 93.3 86.7 66.7 60.0 93.3 80.0 73.3 73.3
20 75.0 75.0 70.0 80.0 95.0 95.0 85.0 80.0 85.0 85.0 85.0 95.0
25 84.0 84.0 76.0 72.0 96.0 92.0 76.0 84.0 96.0 96.0 84.0 76.0

Table 6.2: Percentage of Genes Per Subset Size Selected from 2-Stage, but not
Single-Stage, GA Process
(Feature Selection Based on All Samples)

Size Alon Golub Nutt Pomeroy Shipp Singh

1 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 50.0 0.0

3 0.0 66.7 100.0 0.0 66.7 33.3

4 0.0 50.0 100.0 50.0 25.0 50.0

5 80.0 40.0 40.0 100.0 40.0 20.0

10 70.0 70.0 100.0 60.0 40.0 90.0

15 73.3 46.7 80.0 73.3 73.3 80.0

20 65.0 60.0 90.0 90.0 90.0 100.0

25 92.0 80.0 100.0 92.0 84.0 88.0
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From Table 6.2, just looking at the gene indices selected after the initial stage

of GA and after the second stage of GA, for all datasets except the Shipp one, the

gene subsets for both GA-based processes were the same for subset sizes 1 and 2.

Beyond that, one can see that for all datasets, there were a number of genes selected

after the two-stage GA process that were not in the final subsets after the 1st stage

of GA, across all six datasets. This was especially true for gene subset sizes 10, 15,

20, and 25. It is feasible to consider that these genes may have appeared in only

a small proportion of the 1000 solutions for any run in the first stage of GA, but

still appeared in multiple runs of the GA. With the two-stage GA process, these

genes had a better chance of being selected for use in building classifiers, since the

second implementation of the GA considered as its gene intial gene pool all genes

that appeared at least once in the final generation’s solutions for each of the 10 runs

from the intial GA stage. Hence, the second implementation of the GA attempted

to select the ’best of the best’ genes, some of which may not necessarily have been

selected as part of the final subset of genes for a given subset size after the initial GA

stage.

Ultimately though, perhaps the more important thing to compare is the genes

selected by the more sophisticated GA-based processes and those selected by the

univariate feature selection process. From Table 6.1, one should note that for all

datasets except the Golub one in the case of the two-stage GA feature selection pro-

cess, for subset sizes of four or more, both the single- and double-stage GA processes
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generated final gene subsets in which the majority of the genes of each subset size

were not among the top 100 from that dataset’s univariately significant genes. This

finding was especially true for subset sizes of 10, 15, 20, and 25 – all of which yielded

very favorable 10-fold internal and external CV misclassification error rates, aside

from the unusally high error rates of the Nutt dataset. Thus, these GA approaches

provided the opportunity to take into account the presence of discriminatory gene

subsets composed of genes that otherwise would have gone undetected from a ranked

list of 100 genes generated by the univariate testing method.

6.3 Head-to-Head CV MER Results

The 10-fold external and internal CV results based on a) the univariate- (T-test-)

based feature selection process, b) the single-stage GA process, and c) the 2-stage

GA process are compared directly in a series of plots (Figures 6.1 – 6.6). For each

dataset, a series of six plots are presented, corresponding to each of the six classifiers.

Each plot includes the CV MER curves for the univariate- and two multivariate-based

feature selection results. It should be noted that for the univariate-based results, the

repeated- (10-) run CV results are used. Also note that these subset sizes are those

used in the multivariate-based results of Chapter 5, for reasons given in Section 6.2.
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Figure 6.1: 10-Fold Ext & Int CV; Univ FSS vs. 1- & 2-Stage GA FSS; Alon Data
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Figure 6.2: 10-Fold Ext & Int CV; Univ FSS vs. 1- & 2-Stage GA FSS; Golub Data
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Figure 6.3: 10-Fold Ext & Int CV; Univ FSS vs. 1- & 2-Stage GA FSS; Nutt Data
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Figure 6.4: 10-Fold Ext & Int CV; Univ FSS vs. 1- & 2-Stage GA FSS; Pomeroy
Data
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Figure 6.5: 10-Fold Ext & Int CV; Univ FSS vs. 1- & 2-Stage GA FSS; Shipp Data
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Figure 6.6: 10-Fold Ext & Int CV; Univ FSS vs. 1- & 2-Stage GA FSS; Singh Data
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First off, with respect to the external and internal CV results in Figures 6.1 – 6.6,

several things should be noted. Overall, a finding that was quite evident throughout

all the classifiers and datasets was the fact that the external CV error rates were

in general higher than the corresponding internal CV error rates. This trend was

expected since the feature selection procedure was incorporated into the CV process,

thus providing for classifiers that yielded more realistic error rates than would be the

case if the feature selection were performed on all N samples of a given dataset prior

to performing the cross-validation. For all datasets, whether internal or external CV

was used, it was clear that the single- and double-stage GA-based processes led to

very comparable misclassification errors across learning algorithms and subset sizes.

Furthermore, it was interesting to note that if one were to compare the univariate-

based results with either of the GA-based results, for either type of CV and any

choice of learning algorithm, one can see that the GA-based analyses did not offer

any significant advantage over the univariate results in terms of lower error rates

across subset sizes. This finding was evident across all six datasets.

It should be also be noted that as mentioned in Chapters 4 and 5, the Alon and

Golub datasets (Figures 6.1 and 6.2, respectively), had internal and external CV error

rates that were in general lower across subset sizes, learning algorithms, and feature

selection methods than those from the other four datasets. On the other hand, the

Nutt dataset had error rates that were markedly higher than those of the other four

datasets. These findings reinforce what was suggested in the MDS plots in Section
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4.2.1. In terms of learning algorithms and subset sizes, no particular algorithm or

size emerged as clearly the “best” in terms of lowest error rates (internal or external)

across all the datasets.

Side Note: Confirming the Presence of a Three-Way Interaction

It should be noted that to further investigate the presence of a three-way interaction

among dataset, learning algorith, and subset size (a notion suggested in the results

from Chapters 4 and 5.1), a linear model approach was taken. Treating the external

CV MER as the response variable and dataset, learning algorithm, and subset size as

the three predictor variables, a linear model was constructed. Dataset and learning

algorithm were treated as factor variables, while subset size was treated as a con-

tinuous variable. This model included the two- and three-way interactions as well.

Although the normality of residuals was verified from this model, there was a piece-

wise linear trend evident in a plot of the residuals vs. gene subset size – decreasing

residuals from subset size 1 to 5 and then increasing residuals from size 5 to 25. This

trend was successfully removed by fitting a piece-wise linear function for gene subset

size. In order to test the significance of the three-way interaction, this first model was

compared to a second model which contained all the nested main effects and two-way

interactions, but not the three-way interaction. Since the second model was nested

within the first and since the first model included 25 additional parameters, an F

test was used to assess the significance of the interaction term. It was found that the
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F-statistic was indeed significant at the 0.001 significance level. This study confirmed

the suggestion that a three-way interaction exists – that is, that the subset size effect

was dependent on both the choice of learning algorithm and which dataset was being

investigated.

Further Insights: Collapsing the Results Across Learning Algorithms, Sub-

set Sizes, and Datasets

First off, combining the results across learning algorithms, it was interesting to observe

which subset size led to the minimum average error rate for each of the three feature

selection approaches and for each of the six datasets. These results are shown in

Tables 6.3 and 6.4.

Table 6.3: Minimum 10-Fold Internal CV Average MER’s Across All Classifiers
Univ FSS vs. 1- & 2-Stage GA FSS

Univ FSS 1-Stage GA FSS 2-Stage GA FSS

Dataset MER (SD) Subset Size MER (SD) Subset Size MER (SD) Subset Size

Alon 0.035 (0.020) 10 (also 15) 0.026 (0.018) 4 0.014 (0.013) 10

Golub 0.025 (0.011) 25 0.031 (0.024) 5 0.030 (0.036) 10

Nutt 0.159 (0.018) 10 0.071 (0.037) 10 0.052 (0.034) 5

Pomeroy 0.080 (0.007) 15 0.056 (0.024) 4 0.048 (0.019) 4

Shipp 0.055 (0.006) 4 0.044 (0.033) 25 0.048 (0.033) 15

Singh 0.075 (0.021) 10 0.049 (0.021) 5 0.039 (0.014) 4



148

Table 6.4: Minimum 10-Fold External CV Average MER’s Across All Classifiers
Univ FSS vs. 1- & 2-Stage GA FSS

Univ FSS 1-Stage GA FSS 2-Stage GA FSS

Dataset MER (SD) Subset Size MER (SD) Subset Size MER (SD) Subset Size

Alon 0.051 (0.017) 15 0.026 (0.021) 2 0.026 (0.021) 2

Golub 0.053 (0.014) 10 0.051 (0.011) 3 0.056 (0.009) 1 (also 15)

Nutt 0.259 (0.032) 25 0.235 (0.066) 15 0.277 (0.046) 25

Pomeroy 0.119 (0.008) 25 0.131 (0.013) 4 0.133 (0.012) 5

Shipp 0.131 (0.029) 15 0.094 (0.025) 25 0.095 (0.035) 10

Singh 0.092 (0.014) 10 0.108 (0.020) 15 0.106 (0.016) 20
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For all datasets except the Singh data, Table 6.3 shows that the minima of the

average 10-fold internal CV MER’s across classifiers using either of the GA-based

analyses were based on subset sizes that were smaller than or equal to those that

led to the minimum MER’s using the univariate-based analyses. Also, the minimum

average MER’s from performing univariate feature selection were each slightly higher

than the two GA-based approaches for all datasets except the Golub one, although

the Golub error rates for the 1- and 2-stage GA-based results were based on subset

sizes of 20 and 15 genes less, respectively. Furthermore, in looking at the 1-stage

and 2-stage GA results, one can see that the minimum average 2-stage GA error

rates were slightly lower than those of the 1-stage process for all datasets except the

Shipp one, although these MER’s were still very comparable. From the external CV

results in Table 6.4, the 2-stage GA results were very comparable to those of the 1-

stage process for all datasets. The univariate-based results were all higher than those

of the 1-stage GA results for all datasets except the Pomeroy and Singh datasets.

