
SIMULATION OF RANDOM VARIABLES

We want a random number generator to give a sequence U1, U2, ... of random
variables which are independent and uniform on [0, 1]. An obvious problem
is that [0, 1] is an entire interval but a computer only has finite precision.
However, if we can generate random integers Y1, Y2, ... such that each Yk is
discrete uniform on {0, 1, ..., m}, i.e. P (Yk = j) = 1/(m+1) for j = 0, 1, ..., m
and let Uk = Yk/m, then Uk is uniform on the lattice [0, 1/m, ..., (m−1)/m, 1]
which is a good enough approximation if m is large.

The most common algorithms to generate such Yk are the so called con-

gruential random number generators (or power residue random number gen-
erators). These start with a value Y0, the seed and generates a sequence of
integers by computing the next from the previous according to the formula

Yn+1 = aYn + b(mod(m + 1))

where a, b and m are fixed integers. Note that this is of course a determinis-
tic sequence, we just want it to ”look random”. Sometimes such number are
therefore called pseudo-random. Also note that the sequence is periodic.

Example. With m = 19, a = b = 1 and Y0 = 0 we get

Y1 = 1 · Y0 + 1(mod 20)= 1
Y2 = 1 · Y1 + 1(mod 20)= 2
...Y19 = 1 · Y18 + 1(mod 20)= 19
Y20 = 1 · Y19 + 1(mod 20)= 20(mod 20)= 0

which gives the sequence 0, 1, 2, ..., 19, 0, 1, 2, ..., 19, 0, 1, 2, ... which has each
number in the right proportion in the long run, but certainly does not look
random. For example, if we generate three observations with this algorithm,
then at least two of these will always be consecutive regardless of the seed Y0.
This is clearly not desirable for a sequence that is supposed to be random.

Example. With m = 19, a = 5, b = 3 and Y0 = 0 we get
Y1 = 5 · 0 + 3(mod 20)= 3
Y2 = 5 · 3 + 3(mod 20)= 18
Y3 = 5 · 18 + 3(mod 20)= 93(mod 20)= 13
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Y4 = 5 · 9 + 3(mod 20)= 8
Y5 = 5 · 8 + 3(mod 20)= 3

which gives the sequence 0, 3, 18, 13, 8, 3, 18, 13, 8, 3, ...where the pattern 3, 18, 13, 8
is repeated indefinitely. This sequence looks more random than the previous
but instead does not have the right proportions. The period is too short to
generate all numbers 0, 1, ...19.

There are theoretical results how to choose m, a and b to avoid these problem
and get a sequence which looks random. For practical purposes, m of course
must be much larger than in the two examples above.

Assuming thus that we can generate our independent, uniform [0, 1] random
variables U1, U2, ..., how can we use this to generate observations from other
distributions? The following theorem is very helpful.

Theorem. Let F be a continuous and strictly increasing cdf. Let U ∼unif[0, 1]
and let Y = F−1(U). Then Y has cdf F .

Proof. Start with the cdf of Y :

FY (x) = P (Y ≤ x) = P (F−1(U) ≤ x) = P (U ≤ F (x)) = FU(F (x)) = F (x)

since FU(u) = u (U uniform on [0, 1]).

Hence if we generate U1, U2, ... uniform [0, 1] and let Yk = F−1(Uk, then the
sequence Y1, Y2, ... is a sample from the cdf F . This is called the inverse

transformation method

Example. Generate observations from an exponential distribution with pa-
rameter λ. Here F (x) = 1 − e−λx which has inverse F−1(x) = − 1

λ
log(1 − x)

so if U ∼unif[0, 1], then the random variable Y = − 1

λ
log(1−U) is exp(λ).

Example. Simulate (X, Y ) uniform on the triangle {(x, y) : 0 ≤ x ≤ 1, 0 ≤
y ≤ 1− x}, i.e. the triangle with corners in (0, 1), (0, 0) and (1, 0). The joint
pdf is f(x, y) = 2 which gives the marginal pdf for X
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fX(x) =
∫

1−x

0

f(x, y)dy = 2
∫

1−x

0

dy = 2(1 − x)

which in its turn gives the cdf

FX(x) =
∫

x

0

2(1 − t)dt = 2x − x2, 0 ≤ x ≤ 1.

This has inverse F−1 = 1 −
√

1 − x (note that when you solve the quadratic
you get two solutions but only the one with ”-” is correct between 0 and 1).

Further, the conditional pdf of Y given X = x is

fY (y|x) =
f(x, y)

fX(x)
=

1

1 − x

i.e. Y |X = x ∼unif [0, 1 − x].

The inverse transformation method thus gives that if U and V are indepen-
dent uniform [0, 1], then

X = 1 −
√

1 − U
Y = V (1 − X)

gives a pair (X, Y ) which is uniform on the triangle. The following sequence
of Matlab commands simulates and plots 1000 observations on (X, Y ):

u=random(’unif’,0,1,1,1000);
v=random(’unif’,0,1,1,1000);
x=1-sqrt(1-u);
y=v.*(1-x);
plot(x,y,’*’)

Note that, since X and Y are dependent, you must pair each X-value with
its corresponding Y -value.

Example. Simulate (X, Y ) uniform on the unit disk {(x, y) : x2 + y2 ≤ 1}.
Use polar coordinates (R, Θ). These are independent and such that Θ is uni-
form on [0, 2π] and R has pdf fR(r) = 2r. This gives cdf FR(r) = r2 which
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has inverse F−1(r) =
√

r and if U, V are independent uniform [0, 1], then

Θ = 2πU
R =

√
V

gives a point which is uniform on the disk. Note that because of indepen-
dence, you can generate observations on Θ and R independently of each other
and pair them any way you want.

A good textbook on simulation is ”Simulation: A Modeler’s Approach” by
James R. Thompson.
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