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My research is concerned with practical, computational, and theoretical aspects of scalable sta-
tistical learning, motivated by

• dependent and high-dimensional data without independent replications: e.g., network, spa-
tial, and temporal data;

• structured data, that is, data with additional structure: e.g., hierarchical, multilevel, mul-
tilayer, and multiscale structure;

• social science data: e.g., educational data, network data, and discrete data.

Overview

My research is motivated by dependent and high-dimensional data without independent repli-
cations, such as network, spatial, and temporal data. My main ideas of how to learn from
dependent data without independent replications are elaborated in the simplest possible setting:
statistical exponential families (Wainwright and Jordan, Foundations and Trends in Machine
Learning, 2008). Statistical exponential families are widely used throughout data science, either
as stand-alone models or as building blocks of more complex models. The fundamental role
of exponential families in data science—both in practice and in theory—is exemplified by the
prominent role of multivariate Gaussians, but there are numerous other applications of expo-
nential families, including generalized linear models, graphical models, Markov random fields in
machine learning, and Boltzmann machines in artificial intelligence. In fact, some of my research
(e.g., Schweinberger, JASA 2011) has contributed to the understanding of generative deep learn-
ing models in artificial intelligence: see, e.g., Kaplan et al. (2020). On the S-instability and
degeneracy of discrete deep learning models. Information and Inference.

Selected highlight

Consider network data, which are dependent data without independent replications. Since the
1950s, social scientists have pointed out that connections depend on other connections: e.g., the
phenomenon that “a friend of a friend is a friend” suggests that friendships are dependent. In
applications, population probability models are learned from a single observation of a population
network or subnetworks sampled from a population network. That raises an important question:

What can we learn about a connected world where connections depend on other
connections, without having the benefit of independent observations from the

same source? In general, what can we learn in high-dimensional scenarios with
p → ∞ parameters and n = 1 observation of dependent random variables?

In a decade-long sequence of papers published in the most prestigious journals in statistics (e.g.,
AOS, JASA, JRSSB, Bernoulli, Statistical Science), I have:

1. Studied the properties of ill-behaved models of dependent random variables, with applica-
tions to models of dependent network data and generative deep learning models in artificial
intelligence (e.g., restricted Boltzmann machines). My work (Schweinberger, JASA 2011)
preceeded the work of Chatterjee and Diaconis (AOS 2013).
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2. Shown how well-posed models of dependent network data can be constructed, with desirable
properties.

3. Demonstrated that statistical learning of p → ∞ parameters based on n = 1 observation
of dependent random variables is possible, with theoretical guarantees.

4. Developed scalable methods for statistical learning of p → ∞ parameters based on n = 1
observation of dependent random variables, with theoretical guarantees.

There is a common thread that connects all of these advances: the importance of additional
structure. Models that lack mathematical structure to control the dependence among random
variables can be ill-behaved, but endowing models with additional structure can help control
dependence and result in well-posed models with desirable properties. In addition, weak depen-
dence facilitates concentration-of-measure results, which in turn facilitate consistency results. In
other words, endowing models with additional structure has two advantages:

1. It facilitates the construction of well-posed models with desirable properties.

2. It facilitates statistical learning with theoretical guarantees.

In practice, there are many forms of additional structure (e.g., spatial, temporal, and multilevel
structure), and it makes sense to take advantage of additional structure when available.

Selected directions of future research

• Stochastic processes involving networks, space, and time: The world is changing.
In fact, many physcial, economic, and social real-world processes evolve over time, involv-
ing systems of interacting subsystems and depend on geographical space and other forms
of spaces: e.g., infectious diseases spread through contacts among population members,
contacts depend on geographical space, and contacts change over time. While there are
stochastic processes involving networks or space or time or a combination of them, many
of them are either simplistic or have unknown probabilistic and statistical properties. One
of my directions of future research is to design generate models that capture networks,
space, and time while doing justice to the complexity of real-world phenomena, along with
scalable statistical and computational methods and theoretical guarantees.

• Uncertainty quantification: In applications of data science, it is important to provide a
disclaimer, stating how uncertain we are about statistical conclusions based on data. In sce-
narios when the number of parameters is unbounded and a single observation of dependent
random variables is available, it is not obvious how to quantify uncertainty, because the
distributions of many statistical quantities are unknown. A natural approach to capturing
uncertainty is a Bayesian approach. I intend to elaborate on scalable Bayesian approaches
to uncertainty quantification for discrete and dependent data without independent repli-
cations based on pseudolikelihood and composite likelihood functions, with applications to
network data and other discrete and dependent data without independent replications.

• Scalable model selection: Developing scalable model selection procedures with theo-
retical guarantees is non-trivial when the likelihood function is intractable, the number
of parameters is large, and the data consists of a single observation of dependent ran-
dom variables. Such scenarios arise in the statistical analysis of discrete and dependent
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data, such as discrete network, spatial, and temporal data. For example, there are many
models of dependent network data, but no scalable model selection procedures with theo-
retical guarantees are known. I plan to develop a scalable approach to model selection in
dependent data problems with intractable likelihood functions based on pseudolikelihood-
based Dantzig selectors. Pseudo-likelihood Dantzig selectors are a natural extension of the
pseudolikelihood-based M -estimators of Stewart and Schweinberger (2021). On computa-
tional grounds, pseudolikelihood-based Dantzig selectors are attractive, because computing
them does not require intractable normalizing constants and amounts to linear program-
ming. On theoretical grounds, pseudolikelihood-based Dantzig selectors are appealing as
well, because theoretical guarantees for model selection can be obtained in dependent data
problems without independent replications, provided the data are structured data, that is,
the data have additional structure that helps control dependence.

• Large-scale online educational assessment data: In collaboration with Minjeong Jeon
(Graduate School of Education & Information Studies, University of California, Los Ange-
les, USA), I am working on large-scale educational assessment data. Among other things,
we are developing interaction and learning progression maps, with a view to providing
teachers with mathematical tools to monitor student progress and identify students who
need more support than others, and which forms of support. The basic idea is to embed
both students and test items into a shared metric space. By embedding students and test
items in the same metric space, teachers can assess how students interact with items, and
how students progress over time. A practical advantage is that interaction and learning
progression maps provide a simple and appealing visual summary of student learning in
a metric space (e.g., a low-dimensional Euclidean space), helping detect students from
underrepresented groups who need more, and different support than other students.

Selected papers: students are indicated by *

• Stewart* and Schweinberger (2021). Pseudo-likelihood-based M -estimation of random graphs
with dependent edges and parameter vectors of increasing dimension. Preprint.

• Jeon, Jin, Schweinberger, and Baugh* (2021). Mapping unobserved item-respondent interactions:
A latent space item response model with interaction map. Psychometrika.

• Schweinberger and Stewart* (2020). Concentration and consistency results for canonical and
curved exponential-family models of random graphs. The Annals of Statistics.

• Schweinberger (2020). Consistent structure estimation of exponential-family random graph mod-
els with block structure. Bernoulli.

• Schweinberger, Krivitsky, Butts, and Stewart* (2020). Exponential-family models of random
graphs: Inference in finite, super, and infinite population scenarios. Statistical Science.

• Schweinberger, Babkin*, and Ensor (2017). High-dimensional multivariate time series with addi-
tional structure. Journal of Computational and Graphical Statistics.

• Schweinberger and Handcock (2015). Local dependence in random graph models: Characteriza-
tion, properties and statistical inference. Journal of the Royal Statistical Society, Series B.

• Schweinberger (2011). Instability, sensitivity, and degeneracy of discrete exponential families.
Journal of the American Statistical Association, Theory & Methods.
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