However, they were lower than those of the 2-stage GA results for all datasets except

the Alon and Shipp data. In terms of subset sizes at which the minimum average

MER’s occurred, for all datasets except the Shipp and Singh ones, the sizes from the

univariate-based results were all at least as big as those from the two GA-based feature

selection approaches. Considering both tables together, one can see that all minimum

MER’s based on the external CV analyses were larger than their counterparts from

the internal CV analyses, as expected since the feature selection was built into the
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CV process. With respect to subset sizes, in the majority of the dataset and feature

selection method combinations, the sizes for the external CV results were larger than

those of the internal CV results.

Finally, the empirical grand means for both internal and external CV results,

as well as the resubstitution results, are presented in Table 6.5. Results for each

of the three feature selection approaches are averaged across all datasets, learning

algorithms, and subset sizes. The average resubstitution and CV error rates from the

univariate-based feature selection results were quite comparable to each of the GA-

based analyses. In comparing the average internal CV error rates and the average

resubstitution error rates, the two GA-based processes led to internal CV errors that

were slightly lower than the resubstitution ones, but the opposite relationship held

for the univariate-based feature selection results. Also, it should be noted that the

discrepancy between the average external and internal CV error rates, as well as

between the external CV and resubstitution error rates, was quite evident for all three

feature selection approaches. These relationships among resubstitution, internal CV,

and external CV, are investigated further in Section 6.4.

Table 6.5: IntCV, ExtCV, Resub MER: Empir Grand Means Across All Datasets,
Classifiers, & Subset Sizes; Univ FSS vs. 1 & 2-Stage GA FSS

Univ FSS 1-Stage GA FSS 2-Stage GA FSS

Resub MER 6.2 % 5.5 % 5.3 %
IntCV MER 5.7 % 9.1 % 9.0 %
ExtCV MER 14.7 % 15.6 % 15.4 %
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6.4 Head-to-Head Optimism and Selection Bias Re-

sults

Again referring to Figures 6.1 – 6.6, it is of particular interest to note the effect of

performing internal CV instead of external CV. Whether univariate or multivariate

feature selection was implemented, one can see that the external CV curves for all

learning algorithms were in general slightly higher across subset sizes than those of the

internal CV. This was evident for all datasets, although it should be noted that the

discrepancies between error rates between the internal and external CV curves from

the Nutt dataset were larger than those from the other five datasets. The slightly

higher external CV error rates did not come as a surprise, though. With external CV,

the feature selection process was built into the CV procedure. Because of this, the

error rates were more reflective of true generalization error, since the feature selection

was performed on 90% of the samples; that is, externally to each CV stage’s test

set samples. Also, although resubstitution curves were not explicitly shown in these

plots, it should be noted that there was also a penalty in terms of higher error rates

across all subset sizes, learning algorithms, and datasets from performing internal CV

over resubstitution error estimation. This was expected since resubstitution estima-

tion was based on performing the feature selection, classifier training, and classifier

evaluation on all the samples, which of course resulted in extremely optimistic error

rates. As first discussed in Section 2.7, the higher error rates incurred from perform-
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ing a) resubstitution instead of internal CV and b) external CV instead of internal

CV bring up the issues of optimism and selection bias, respectively. Both of these

bias measures are plotted against subset size in Figures 6.7 – 6.12, for each dataset

and learning algorithm combination. These tables provide for a direct comparison

between the optimism and selection bias values incurred from using univariate-based

feature selection and those incurred from using either of the two GA-based feature se-

lection approaches. For simplicity purposes, it should be noted that the “total bias”

curves are not shown on each of these plots. One can get an idea of these results

knowing that the “total bias” is merely the sum of the optimism bias and selection

bias values at each subset size.
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Figure 6.7: 10-Fold CV; Univ, 1-, & 2-Stage GA FSS; Opt & Sel Bias vs. Subset
Size; Alon Data
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Figure 6.8: 10-Fold CV; Univ, 1-, & 2-Stage GA FSS; Opt & Sel Bias vs. Subset
Size; Golub Data
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Figure 6.9: 10-Fold CV; Univ, 1-, & 2-Stage GA FSS; Opt & Sel Bias vs. Subset
Size; Nutt Data
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Figure 6.10: 10-Fold CV; Univ, 1-, & 2-Stage GA FSS; Opt & Sel Bias vs. Subset
Size; Pomeroy Data
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Figure 6.11: 10-Fold CV; Univ, 1-, & 2-Stage GA FSS; Opt & Sel Bias vs. Subset
Size; Shipp Data
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Figure 6.12: 10-Fold CV; Univ, 1-, & 2-Stage GA FSS; Opt & Sel Bias vs. Subset
Size; Singh Data
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From Figures 6.7 – 6.12, one can see the results from the univariate- and multivariate-

based analyses from Chapters 4 and 5, respectively, together. That is, with respect to

datasets, the Alon and Golub ones generally had smaller optimism and selection bias

values across the six learning algorithms and all the gene subset sizes. On the other

hand, the Nutt dataset generally had the largest bias values among the classifiers and

subset sizes. In terms of learning algorithms, both DLDA and 1-NN generally led

to smaller optimism bias values than did the other four algorithms, while there was

no clear best (or worst) learning algorithm that emerged for the selection bias re-

sults. Similarly, no particular subset size emerged with significantly better (or worse)

optimism and selection bias values across learning algorithms and datasets.

Furthermore, directly comparing the optimism and selection bias curves from the

univariate, 1-stage, and 2-stage feature selection processes, several things should be

noted. Focusing on the two GA-based feature selection curves in each of the datasets’

plots, the two-stage GA process did not offer noticeably lower optimism nor selection

bias values across the learning algorithms and subset sizes than those from the single-

stage GA process. With respect to the optimism bias curves only, no immediately

obvious conclusions were evident, in terms of the univariate-based results versus either

of the two GA-based results. At certain subset sizes the univariate-based bias values

were higher than the multivariate ones, but for other sizes the opposite was true,

and even these trends varied by learning algorithm and dataset. With respect to

the selection bias curves, though, it was very interesting to note that in general the
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univariate-based bias values were often lower than those of each of the two GA-

based selection bias values across subset sizes and learning algorithms. Regarding

the latter, these findings seemed to be even more evident for the SVM and DLDA

learning algorithms than for the four k-NN algorithms. To further investigate these

bias findings, let us revisit the empirical grand means for the optimism, selection, and

total bias results, averaged across all datasets, learning algorithms, and subset sizes.

These results are presented for all three feature selection approaches together in Table

6.6. The average optimism bias estimates from each of the GA-based analyses were

only slightly less than that from the univarate-based analyses. However, the average

selection and total bias estimates from each of the GA-based analyses were roughly

2.5 and 1.4 times, respectively, the average selection and total bias estimates incurred

from performing univariate-based feature selection.

Table 6.6: Opt & Sel Bias: Empir Grand Means Across All Datasets, Classifiers, &
Subset Sizes; Univ FSS vs. 1 & 2-Stage GA FSS

Univ FSS 1-Stage GA FSS 2-Stage GA FSS

Opt. Bias 4.7 % 3.6 % 3.7 %
Sel. Bias 2.6 % 6.5 % 6.3 %
Tot. Bias 7.3 % 10.1 % 10.0 %

6.5 Final Thoughts

Overall, the results of this chapter have addressed several important issues regard-

ing feature subset selection and its role with respect to the use of cross-validation
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when assessing classifiers. In particular, questions involving a) the use of univariate

versus multivariate (GA-based) feature subset selection methods and b) how to most

honestly evaluate candidate classifiers such that the effects of optimism and selection

bias are properly taken into account, were addressed across six published two-class

microarray datasets, six learning algorithms, and a number of gene subset sizes. Gen-

eral conclusions that can be inferred from the results presented in Chapters 4, 5, and

6 are the subject of the following chapter.



Chapter 7

Conclusions and Further Thoughts

Chapter 4 presented 10-fold internal and external cross-validation misclassification

error rate results, as well as optimism, selection, and total bias results, across six

learning algorithms and six published microarray datasets. All CV results were based

on a feature selection approach that was univariate in nature (rank-based, unequal

variance T-tests). Chapter 5 presented the same types of results based on two feature

selection approaches that were multivariate in nature – a single-stage and two-stage

genetic algorithm. In Chapter 6, the external and internal cross-validation results

based on all three feature selection methods were directly compared. This chapter

provides an overall summary of all these results by focusing on four important areas

from this large-scale empirical comparison study of feature selection in binary clas-

sification with microarray data: choice of learning algorithm and subset size, choice

of feature subset selection technique, choice of using internal CV versus external CV,

162
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and finally the presence of optimism bias and selection bias.

7.1 Learning Algorithms and Subset Sizes

Based on these studies, the findings across all six datasets have suggested that the

choice of learning algorithm and gene subset size were not clear-cut choices when

constructing a prediction model for performing binary classification on a given mi-

croarray dataset, based on the 10-fold internal and external CV prediction errors of

the classification process implemented. As far as subset sizes go, however, it was clear

that desirable classification results could be obtained using gene subset sizes of 25 or

less, based on the six published microarray datasets of this study at least.

7.2 Feature Subset Selection Approaches

7.2.1 Gene Selection

It is important for the reader to recall that for the purpose of actually determining

particular genes to comprise each subset size, a resubstitution setting was used to

obtain the results discussed in this section. For all datasets, there were a number

of genes selected by the two-stage GA process for the final subsets of genes for a

given subset size, but not for the final subsets of genes selected by the initial stage

of GA. For gene subset sizes 10, 15, 20, and 25, this was especially true (see Table

6.2). These genes may have appeared in only a small proportion of the 1000 solutions
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found within any single GA run, but they still may have appeared in multiple runs

of the GA. With the two-stage GA process, these genes had a better chance of being

selected for use in building classifiers. Recall that the second implementation of the

GA attempted to take this issue into account by considering for its initial gene pool

all genes that appeared at least once among the final generation’s 1000 solutions for

each of the 10 runs from the initial implementation of the GA procedure (i.e., at least

once in the “superpopulation” of 10000 solutions from the initial GA procedure).

