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Preface

The Book

In November 2003, I was completing a review of an undergraduate textbook in prob-
ability and statistics. In the enclosed evaluation sheet was the question “Have you
ever considered writing a textbook?” and I suddenly realized that the answer was
“Yes,” and had been for quite some time. For several years I had been teaching a
course on calculus-based probability and statistics mainly for mathematics, science,
and engineering students. Other than the basic probabilitytheory, my goal was to in-
clude topics from two areas: statistical inference and stochastic processes. For many
students this was the only probability/statistics course they would ever take, and I
found it desirable that they were familiar with confidence intervals and the maximum
likelihood method, as well as Markov chains and queueing theory. While there were
plenty of books covering one area or the other, it was surprisingly difficult to find one
that covered both in a satisfying way and on the appropriate level of difficulty. My
solution was to choose one textbook and supplement it with lecture notes in the area
that was missing. As I changed texts often, plenty of lecturenotes accumulated and
it seemed like a good idea to organize them into a textbook. I was pleased to learn
that the good people at Wiley agreed.

It is now more than a year later, and the book has been written.The first three
chapters develop probability theory and introduce the axioms of probability, random
variables, and joint distributions. The following two chapters are shorter and of an
“introduction to” nature: Chapter 4 on limit theorems and Chapter 5 on simulation.
Statistical inference is treated in Chapter 6, which includes a section on Bayesian
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statistics, too often a neglected topic in undergraduate texts. Finally, in Chapter 7,
Markov chains in discrete and continuous time are introduced. The reference list
at the end of the book is by no means intended to be comprehensive; rather, it is a
subjective selection of the useful and the entertaining.

Throughout the text I have tried to convey an intuitive understanding of concepts
and results, which is why a definition or a proposition is often preceded by a short
discussion or a motivating example. I have also attempted tomake the exposition
entertaining by choosing examples from the rich source of fun and thought-provoking
probability problems. The data sets used in the statistics chapter are of three different
kinds: real, fake but realistic, and unrealistic but illustrative.

The people

Most textbook authors start by thanking their spouses. I know now that this is far
more than a formality, and I would like to thankAλκµήνη not only for patiently
putting up with irregular work hours and an absentmindedness greater than usual but
also for valuable comments on the aesthetics of the manuscript.

A number of people have commented on various parts and aspects of the book.
First, I would like to thank Olle Häggström at Chalmers University of Technology,
Göteborg, Sweden for valuable comments on all chapters. His remarks are always
accurate and insightful, and never obscured by unnecessarypoliteness. Second, I
would like to thank Kjell Doksum at the University of Wisconsin for a very helpful
review of the statistics chapter. I have also enjoyed the Bayesian enthusiasm of Peter
Müller at the University of Texas MD Anderson Cancer Center.

Other people who have commented on parts of the book or been otherwise helpful
are my colleagues Dennis Cox, Kathy Ensor, Rudy Guerra, Marek Kimmel, Rolf
Riedi, Javier Rojo, David W. Scott, and Jim Thompson at Rice University; Prof. Dr.
R.W.J. Meester at Vrije Universiteit, Amsterdam, The Netherlands; Timo Seppäläinen
at the University of Wisconsin; Tom English at Behrend College; Robert Lund at
Clemson University; and Jared Martin at Shell Exploration and Production. For help
with solutions to problems, I am grateful to several bright Rice graduate students:
Blair Christian, Julie Cong, Talithia Daniel, Ginger Davis, Li Deng, Gretchen Fix,
Hector Flores, Garrett Fox, Darrin Gershman, Jason Gershman, Shu Han, Shannon
Neeley, Rick Ott, Galen Papkov, Bo Peng, Zhaoxia Yu, and Jenny Zhang. Thanks to
Mikael Andersson at Stockholm University, Sweden for contributions to the problem
sections, and to Patrick King at ODS–Petrodata, Inc. for providing data with a dis-
tinct Texas flavor: oil rig charter rates. At Wiley, I would like to thank Steve Quigley,
Susanne Steitz, and Kellsee Chu for always promptly answering my questions. Fi-
nally, thanks to John Haigh, John Allen Paulos, Jeffrey E. Steif, and an anonymous
Dutchman for agreeing to appear and be mildly mocked in footnotes.