If there were intuition for a particular microarray dataset that as many genes as

possible should be taken into account when performing feature subset selection, then

the GA-based multivariate approaches to selecting genes from the initial gene pool

would be warranted. The motivation for implementing the two-stage GA process is

as just described – to take into account all genes chosen among the final generation’s

solutions from all runs of an initial (single-stage) implementation of GA.

Also in a resubstitution setting, for the same reason given above, this gene selection

issue was investigated in comparing the univariate feature selection results versus both

the single- and the double-stage GA-based feature selection results (refer to Table

6.1). For subset sizes of four or greater, both GA-based feature selection processes

generated final gene subsets in which the majority of the genes relative to each subset

size were not among the top 100 univariately-ranked gene list. For subset sizes of 10,

15, 20, and 25, all of which yielded favorable misclassification error rates (aside from

the unusually high error rates in general incurred with the Nutt data), this finding



165

was especially true. It should be noted that this finding was true for all datasets

except the Golub one, in the case of the two-stage GA feature selection process.

7.2.2 CV Error Rates

The ability of the two-stage GA feature selection process to select genes that the

single-stage procedure would not have included in its final subsets has been shown.

However, of particular interest is that in terms of the actual 10-fold internal and ex-

ternal CV error misclassification error rates, the two procedures were very comparable

across all six learning algorithms, all subset sizes, and all six datasets, with the more

sophisticated two-stage procedure offering only minimal advantages with respect to

lower error rates. Perhaps even more surprising, however, was how well all the CV

misclassification error rates based on the simple rank-based T-tests did in comparison

to the more complicated and computationally intensive GA-based feature selection

procedures. Despite the ability of the GA procedures to select subsets of genes that

would most likely go undetected via the combination of individually predictive genes

from say, the top 100 genes from a ranked genes list, the results in Chapter 6 clearly

showed that neither of the two GA-based feature selection methods led to significantly

better 10-fold CV error rates. This finding was true across all learning algorithms,

all subset sizes, and all six datasets, whether internal CV or external CV was imple-

mented. More discussion on the topics of internal and external CV in particular is

provided in the following section.
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7.3 Internal CV vs. External CV

One of the most important aspects of this research was the investigation of the role

of feature selection with respect to cross-validation. The standard role of feature

selection with respect to cross-validation has been to perform the feature selection

on all N samples of a given dataset, such that the test samples at each stage of

a CV process were also used during the feature selection process (“internal CV”).

Hence, overly optimistic error rates would be incurred. As a major part of this

large-scale comparative study of gene expression-based clinical outcome classifiers,

this research considered another approach to doing the cross-validation – external

CV, in which the feature selection was performed at each stage of a CV process only

on that stage’s training set samples, external to each stage’s test set samples. In

doing so, the idea was to provide for more realistic and honest misclassification error

rates than would normally be the case with internal CV and of course resubstitution

error estimation. The results presented in Chapters 4, 5, and 6 confirmed this idea

across all six datasets, all six learning algorithms, and all subset sizes, using both

univariate- and GA-based feature selection approaches; the latter FSS technique of

which had never been implemented in a CV setting of this nature before. Whether

the feature selection method was univariate or multivariate in nature, the results of

this research showed that a 10-fold external CV procedure did not suffer much at

all in terms of higher error rates than those of a 10-fold internal CV procedure to

assess the predictive accuracy of a given binary classification procedure, while at the
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same time incorporating the feature selection process into the cross-validation. In

general, the plots shown in Figures 6.1 – 6.6 illustrated these discrepancies between

the external CV results and internal CV results. Only in the case of the Nutt dataset

were these discrepancies noticeably larger. This dataset, for reasons unknown at

this point, generally had unusually high error rates for all classifiers, relative to the

other five datasets’ corresponding results (a finding that what was suggested in the

exploratory MDS plots in Section 4.2.1). It is extremely important, however, to not

ignore the discrepancies that exist in terms of the external CV error rates being higher

in general than those obtained from internal CV. This situation arose as a result of

the feature selection procedure being built into the CV process, thus providing for

classifiers that yielded more realistic error rates than would be the case if the feature

selection were performed on all N samples of a given dataset prior to performing the

cross-validation. Taking all the internal CV error rates together and averaging them

across datasets, learning algorithms, feature subset sizes, the empirical grand means

for the error rates, based on univariate, single-stage, and double-stage GA feature

selection, were 5.7%, 9.1%, and 9.0%, respectively. For external CV, these empirical

grand means were quite higher, as one would expect – 14.7%, 15.6%, and 15.4%,

respectively. More insights into internal and external CV were provided during the

investigation of optimism and selection bias, which is summarized in the following

section.
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7.4 Optimism and Selection Bias

Directly related to the resubstitution, internal CV, and external CV methods of

assessing the predictive accuracy of a classification process are the issues of optimism

and selection bias, incurred from performing a) resubstitution instead of internal CV

and b) external CV over internal CV, respectively. Figures 6.7 – 6.12 allowed for a

direct comparison to be made between the optimism bias curves from the univariate-

based and each of the two GA-based feature selection methods, as well as between the

selection bias curves from the univariate and GA-based feature selection approaches.

Although no clear conclusions were evident with respect to the optimism bias curves

for each of the three feature selection methods, in general the single- and two-stage

GA-based selection bias estimates were higher than those of the univaritate-based

analyses across subset sizes, learning algorithms, and datasets. In fact, taking all

the selection bias estimates together across all subset sizes, learning algorithms, and

datasets, the average selection bias estimates from each of the GA-based methods

were roughly 2.5 times that of the univariate-based method. Thus, although the more

sophisticated GA feature selection techniques were able to select subsets of genes that

would likely go undetected via combining univariately discriminatory genes from a

ranked list of genes, it is important to realize that they could nevertheless also have

greater potential to select spurious genes than would be the case with a univariate-

based feature selection approach. This finding makes sense in that since the selection

bias measures the bias in the estimate of CV prediction error due to feature selection,
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one would suspect that it would be higher with the multivariate feature selection

approach since this approach searches a much higher dimensional model space when

finding the features. Thus, with the multivariate feature selection approach, it would

naturally be more possible to include spurious genes in candidate models, which can

be viewed as one type of data overfit. That is, considering the notion of overfitting

to mean that too much flexibility is allowed in the model space, such that the models

trace the data too closely, likely select spurious features of the given data set, and

hence do not accurately generalize to independent test data, it would be safe to say

that the GA-based methods tend to overfit the data. This notion of data overfit can

also be recognized by considering the total bias measure defined in Equation 2.37.

That is, taking total bias to be the difference between external CV MER and training

error, the average total bias estimates across all subset sizes, learning algorithms,

and datasets from each of the GA-based methods were nearly 1.5 times that of the

univariate-based approach. Ultimately, whether a univariate or a GA-based feature

selection approach is implemented, the presence of both optimism and selection bias

should be taken into account through the use of external CV.

7.5 Impact

This research provided for a large-scale empirical comparative study on feature subset

selection in binary classification with DNA microarray data. This research builds on

the findings of the studies by Ambroise and McLachlan [7], Dudoit and Fridlyand [14],
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Dudoit et al. [15], and Xiong et al. [41], in the sense that 10-fold external CV was

implemented to take into account selection bias when estimating the misclassification

error of a classification rule based on microarray data. However, in this research, the

external CV is performed in conjunction with both univariate- and multivariate GA-

based feature selection to assess the performance of various prediction rules across

multiple two-class microarray datasets. The current research also extends on the

analyses of Li et al. [23] and [24] in that the GA is actually incorporated into each

stage of a 10-fold (external) CV procedure, rather than have the data split into

reduced training and test sets. It also builds on these results in that once subsets

of genes are selected by the initial stage of GA (single-stage approach), all unique

genes selected are not then pooled together again such that the final subsets used

for modeling would actually be selected based on their frequency of selection from

the first stage GA procedure – ultimately an inherently univariate notion of feature

selection. Instead, in this research the GA-selected gene subsets are left alone and not

further formed based on frequency of selection among all subsets. Also, Mahalanobis

distance, a simpler and less computationally intensive objective function than k-NN,

is employed in the GA implemented in this research.

Ultimately, this study has provided a more extensive comparative analysis than

any type of microarray classification study to date in terms of the number of datasets

considered, the range of classifiers (including learning algorithms, feature subset se-

lection methods, and subset sizes), and the investigation of both internal and external
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K-fold CV as a means of assessing the predictive accuracy of the classification rules.

This research has also put to test the more traditional implementations of the statis-

tical learning aspects of cross-validation and feature selection. With respect to the

former, there has not been a strong enough emphasis in the microarray classification

literature placed on the importance of building the feature selection process into a

traditional CV procedure, as a means of taking into account selection bias and hence

providing more realistic and honest estimates of generalization accuracy when per-

forming limited-sample classification studies using gene expression data. With respect

to feature selection, this research has shown across multiple datasets and classifiers

how a simple univariate feature selection approach can perform quite comparably to

a more sophisticated type of high-dimensional optimization search algorithm such as

a genetic algorithm. At the same time though, this research showed the effectiveness

of the genetic algorithm as a feature subset selection technique that can select combi-

nations of genes that would most likely go otherwise undetected by combining highly

ranked discriminatory genes from among a ranked list of univariately significant genes.

7.6 Future Directions

I believe this research has provided a solid foundation in terms of the magnitude of the

empirical study that has been undertaken – a study involving the comparison of fea-

ture selection and binary classification techniques, as well as two general approaches

to implementing cross-validation to assess the predictive accuracy of candidate clas-
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sifiers. At the same time, I also believe this research has provided fertile ground from

which a number of other possible interesting investigations could be pursued. This

study has put to test some of the more traditional assertions of a) cross-validation

(i.e., how to implement it to achieve more honest error rate estimates), and b) fea-

ture subset selection (i.e., determining whether a more sophisticated high-dimensional

search technique such as the GA really offers a significant advantage when performing

binary classification using gene expression data).

Although no particular learning algorithm emerged as a clear-cut best choice to

use across all the datasets, I still believe more in-depth investigation to determine if

one can somehow infer from each of the datasets any clues that suggest what methods

of feature selection and learning algorithm would be best suited to a particular dataset

is warranted. The unsupervised learning technique of multidimensional scaling was

used in this research as one form of exploratory analysis to investigate the structure

of the datasets – in particular, to see obtain an idea of how difficult the classification

task may be in each case. Unfortunately, there does not seem to be a clear-cut

way of inferring from the features of a given dataset what type of feature selection

and supervised learning algorithm should definitely be used for performing binary

classification with gene expression data. However, I envision this particular topic

should become a prime area of very interesting and challenging research that could

have a very large impact on the microarray classification realms.

In the area of performance assessment, it is important to keep in mind that in
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performing external CV, the results are designed to assess the process of assessing

predictive accuracy for binary classification of microarray data. That is, external CV

is not inherently geared towards determining which specific group of d genes are the

best predictors (for a given subset size d), since the feature selection process is built

into each stage of the CV procedure and hence the particular genes selected at each

stage will inevitably vary. Perhaps some form of gene monitoring operation could be

developed such that specific subsets of genes can be identified.

An extension of the genetic algorithm aspect of this research is to implement

a wider variety of objective functions within the genetic algorithm to see how the

results may be affected by them. In particular, it would be interesting to see if

any particular type of GA implementation yields subsets of genes that a) would not

easily be discovered via univariate feature selection and b) would offer a significant

advantage over univariate feature selection-based analyses in terms of minimal subset

size and low misclassification error rates. Also, one could conduct further research

investigating the probability of certain genes known to be strongly discriminatory

not being selected by a GA in the final generation’s solution sets. One parameter

that warrants further study is the mutation rate and in particular how it relates to

the solution (chromosome) size being pursued in a GA. For example, if the GA were

designed to seek the best (i.e., most discriminatory) single-gene solution, one would

think that a larger mutation rate should be used to allow for a wider population of

the original gene pool to be given consideration during the evolution of the algorithm,
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and vice versa as the solution size increases. Overall, I believe more in-depth research

on how to optimally select GA parameters such as population size, crossover rate,

and mutation rate would be a much appreciated and needed contribution to the GA

community. Another extension of this research that would be interesting would be to

consider the application of some type of aggregation of different GA-based classifiers

to form a ”meta-classifier.” For example, using different objective functions within a

GA, one could consider combining the results of GA/Mahalanobis distance, GA/SVM,

and GA/k-NN analyses in some fashion.

Further investigation into the nature of the two-class problem could also prove

to be useful. That is, one could more closely investigate the results obtained from

problems in which the two classes are tumor and normal, to compare with a situ-

ation in which the two classes are subtypes of a particular type of cancer. Finally,

beyond the realms of microarrays, the results and insights from this research can hope-

fully be applied to other binary classification problems marked by high-dimensional

datasets with relatively small samples, and perhaps motivate a similar type of large-

scale empirical study focused on working with more complex multi-class classification

problems.
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Table A.1: Raw and Adjusted P-values for Top 25 Genes; Alon Data

Gene Index Raw BY Holm Bonferroni WY

493 2.38E-16 3.90E-12 4.77E-13 4.77E-13 2.00E-04

267 1.88E-15 1.54E-11 3.77E-12 3.77E-12 2.00E-04

245 3.51E-15 1.91E-11 7.01E-12 7.02E-12 2.00E-04

1423 8.71E-15 3.56E-11 1.74E-11 1.74E-11 2.00E-04

1635 3.74E-14 1.17E-10 7.47E-11 7.48E-11 2.00E-04

377 4.28E-14 1.17E-10 8.53E-11 8.55E-11 2.00E-04

1042 1.58E-13 3.42E-10 3.14E-10 3.15E-10 2.00E-04

780 1.67E-13 3.42E-10 3.34E-10 3.35E-10 2.00E-04

897 5.07E-13 9.22E-10 1.01E-09 1.02E-09 2.00E-04

765 9.13E-13 1.48E-09 1.82E-09 1.83E-09 2.00E-04

964 9.93E-13 1.48E-09 1.98E-09 1.99E-09 2.00E-04

1494 1.70E-12 2.31E-09 3.37E-09 3.39E-09 2.00E-04

1730 2.08E-12 2.61E-09 4.13E-09 4.15E-09 2.00E-04

1843 8.25E-12 9.64E-09 1.64E-08 1.65E-08 2.00E-04

1771 1.56E-11 1.70E-08 3.10E-08 3.12E-08 2.00E-04

365 1.93E-11 1.95E-08 3.82E-08 3.85E-08 2.00E-04

513 2.02E-11 1.95E-08 4.02E-08 4.05E-08 2.00E-04

1263 3.90E-11 3.54E-08 7.73E-08 7.80E-08 2.00E-04

138 1.05E-10 9.01E-08 2.07E-07 2.09E-07 2.00E-04

824 1.14E-10 9.30E-08 2.25E-07 2.28E-07 2.00E-04

249 1.26E-10 9.78E-08 2.49E-07 2.51E-07 2.00E-04

625 2.12E-10 1.58E-07 4.20E-07 4.24E-07 2.00E-04

1421 2.42E-10 1.72E-07 4.79E-07 4.84E-07 2.00E-04

1060 6.70E-10 4.57E-07 1.33E-06 1.34E-06 4.00E-04

1892 1.19E-09 7.78E-07 2.35E-06 2.38E-06 4.00E-04
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Table A.2: Raw and Adjusted P-values for Top 25 Genes; Golub Data

Gene Index Raw BY Holm Bonferroni WY

1834 5.782E-20 2.072E-15 4.122E-16 4.122E-16 2.000E-04

6855 6.151E-20 2.072E-15 4.385E-16 4.385E-16 2.000E-04

4847 1.771E-19 3.978E-15 1.263E-15 1.263E-15 2.000E-04

6041 5.906E-19 9.947E-15 4.209E-15 4.211E-15 2.000E-04

1882 9.517E-19 1.282E-14 6.781E-15 6.785E-15 2.000E-04

2354 9.459E-18 9.812E-14 6.738E-14 6.743E-14 2.000E-04

3252 1.020E-17 9.812E-14 7.262E-14 7.268E-14 2.000E-04

4377 2.618E-17 2.205E-13 1.865E-13 1.867E-13 2.000E-04

1685 1.521E-16 1.138E-12 1.083E-12 1.084E-12 2.000E-04

1144 5.289E-16 3.425E-12 3.766E-12 3.771E-12 2.000E-04

760 5.594E-16 3.425E-12 3.982E-12 3.988E-12 2.000E-04

1745 1.316E-15 7.387E-12 9.367E-12 9.381E-12 2.000E-04

2121 1.636E-15 8.480E-12 1.165E-11 1.167E-11 2.000E-04

4328 6.828E-15 3.285E-11 4.859E-11 4.867E-11 2.000E-04

4366 1.702E-14 7.643E-11 1.211E-10 1.213E-10 2.000E-04

5501 2.526E-14 1.063E-10 1.797E-10 1.801E-10 2.000E-04

4973 5.710E-14 2.263E-10 4.062E-10 4.071E-10 2.000E-04

1909 7.337E-14 2.746E-10 5.218E-10 5.231E-10 2.000E-04

6281 2.426E-13 8.603E-10 1.725E-09 1.730E-09 2.000E-04

2642 2.903E-13 9.778E-10 2.064E-09 2.070E-09 2.000E-04

4107 3.424E-13 1.098E-09 2.434E-09 2.441E-09 2.000E-04

1630 5.141E-13 1.574E-09 3.654E-09 3.665E-09 2.000E-04

804 8.550E-13 2.504E-09 6.076E-09 6.095E-09 2.000E-04

7119 9.136E-13 2.564E-09 6.492E-09 6.513E-09 2.000E-04

2020 1.012E-12 2.726E-09 7.189E-09 7.213E-09 2.000E-04
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Table A.3: Raw and Adjusted P-values for Top 25 Genes; Nutt Data

Gene Index Raw BY Holm Bonferroni WY

12194 5.836E-09 7.383E-04 7.368E-05 7.368E-05 1.200E-03

10017 2.415E-08 1.527E-03 3.048E-04 3.049E-04 2.000E-03

1614 5.178E-08 1.941E-03 6.536E-04 6.537E-04 4.000E-03

8501 6.138E-08 1.941E-03 7.748E-04 7.750E-04 5.000E-03

5908 7.734E-08 1.957E-03 9.761E-04 9.764E-04 5.600E-03

10943 9.877E-08 2.083E-03 1.247E-03 1.247E-03 6.200E-03

216 1.546E-07 2.795E-03 1.951E-03 1.952E-03 7.200E-03

1272 3.281E-07 5.188E-03 4.140E-03 4.142E-03 1.720E-02

221 4.167E-07 5.236E-03 5.258E-03 5.261E-03 2.200E-02

6223 4.343E-07 5.236E-03 5.480E-03 5.484E-03 1.920E-02

7367 4.561E-07 5.236E-03 5.754E-03 5.758E-03 2.200E-02

6682 4.967E-07 5.236E-03 6.265E-03 6.270E-03 2.420E-02

12195 6.850E-07 6.067E-03 8.640E-03 8.648E-03 2.760E-02

8495 7.013E-07 6.067E-03 8.845E-03 8.854E-03 2.920E-02

4574 7.194E-07 6.067E-03 9.072E-03 9.082E-03 2.660E-02

7645 7.785E-07 6.155E-03 9.816E-03 9.828E-03 3.460E-02

5212 1.033E-06 7.262E-03 1.302E-02 1.304E-02 4.280E-02

5682 1.079E-06 7.262E-03 1.360E-02 1.362E-02 3.480E-02

10681 1.091E-06 7.262E-03 1.375E-02 1.377E-02 4.460E-02

6681 1.329E-06 8.404E-03 1.675E-02 1.677E-02 4.820E-02

12012 1.493E-06 8.747E-03 1.882E-02 1.885E-02 5.040E-02

4723 1.521E-06 8.747E-03 1.917E-02 1.921E-02 5.460E-02

8397 1.590E-06 8.747E-03 2.004E-02 2.008E-02 5.660E-02

8455 1.719E-06 9.064E-03 2.167E-02 2.171E-02 5.800E-02

11837 2.222E-06 1.124E-02 2.800E-02 2.805E-02 6.720E-02
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Table A.4: Raw and Adjusted P-values for Top 25 Genes; Pomeroy Data

Gene Index Raw BY Holm Bonferroni WY

3127 2.326E-14 8.843E-10 1.658E-10 1.658E-10 2.000E-04

2365 2.625E-14 8.843E-10 1.871E-10 1.872E-10 2.000E-04

1422 4.498E-14 1.010E-09 3.206E-10 3.207E-10 2.000E-04

2322 2.979E-13 5.017E-09 2.123E-09 2.124E-09 2.000E-04

2967 1.738E-12 2.341E-08 1.238E-08 1.239E-08 2.000E-04

4457 3.422E-12 3.652E-08 2.438E-08 2.440E-08 2.000E-04

6512 3.795E-12 3.652E-08 2.703E-08 2.705E-08 2.000E-04

2511 4.950E-12 4.168E-08 3.526E-08 3.529E-08 2.000E-04

4484 7.940E-12 5.808E-08 5.654E-08 5.661E-08 2.000E-04

6718 8.622E-12 5.808E-08 6.139E-08 6.146E-08 2.000E-04

5585 1.028E-11 6.294E-08 7.316E-08 7.327E-08 2.000E-04

6435 1.177E-11 6.355E-08 8.379E-08 8.392E-08 2.000E-04

5669 1.262E-11 6.355E-08 8.980E-08 8.995E-08 2.000E-04

3136 1.383E-11 6.355E-08 9.839E-08 9.857E-08 2.000E-04

3525 1.415E-11 6.355E-08 1.007E-07 1.009E-07 2.000E-04

2545 1.626E-11 6.474E-08 1.156E-07 1.159E-07 2.000E-04

6625 1.634E-11 6.474E-08 1.162E-07 1.165E-07 2.000E-04

6181 2.643E-11 9.890E-08 1.879E-07 1.884E-07 2.000E-04

2344 4.980E-11 1.766E-07 3.541E-07 3.550E-07 2.000E-04

4632 6.317E-11 2.105E-07 4.491E-07 4.503E-07 2.000E-04

5581 6.562E-11 2.105E-07 4.665E-07 4.678E-07 2.000E-04

3032 7.643E-11 2.340E-07 5.432E-07 5.449E-07 2.000E-04

3001 9.046E-11 2.650E-07 6.429E-07 6.449E-07 2.000E-04

588 1.058E-10 2.970E-07 7.518E-07 7.542E-07 2.000E-04

3043 1.304E-10 3.513E-07 9.263E-07 9.294E-07 2.000E-04
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Table A.5: Raw and Adjusted P-values for Top 25 Genes; Shipp Data

Gene Index Raw BY Holm Bonferroni WY

972 2.235E-16 1.506E-11 1.594E-12 1.594E-12 2.000E-04

4569 7.299E-16 2.055E-11 5.203E-12 5.204E-12 2.000E-04

4194 1.199E-15 2.055E-11 8.545E-12 8.548E-12 2.000E-04

506 1.231E-15 2.055E-11 8.772E-12 8.776E-12 2.000E-04

4028 1.525E-15 2.055E-11 1.087E-11 1.087E-11 2.000E-04

2988 2.786E-15 3.128E-11 1.985E-11 1.986E-11 2.000E-04

5386 5.256E-15 5.058E-11 3.744E-11 3.747E-11 2.000E-04

699 7.482E-15 6.300E-11 5.328E-11 5.334E-11 2.000E-04

4292 1.744E-14 1.305E-10 1.242E-10 1.243E-10 2.000E-04

1092 2.950E-14 1.987E-10 2.101E-10 2.103E-10 2.000E-04

6815 4.955E-14 3.034E-10 3.527E-10 3.532E-10 2.000E-04

605 7.921E-14 4.447E-10 5.638E-10 5.647E-10 2.000E-04

6179 9.972E-14 5.168E-10 7.097E-10 7.109E-10 2.000E-04

2043 3.096E-13 1.490E-09 2.203E-09 2.207E-09 2.000E-04

2137 3.726E-13 1.585E-09 2.651E-09 2.656E-09 2.000E-04

4372 3.764E-13 1.585E-09 2.678E-09 2.684E-09 2.000E-04

1080 5.327E-13 2.111E-09 3.789E-09 3.798E-09 2.000E-04

4183 1.530E-12 5.726E-09 1.088E-08 1.091E-08 2.000E-04

5994 2.142E-12 7.594E-09 1.523E-08 1.527E-08 2.000E-04

2121 2.323E-12 7.824E-09 1.652E-08 1.656E-08 2.000E-04

1790 2.508E-12 8.047E-09 1.783E-08 1.788E-08 2.000E-04

1352 2.789E-12 8.432E-09 1.983E-08 1.988E-08 2.000E-04

1612 2.879E-12 8.432E-09 2.046E-08 2.052E-08 2.000E-04

6476 3.044E-12 8.544E-09 2.163E-08 2.170E-08 2.000E-04

1188 3.724E-12 9.951E-09 2.646E-08 2.655E-08 2.000E-04
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Table A.6: Raw and Adjusted P-values for Top 25 Genes; Singh Data

Gene Index Raw BY Holm Bonferroni WY

6185 3.669E-24 4.632E-19 4.623E-20 4.623E-20 2.000E-04

10494 6.929E-17 4.373E-12 8.729E-13 8.730E-13 2.000E-04

9850 1.740E-16 5.719E-12 2.193E-12 2.193E-12 2.000E-04

4365 1.812E-16 5.719E-12 2.283E-12 2.283E-12 2.000E-04

10138 1.141E-15 2.880E-11 1.437E-11 1.437E-11 2.000E-04

9172 1.996E-15 4.200E-11 2.514E-11 2.515E-11 2.000E-04

5944 6.554E-15 1.117E-10 8.254E-11 8.258E-11 2.000E-04

9034 7.080E-15 1.117E-10 8.915E-11 8.920E-11 2.000E-04

3649 4.314E-14 6.051E-10 5.432E-10 5.436E-10 2.000E-04

2839 6.507E-14 7.687E-10 8.192E-10 8.198E-10 2.000E-04

8554 6.698E-14 7.687E-10 8.433E-10 8.440E-10 2.000E-04

7557 9.176E-14 9.653E-10 1.155E-09 1.156E-09 2.000E-04

205 2.395E-13 2.326E-09 3.015E-09 3.018E-09 2.000E-04

3794 3.493E-13 3.121E-09 4.397E-09 4.402E-09 2.000E-04

10956 3.708E-13 3.121E-09 4.667E-09 4.673E-09 2.000E-04

8850 5.905E-13 4.659E-09 7.432E-09 7.441E-09 2.000E-04

7520 8.218E-13 6.102E-09 1.034E-08 1.035E-08 2.000E-04

9050 1.012E-12 7.095E-09 1.273E-08 1.275E-08 2.000E-04

10537 1.617E-12 1.074E-08 2.034E-08 2.037E-08 2.000E-04

5757 1.999E-12 1.262E-08 2.515E-08 2.519E-08 2.000E-04

8123 2.951E-12 1.774E-08 3.713E-08 3.719E-08 2.000E-04

8768 5.099E-12 2.926E-08 6.414E-08 6.424E-08 2.000E-04

6462 7.598E-12 4.170E-08 9.557E-08 9.574E-08 2.000E-04

7768 1.562E-11 8.218E-08 1.965E-07 1.969E-07 2.000E-04

7247 1.691E-11 8.539E-08 2.127E-07 2.131E-07 2.000E-04
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Table A.7: Gene Selection Based on All Samples: Alon Data (a)

GA GA-GA

Subset Size Gene Index Univ Pval Univ Rank Gene Index Univ Pval Univ Rank

1 493 2.38E-16 1 493 2.38E-16 1
2 66 3.70E-09 31 66 3.70E-09 31

1423 8.71E-15 4 1423 8.71E-15 4
3 1058 5.69E-04 274 1058 5.69E-04 274

1423 8.71E-15 4 1423 8.71E-15 4
1484 1.69E-03 339 1484 1.69E-03 339

4 66 3.70E-09 31 66 3.70E-09 31
1058 5.69E-04 274 1058 5.69E-04 274
1423 8.71E-15 4 1423 8.71E-15 4
1484 1.69E-03 339 1484 1.69E-03 339

5 267 1.88E-15 2 26 1.80E-07 54
377 4.28E-14 6 377 4.28E-14 6
441 3.14E-01 1557 624 7.26E-04 288
493 2.38E-16 1 1286 2.33E-05 153
1836 1.15E-07 49 1423 8.71E-15 4

10 245 3.51E-15 3 66 3.70E-09 31
339 8.28E-03 478 93 2.06E-02 615
493 2.38E-16 1 245 3.51E-15 3
792 1.26E-04 201 258 1.22E-02 529
895 1.20E-02 525 622 6.24E-04 279
1135 3.32E-02 695 882 6.61E-05 183
1445 4.32E-01 1841 895 1.20E-02 525
1567 3.94E-03 415 1565 2.70E-01 1447
1585 4.73E-01 1934 1836 1.15E-07 49
1836 1.15E-07 49 1873 1.12E-06 78

15 13 4.16E-04 256 13 4.16E-04 256
43 1.00E-06 77 79 2.39E-01 1373
128 4.38E-01 1859 267 1.88E-15 2
164 1.44E-02 559 377 4.28E-14 6
190 1.67E-04 210 409 2.29E-01 1350
267 1.88E-15 2 624 7.26E-04 288
493 2.38E-16 1 769 3.01E-01 1522
792 1.26E-04 201 897 5.07E-13 9
897 5.07E-13 9 1052 2.94E-01 1511
1024 7.98E-02 922 1058 5.69E-04 274
1082 6.42E-02 851 1400 1.19E-03 316
1150 3.52E-01 1653 1423 8.71E-15 4
1676 7.29E-02 891 1522 3.34E-01 1604
1819 5.76E-02 823 1653 3.22E-01 1576
1969 7.35E-02 893 1873 1.12E-06 78
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Table A.8: Gene Selection Based on All Samples: Alon Data (b)

GA GAGA

Subset Size Gene Index Univ Pval Univ Rank Gene Index Univ Pvbal Univ Rank

20 66 3.70E-09 31 104 2.90E-02 668
141 5.09E-06 107 137 1.36E-08 37
213 2.06E-02 614 213 2.06E-02 614
234 4.68E-01 1927 533 2.48E-01 1393
431 4.94E-02 783 542 3.86E-01 1730
572 2.96E-02 674 624 7.26E-04 288
581 3.79E-08 41 895 1.20E-02 525
624 7.26E-04 288 897 5.07E-13 9
1058 5.69E-04 274 1058 5.69E-04 274
1103 3.79E-01 1716 1225 4.10E-01 1786
1186 7.00E-04 284 1295 4.74E-01 1939
1295 4.74E-01 1939 1306 1.65E-03 337
1423 8.71E-15 4 1423 8.71E-15 4
1597 1.43E-03 329 1571 4.00E-01 1769
1647 1.63E-01 1163 1644 3.94E-02 729
1713 5.90E-02 832 1668 4.71E-02 770
1790 7.48E-03 472 1808 2.06E-06 95
1808 2.06E-06 95 1829 3.67E-01 1692
1858 1.87E-01 1231 1851 1.31E-01 1082
1873 1.12E-06 78 1873 1.12E-06 78

25 13 4.16E-04 256 13 4.16E-04 256
31 3.31E-07 63 189 2.92E-03 390
66 3.70E-09 31 190 1.67E-04 210
188 1.84E-03 345 270 1.45E-01 1109
634 2.85E-02 665 326 2.50E-02 645
792 1.26E-04 201 495 1.30E-06 80
970 1.42E-01 1103 537 1.08E-01 1006
982 3.18E-04 241 623 5.00E-01 1999
983 4.73E-01 1933 624 7.26E-04 288
1018 1.73E-01 1193 659 2.78E-01 1474
1049 5.68E-02 817 734 2.84E-03 387
1050 4.65E-02 769 879 1.68E-01 1174
1102 7.22E-02 887 897 5.07E-13 9
1158 2.71E-01 1451 931 2.81E-05 157
1239 5.21E-02 799 1058 5.69E-04 274
1243 2.28E-01 1348 1085 2.93E-01 1506
1342 4.95E-02 786 1136 6.07E-04 277
1423 8.71E-15 4 1152 6.83E-02 872
1440 2.65E-02 653 1346 1.91E-03 348
1563 6.25E-03 456 1423 8.71E-15 4
1629 4.32E-01 1838 1478 4.45E-02 756
1634 1.54E-08 38 1593 8.53E-02 941
1654 4.25E-01 1821 1724 4.70E-05 177
1672 9.54E-05 196 1859 4.59E-03 426
1927 2.93E-01 1508 1873 1.12E-06 78
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Table A.9: Gene Selection Based on All Samples: Golub Data (a)

GA GA-GA

Subset Size Gene Index Univ Pval Univ Rank Gene Index Univ Pval Univ Rank

1 4847 1.77E-19 3 4847 1.77E-19 3
2 1834 5.78E-20 1 1834 5.78E-20 1

6539 3.55E-10 58 6539 3.55E-10 58
3 1775 1.57E-02 1634 1779 4.73E-12 32

4847 1.77E-19 3 1941 4.37E-03 1169
4951 4.85E-09 85 4847 1.77E-19 3

4 1779 4.73E-12 32 1745 1.32E-15 12
2121 1.64E-15 13 1779 4.73E-12 32
5949 3.98E-01 6115 1796 3.75E-01 5895
6277 1.26E-02 1525 2121 1.64E-15 13

5 1456 1.58E-04 551 1745 1.32E-15 12
1779 4.73E-12 32 1779 4.73E-12 32
1796 3.75E-01 5895 1796 3.75E-01 5895
1834 5.78E-20 1 1834 5.78E-20 1
4847 1.77E-19 3 1882 9.52E-19 5

10 1745 1.32E-15 12 1779 4.73E-12 32
1779 4.73E-12 32 1796 3.75E-01 5895
1796 3.75E-01 5895 1829 1.12E-11 39
1829 1.12E-11 39 1975 8.12E-03 1350
2221 3.46E-01 5629 2426 1.23E-05 343
2288 1.91E-12 27 3847 5.27E-10 64
2681 4.70E-01 6832 4200 3.94E-04 674
3795 5.99E-02 2479 4847 1.77E-19 3
4642 1.16E-01 3202 5778 2.89E-02 1950
4664 7.49E-04 763 6184 1.21E-07 155

15 325 3.20E-02 2019 877 4.75E-01 6897
1779 4.73E-12 32 905 2.19E-01 4325
1796 3.75E-01 5895 1779 4.73E-12 32
1829 1.12E-11 39 1796 3.75E-01 5895
1834 5.78E-20 1 1834 5.78E-20 1
1882 9.52E-19 5 1882 9.52E-19 5
1963 8.79E-02 2875 2242 2.79E-05 398
2242 2.79E-05 398 2317 2.65E-01 4778
2643 2.13E-01 4262 2337 4.49E-01 6618
3551 4.20E-02 2192 2725 1.61E-01 3701
3892 1.68E-01 3784 3191 2.51E-02 1869
4642 1.16E-01 3202 4746 2.02E-01 4157
4947 1.29E-02 1533 4863 4.84E-01 6979
6041 5.91E-19 4 5307 6.66E-02 2572
6401 2.89E-01 5039 6012 1.34E-03 864
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Table A.10: Gene Selection Based on All Samples: Golub Data (b)

GA GAGA

Subset Size Gene Index Univ Pval Univ Rank Gene Index Univ Pvbal Univ Rank

20 94 1.78E-01 3894 49 9.82E-03 1424
348 4.84E-01 6966 368 1.52E-03 886
1745 1.32E-15 12 1109 1.65E-02 1652
1779 4.73E-12 32 1779 4.73E-12 32
1796 3.75E-01 5895 1796 3.75E-01 5895
1834 5.78E-20 1 1834 5.78E-20 1
1891 2.92E-04 624 1891 2.92E-04 624
2121 1.64E-15 13 1941 4.37E-03 1169
2288 1.91E-12 27 2121 1.64E-15 13
2635 1.95E-01 4080 2240 1.93E-01 4049
3320 1.45E-06 244 2288 1.91E-12 27
3813 2.04E-01 4183 2389 1.57E-04 549
3886 7.58E-02 2695 2635 1.95E-01 4080
4341 6.16E-02 2503 3921 3.56E-01 5713
4840 3.22E-01 5376 4246 3.47E-01 5638
4847 1.77E-19 3 4847 1.77E-19 3
5182 6.64E-02 2567 5599 2.24E-03 994
5252 4.55E-01 6677 5742 8.43E-03 1365
5395 2.09E-01 4222 5934 8.33E-02 2808
5481 3.47E-01 5639.5 6184 1.21E-07 155

25 381 2.88E-01 5025 727 4.69E-02 2281
424 2.40E-01 4538 1307 1.49E-01 3571
487 1.17E-01 3215 1477 2.08E-01 4217
605 6.28E-02 2524 1674 3.02E-07 185
774 3.14E-05 401 1771 5.54E-02 2417
1107 4.43E-01 6555 1779 4.73E-12 32
1779 4.73E-12 32 1796 3.75E-01 5895
1796 3.75E-01 5895 1834 5.78E-20 1
1829 1.12E-11 39 1882 9.52E-19 5
1977 4.49E-02 2249 2121 1.64E-15 13
2497 6.37E-09 94 2426 1.23E-05 343
3576 3.56E-03 1121 2518 4.51E-01 6635
3714 4.34E-07 199 2752 3.93E-01 6071
3737 9.96E-02 3013 3714 4.34E-07 199
4166 3.27E-02 2033 3847 5.27E-10 64
4197 5.08E-05 435 4847 1.77E-19 3
4200 3.94E-04 674 5048 8.37E-02 2811
4217 4.71E-01 6860 5065 3.44E-02 2071
4601 3.00E-01 5148 5102 1.94E-01 4067
4847 1.77E-19 3 5364 1.35E-01 3402
5206 4.27E-01 6403 5432 1.61E-02 1640
5357 4.24E-01 6376 6043 3.21E-01 5359
5552 2.97E-09 77 6184 1.21E-07 155
6283 2.13E-11 43 6283 2.13E-11 43
6848 4.88E-01 7010 6845 1.67E-01 3776
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Table A.11: Gene Selection Based on All Samples: Nutt Data (a)

GA GA-GA

Subset Size Gene Index Univ Pval Univ Rank Gene Index Univ Pval Univ Rank

1 1614 5.18E-08 3 1614 5.18E-08 3
2 2202 3.05E-06 33 2202 3.05E-06 33

10017 2.41E-08 2 10017 2.41E-08 2
3 1272 3.28E-07 8 1614 5.18E-08 3

9780 2.89E-04 239 4066 7.75E-05 125
11432 2.86E-06 30 12359 1.41E-01 5242

4 7855 6.98E-06 46 1614 5.18E-08 3
9299 3.76E-03 836 8691 2.19E-04 206
10474 2.95E-02 2261 9299 3.76E-03 836
12154 4.15E-03 872 12154 4.15E-03 872

5 4257 4.53E-05 107 1614 5.18E-08 3
6171 1.76E-02 1775 4257 4.53E-05 107
8691 2.19E-04 206 8691 2.19E-04 206
9299 3.76E-03 836 9299 3.76E-03 836
10112 5.63E-03 1001 10118 6.17E-03 1066

10 398 2.22E-02 1979 690 1.57E-02 1662
666 8.57E-02 3977 723 4.39E-05 103
1614 5.18E-08 3 1058 8.94E-02 4075
2099 4.52E-01 11654 2148 7.32E-02 3660
2202 3.05E-06 33 5244 1.24E-04 160
3805 1.95E-04 190 5579 3.37E-01 9380
8526 1.43E-01 5294 8334 2.35E-01 7311
10926 2.68E-03 722 11280 1.96E-03 628
12194 5.84E-09 1 11618 3.69E-02 2555
12569 4.09E-01 10784 11821 1.14E-05 57

15 93 3.60E-01 9837 1614 5.18E-08 3
618 1.98E-01 6508 1727 1.83E-01 6204
3086 1.00E-02 1348 3418 2.02E-02 1879
3096 1.38E-01 5176 3748 1.32E-02 1537
3748 1.32E-02 1537 4257 4.53E-05 107
5398 1.98E-04 193 4575 4.82E-02 2915
6785 2.00E-04 196 5244 1.24E-04 160
7121 3.95E-01 10535 6081 2.11E-05 77
8846 1.86E-02 1810 6708 1.25E-02 1492
9392 3.11E-01 8856 7077 1.84E-01 6229
9783 7.68E-06 48 10118 6.17E-03 1066
10261 7.23E-02 3618 10494 2.69E-01 7972
11196 2.27E-01 7133 11196 2.27E-01 7133
11376 6.82E-05 119 11376 6.82E-05 119
11404 8.48E-02 3959 11515 4.12E-02 2699
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Table A.12: Gene Selection Based on All Samples: Nutt Data (b)

GA GAGA

Subset Size Gene Index Univ Pval Univ Rank Gene Index Univ Pvbal Univ Rank

20 334 6.43E-04 373 1614 5.18E-08 3
723 4.39E-05 103 2068 3.80E-01 10235
1068 8.14E-04 414 3250 8.26E-04 419
2088 3.03E-01 8682 4066 7.75E-05 125
3555 2.54E-01 7675 6049 4.24E-01 11099
3794 2.61E-01 7823 6144 1.38E-01 5167
4575 4.82E-02 2915 6162 9.50E-03 1305
4689 1.75E-03 586 6876 1.04E-01 4391
5000 7.58E-02 3728 7215 1.95E-02 1852
5478 1.17E-01 4660 7741 1.50E-02 1627.5
6162 9.50E-03 1305 8412 1.21E-01 4753
7064 2.37E-01 7371 8432 2.52E-02 2086
7477 2.43E-05 84 8589 7.73E-02 3771
8054 5.89E-02 3240 8696 2.52E-04 226
8101 2.32E-02 2020 8948 3.40E-01 9432.5
8696 2.52E-04 226 9830 2.26E-01 7105
10118 6.17E-03 1066 11280 1.96E-03 628
12517 6.79E-02 3487 11376 6.82E-05 119
12542 2.90E-01 8422 12359 1.41E-01 5242
12567 4.62E-01 11834 12581 3.62E-01 9863

25 142 3.17E-01 8970.5 1038 4.69E-01 11989
723 4.39E-05 103 1377 6.98E-02 3537
2551 2.42E-01 7454 1545 3.74E-02 2574
3588 4.03E-01 10706 1687 3.45E-01 9523
4390 4.84E-01 12270 2570 3.92E-02 2630
5510 3.04E-01 8693 4005 1.93E-01 6413
5830 2.63E-01 7861 4066 7.75E-05 125
6715 8.02E-02 3843 4257 4.53E-05 107
7477 2.43E-05 84 4384 1.97E-01 6481
7667 2.13E-01 6826 5475 4.69E-01 11995
8149 4.92E-05 108 5660 3.29E-01 9220
8223 4.70E-01 12098 6510 4.84E-02 2923
8274 7.74E-02 3774 7058 7.11E-02 3587
8393 1.05E-01 4400 7785 1.47E-01 5392
8943 1.66E-02 1719 8352 1.53E-01 5531
9368 1.36E-03 533 8455 1.72E-06 24
9420 2.16E-02 1956 8803 4.25E-01 11127
9522 7.84E-03 1200 9367 2.75E-01 8093
10078 1.96E-03 630 9510 1.53E-01 5543
10596 2.77E-01 8134 9637 1.22E-05 59
11022 2.38E-01 7388 10395 3.56E-01 9741
11406 4.39E-01 11366 10501 5.00E-01 12587
11919 3.85E-01 10335 11482 3.48E-03 814
12130 1.04E-02 1364 11502 4.92E-01 12428
12272 3.36E-01 9353 11711 1.17E-01 4653
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Table A.13: Gene Selection Based on All Samples: Pomeroy Data (a)

GA GA-GA

Subset Size Gene Index Univ Pval Univ Rank Gene Index Univ Pval Univ Rank

1 379 7.83E-09 66 379 7.83E-09 66
2 2967 1.74E-12 5 2967 1.74E-12 5

3127 2.33E-14 1 3127 2.33E-14 1
3 1783 2.33E-08 83 1040 2.47E-02 3417

3127 2.33E-14 1 1746 1.69E-04 971
6377 6.64E-05 721 3681 8.49E-04 1560

4 14 8.20E-07 193 3127 2.33E-14 1
2545 1.63E-11 16 4031 2.06E-06 249
3127 2.33E-14 1 6377 6.64E-05 721
6377 6.64E-05 721 6432 3.20E-08 86

5 576 4.38E-07 164 2830 3.55E-05 592
2511 4.95E-12 8 3080 2.61E-04 1095
3258 1.68E-07 125 3127 2.33E-14 1
6401 1.99E-07 133 6377 6.64E-05 721
6967 8.65E-02 4484 6432 3.20E-08 86

10 527 1.20E-05 408 1407 5.53E-04 1363
692 2.95E-01 6087 1788 2.46E-01 5750
1389 9.08E-03 2762 2203 3.78E-02 3754
2365 2.63E-14 2 3127 2.33E-14 1
3127 2.33E-14 1 4031 2.06E-06 249
4031 2.06E-06 249 4134 2.46E-02 3413
5664 1.71E-07 126 4701 2.01E-06 247
6432 3.20E-08 86 5664 1.71E-07 126
6971 5.07E-03 2419 6377 6.64E-05 721
7097 1.62E-01 5175 6432 3.20E-08 86

15 423 2.41E-03 2000 702 6.96E-04 1464
1286 1.16E-03 1691 1951 1.02E-09 36
1520 9.28E-02 4563 2203 3.78E-02 3754
1951 1.02E-09 36 2365 2.63E-14 2
2135 3.75E-02 3747 3097 2.30E-03 1983
2203 3.78E-02 3754 3127 2.33E-14 1
2830 3.55E-05 592 3128 8.25E-02 4437
2967 1.74E-12 5 3563 2.49E-03 2026
3043 1.30E-10 25 4454 1.24E-01 4863
4388 4.97E-01 7109 4475 1.14E-01 4772
4482 2.00E-01 5463 5585 1.03E-11 11
4912 5.34E-02 4034 6377 6.64E-05 721
5585 1.03E-11 11 6432 3.20E-08 86
6314 4.57E-01 6921 6801 1.87E-04 998
6432 3.20E-08 86 7121 2.31E-08 81
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Table A.14: Gene Selection Based on All Samples: Pomeroy Data (b)

GA GAGA

Subset Size Gene Index Univ Pval Univ Rank Gene Index Univ Pvbal Univ Rank

20 27 5.61E-02 4076 249 8.50E-03 2716
412 1.98E-01 5450 496 2.64E-05 534
546 4.47E-08 95 529 1.79E-08 77
576 4.38E-07 164 1267 1.63E-01 5182
1040 2.47E-02 3417 1286 1.16E-03 1691
1746 1.69E-04 971 1520 9.28E-02 4563
1776 4.45E-02 3885 2203 3.78E-02 3754
2062 3.97E-01 6623 2964 2.28E-01 5638
2203 3.78E-02 3754 3220 5.38E-02 4037
2354 1.41E-09 41 3306 1.21E-05 411
2376 2.33E-05 512 4340 3.83E-01 6559
2568 7.97E-02 4393 4407 1.33E-01 4944
4378 2.69E-01 5902 4499 9.28E-07 201
4380 1.05E-03 1643 4578 5.20E-03 2433
4623 4.10E-02 3821 5240 3.59E-04 1201
5585 1.03E-11 11 5585 1.03E-11 11
5804 1.07E-03 1651 6068 5.06E-02 3989
5867 3.85E-01 6570 6377 6.64E-05 721
6444 4.22E-02 3845 6432 3.20E-08 86
6914 2.44E-05 519 7121 2.31E-08 81

25 549 4.81E-05 644 27 5.61E-02 4076
716 3.18E-02 3613 141 4.81E-01 7033
1142 1.87E-01 5361 174 7.27E-02 4314
1233 7.73E-02 4364 496 2.64E-05 534
1520 9.28E-02 4563 1110 9.54E-09 71
1712 2.37E-02 3387 1121 1.29E-02 2994
2203 3.78E-02 3754 1319 3.01E-02 3564
2262 3.08E-06 283 2033 2.41E-04 1066
2511 4.95E-12 8 2076 7.87E-03 2668
3032 7.64E-11 22 2203 3.78E-02 3754
3343 2.75E-01 5954 2356 2.74E-01 5949
3466 8.08E-03 2679 2511 4.95E-12 8
3804 8.98E-02 4533 2855 1.19E-01 4817
4378 2.69E-01 5902 3220 5.38E-02 4037
4831 3.26E-07 147 4172 2.40E-09 47
4951 4.09E-02 3818 4299 2.57E-02 3449
5585 1.03E-11 11 4745 1.15E-03 1685
5928 1.60E-04 955 4931 3.64E-02 3722
6343 3.00E-03 2122 5211 1.27E-03 1726
6377 6.64E-05 721 5603 1.26E-03 1723
6432 3.20E-08 86 5795 2.72E-01 5924
6435 1.18E-11 12 6064 4.56E-01 6914
6625 1.63E-11 17 6321 4.09E-01 6694
6778 1.21E-01 4828 6377 6.64E-05 721
7121 2.31E-08 81 6748 1.26E-09 38
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Table A.15: Gene Selection Based on All Samples: Shipp Data (a)

GA GA-GA

Subset Size Gene Index Univ Pval Univ Rank Gene Index Univ Pval Univ Rank

1 699 7.48E-15 8 699 7.48E-15 8
2 699 7.48E-15 8 699 7.48E-15 8

3053 5.40E-05 639 5077 7.95E-10 67
3 555 1.34E-08 102 555 1.34E-08 102

6725 9.72E-08 152 2609 1.56E-08 106
7102 6.33E-08 140 4194 1.20E-15 3

4 555 1.34E-08 102 555 1.34E-08 102
6040 5.99E-09 84 2609 1.56E-08 106
6725 9.72E-08 152 6725 9.72E-08 152
7102 6.33E-08 140 7102 6.33E-08 140

5 555 1.34E-08 102 555 1.34E-08 102
1818 6.13E-11 42 2609 1.56E-08 106
2609 1.56E-08 106 4194 1.20E-15 3
4194 1.20E-15 3 5233 2.37E-04 975
5518 1.69E-02 3463 6141 7.99E-05 711

10 555 1.34E-08 102 555 1.34E-08 102
613 3.26E-10 58 613 3.26E-10 58
1685 2.79E-02 3851 1685 2.79E-02 3851
2337 9.29E-02 4925 2173 1.39E-01 5347
2937 6.30E-10 63 2609 1.56E-08 106
4194 1.20E-15 3 3984 7.65E-02 4756
4454 7.48E-03 2848 4194 1.20E-15 3
4497 2.17E-01 5887 5233 2.37E-04 975
6079 3.34E-04 1072 6079 3.34E-04 1072
7102 6.33E-08 140 7102 6.33E-08 140

15 555 1.34E-08 102 555 1.34E-08 102
699 7.48E-15 8 699 7.48E-15 8
991 8.38E-05 720 801 4.50E-05 601
1077 5.99E-04 1294 1585 1.65E-08 108
1585 1.65E-08 108 2006 2.35E-08 115
3259 1.96E-01 5750 2079 9.53E-02 4952
3285 3.45E-06 318 2226 1.35E-02 3305
3429 8.60E-04 1442 2524 1.69E-02 3462
4934 1.75E-03 1841 2937 6.30E-10 63
5198 6.76E-02 4625 3033 2.69E-01 6155
5932 9.20E-02 4914 3787 2.28E-01 5945
6323 7.47E-02 4728 4580 9.75E-09 98
6337 9.31E-06 412 5198 6.76E-02 4625
6493 3.20E-08 122 5940 2.50E-04 995
6814 8.29E-03 2930 6432 1.14E-01 5142



191

Table A.16: Gene Selection Based on All Samples: Shipp Data (b)

GA GAGA

Subset Size Gene Index Univ Pval Univ Rank Gene Index Univ Pvbal Univ Rank

20 426 4.66E-03 2487 219 9.73E-02 4982
486 4.60E-06 341 555 1.34E-08 102
555 1.34E-08 102 699 7.48E-15 8
613 3.26E-10 58 726 1.53E-01 5453
657 1.39E-03 1702 899 2.84E-05 534
1309 4.39E-01 6855 2006 2.35E-08 115
2267 3.02E-01 6297 3212 8.24E-05 715
2396 2.61E-06 299 3395 1.33E-01 5294
2477 1.02E-01 5039 3647 3.09E-01 6333
2893 7.77E-02 4768 3787 2.28E-01 5945
2937 6.30E-10 63 4114 2.26E-02 3685
3212 8.24E-05 715 4218 1.11E-02 3161
4194 1.20E-15 3 4236 2.81E-04 1021
4307 2.46E-06 295 5198 6.76E-02 4625
4903 9.93E-06 416 5877 2.56E-01 6092
4943 6.81E-03 2780 5976 4.21E-01 6786
6731 6.69E-02 4614 6141 7.99E-05 711
6967 8.33E-03 2938 6337 9.31E-06 412
7024 1.45E-01 5390 6493 3.20E-08 122
7102 6.33E-08 140 6927 5.94E-03 2664

25 86 1.56E-04 857 22 5.96E-03 2665
699 7.48E-15 8 122 6.54E-03 2756
801 4.50E-05 601 373 2.37E-08 116
1389 3.41E-02 4026 439 4.51E-01 6909
1437 4.38E-03 2445 555 1.34E-08 102
1910 1.53E-01 5455 613 3.26E-10 58
2006 2.35E-08 115 749 1.36E-02 3314
2482 4.90E-06 348 1437 4.38E-03 2445
2714 4.58E-01 6942 1909 2.78E-02 3848
3023 3.94E-01 6664 2142 1.01E-02 3089
3131 3.31E-01 6442 2990 2.96E-02 3906
3215 3.07E-04 1056 2995 2.50E-02 3758
3285 3.45E-06 318 3086 8.44E-06 401
4010 4.56E-06 339 3515 3.27E-02 3989
4118 1.44E-03 1720 4137 8.43E-02 4830
4397 1.27E-06 246 4469 1.52E-01 5448
5158 5.99E-03 2671 5086 3.85E-02 4137
5198 6.76E-02 4625 5198 6.76E-02 4625
5497 7.87E-02 4773 5233 2.37E-04 975
6011 2.80E-03 2147 5601 2.49E-01 6053
6136 9.14E-04 1473 5846 6.54E-04 1328
6573 8.65E-06 403 6243 2.92E-02 3899
6611 1.85E-03 1872 6725 9.72E-08 152
6746 2.38E-02 3716 6746 2.38E-02 3716
7102 6.33E-08 140 7102 6.33E-08 140
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Table A.17: Gene Selection Based on All Samples: Singh Data (a)

GA GA-GA

Subset Size Gene Index Univ Pval Univ Rank Gene Index Univ Pval Univ Rank

1 9050 1.01E-12 18 9050 1.01E-12 18
2 205 2.40E-13 13 205 2.40E-13 13

7520 8.22E-13 17 7520 8.22E-13 17
3 6185 3.67E-24 1 6185 3.67E-24 1

7768 1.56E-11 24 7768 1.56E-11 24
11942 2.12E-10 45 10234 1.30E-07 165

4 6185 3.67E-24 1 5045 2.46E-09 85
8092 5.50E-03 2861 6185 3.67E-24 1
10234 1.30E-07 165 10234 1.30E-07 165
11871 4.18E-09 98 12067 3.63E-04 1205

5 1247 2.10E-02 4393 205 2.40E-13 13
6185 3.67E-24 1 1247 2.10E-02 4393
6323 9.91E-04 1651 6185 3.67E-24 1
8965 7.82E-11 35 6323 9.91E-04 1651
10234 1.30E-07 165 10234 1.30E-07 165

10 2607 1.10E-02 3598 1561 3.46E-03 2461
3617 1.68E-03 1976 2694 3.75E-01 11108
8200 4.99E-11 32 4767 5.44E-05 687
8965 7.82E-11 35 4899 8.49E-07 233
9860 3.98E-01 11351 5045 2.46E-09 85
10234 1.30E-07 165 6185 3.67E-24 1
11190 1.82E-02 4218 8965 7.82E-11 35
11871 4.18E-09 98 9002 5.78E-03 2914
11942 2.12E-10 45 9093 2.25E-11 26
11947 4.61E-01 12180 11588 2.22E-01 9138

15 205 2.40E-13 13 497 1.45E-01 7918
1107 9.78E-02 6981 1308 1.98E-01 8775
2714 1.96E-01 8738 2434 2.70E-01 9786
3113 1.89E-01 8638 3062 6.64E-03 3048
4613 4.74E-01 12308 4525 1.32E-08 112
6185 3.67E-24 1 5045 2.46E-09 85
6539 2.25E-01 9195 5862 4.13E-08 132
7362 1.68E-01 8289 6185 3.67E-24 1
8603 2.78E-01 9884 6838 2.11E-04 1015
10234 1.30E-07 165 8443 7.54E-07 231
10426 6.19E-03 2977 8603 2.78E-01 9884
10494 6.93E-17 2 9034 7.08E-15 8
11245 3.70E-03 2505 10234 1.30E-07 165
11871 4.18E-09 98 11730 4.27E-02 5453
12535 5.00E-07 212 11942 2.12E-10 45
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Table A.18: Gene Selection Based on All Samples: Singh Data (b)

GA GAGA

Subset Size Gene Index Univ Pval Univ Rank Gene Index Univ Pvbal Univ Rank

20 205 2.40E-13 13 1221 1.10E-06 253
2597 1.33E-03 1828 2608 9.62E-02 6944
2861 1.61E-01 8194 3094 6.22E-03 2983
5255 1.37E-02 3875 3206 4.32E-01 11788
5578 1.27E-05 471 3530 6.95E-03 3102
5890 1.26E-10 37 3938 2.17E-03 2124
5991 2.35E-05 546 5629 6.53E-04 1454
7217 3.00E-01 10163 6390 1.78E-04 969
7499 4.97E-01 12567 7297 5.54E-03 2866
7800 2.96E-01 10110 7465 1.07E-06 251
7900 4.40E-01 11904 8123 2.95E-12 21
7903 3.21E-05 594 8297 2.89E-01 10037
7956 4.39E-01 11877 8729 2.25E-04 1038
8610 1.51E-02 3985 8814 1.30E-05 477
9034 7.08E-15 8 9630 2.64E-02 4715
9315 2.84E-01 9958 10234 1.30E-07 165
9964 1.10E-01 7233 11331 1.04E-01 7127.5
10417 4.50E-05 650 11858 1.44E-06 275
10426 6.19E-03 2977 12378 1.02E-02 3503
11661 3.73E-01 11068 12495 4.74E-08 136

25 205 2.40E-13 13 49 4.79E-01 12373
1098 3.17E-01 10421 205 2.40E-13 13
2182 1.24E-02 3741 1023 8.89E-03 3371
2872 5.25E-03 2817 1355 3.05E-01 10240
3794 3.49E-13 14 1534 1.22E-01 7496
4161 4.24E-01 11705 1912 6.90E-03 3094
4636 3.01E-05 585 2403 2.99E-02 4900
4652 4.53E-01 12077 2752 2.66E-02 4723
4725 1.06E-02 3547 5045 2.46E-09 85
5838 9.94E-02 7011 5890 1.26E-10 37
5890 1.26E-10 37 5915 1.82E-02 4216
6468 9.06E-05 801 6185 3.67E-24 1
7875 8.69E-07 234 6719 4.00E-02 5344
8681 2.11E-02 4398 8295 4.87E-01 12455
9133 6.59E-08 146 9034 7.08E-15 8
9608 4.92E-01 12513 9263 2.12E-01 8993
9850 1.74E-16 3 10000 1.45E-05 487
9882 2.82E-02 4821 10234 1.30E-07 165
10234 1.30E-07 165 10861 1.07E-01 7180
10512 3.07E-01 10273 10979 8.98E-03 3379
11026 2.67E-01 9737 11091 5.47E-02 5860
11946 4.42E-01 11931 11858 1.44E-06 275
12194 3.74E-04 1219 11871 4.18E-09 98
12402 2.21E-03 2134 11918 1.24E-04 873
12406 3.93E-01 11310 12478 5.40E-04 1362
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