PETEROLOFSSON

Houston, Texas, 2005
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1
Basic Probability Theory

1.1 INTRODUCTION

Probability theory is the mathematics of randomness. This statement immediately
invites the question “What is randomness?” This is a deep question that we cannot
attempt to answer without invoking the disciplines of philosophy, psychology, math-
ematical complexity theory, and quantum physics, and stillthere would most likely
be no completely satisfactory answer. For our purposes, an informal definition of
randomness as “what happens in a situation where we cannot predict the outcome
with certainty” is sufficient. In many cases, this might simply mean lack of infor-
mation. For example, if we flip a coin, we might think of the outcome as random.
It will be either heads or tails, but we cannot say which, and if the coin is fair, we
believe that both outcomes are equally likely. However, if we knew the force from
the fingers at the flip, weight and shape of the coin, material and shape of the table
surface, and several other parameters, we would be able to predict the outcome with
certainty, according to the laws of physics. In this case we use randomness as a way
to describe uncertainty due to lack of information.1

Next question: “What is probability?” There are two main interpretations of
probability, one that could be termed “objective” and the other “subjective.” The first
is the interpretation of a probability as alimit of relative frequencies; the second, as
a degree of belief. Let us briefly describe each of these.

1To quote the French mathematician Pierre-Simon Laplace, one of the first to develop a mathematical
theory of probability: “Probability is composed partly of our ignorance, partly of our knowledge.”
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2 BASIC PROBABILITY THEORY

For the first interpretation, suppose that we have an experiment where we are
interested in a particular outcome. We can repeat the experiment over and over and
each time record whether we got the outcome of interest. As weproceed, we count
the number of times that we got our outcome and divide this number by the number of
times that we performed the experiment. The resulting ratiois therelative frequency
of our outcome. As it can be observed empirically that such relative frequencies tend
to stabilize as the number of repetitions of the experiment grows, we might think of
the limit of the relative frequencies as the probability of the outcome. In mathematical
notation, if we considern repetitions of the experiment and ifSn of these gave our
outcome, then the relative frequency would befn = Sn/n, and we might say that
the probability equalslimn→∞ fn. Figure 1.1 shows a plot of the relative frequency
of heads in a computer simulation of100 hundred coin flips. Notice how there is
significant variation in the beginning but how the relative frequency settles in toward
1

2
quickly.
The second interpretation, probability as a degree of belief, is not as easily quan-

tified but has obvious intuitive appeal. In many cases, it overlaps with the previous
interpretation, for example, the coin flip. If we are asked toquantify our degree of
belief that a coin flip gives heads, where0 means “impossible” and1 means “with
certainty,” we would probably settle for1

2
unless we have some specific reason to

believe that the coin is not fair. In some cases it is not possible to repeat the experi-
ment in practice, but we can still imagine a sequence of repetitions. For example, in
a weather forecast you will often hear statements like “there is a30% chance of rain
tomorrow.” Of course, we cannot repeat the experiment; either it rains tomorrow or it
does not. The30% is the meteorologist’s measure of the chance of rain. There is still
a connection to the relative frequency approach; we can imagine a sequence of days
with similar weather conditions, same time of year, and so on, and that in roughly
30% of the cases, it rains the following day.

The “degree of belief” approach becomes less clear for statements such as “the
Riemann hypothesis is true” or “there is life on other planets.” Obviously these
are statements that are either true or false, but we do not know which, and it is not

0 20 40 60 80 100
0  

1/2 

1  

Fig. 1.1 Consecutive relative frequencies of heads in100 coin flips.



SAMPLE SPACES AND EVENTS 3

unreasonable to use probabilities to express how strongly we believe in their truth. It is
also obvious that different individuals may assign completely different probabilities.

How, then, do we actuallydefinea probability? Instead of trying to use any of
these interpretations, we will state a strict mathematicaldefinition of probability. The
interpretations are still valid to develop intuition for the situation at hand, but instead
of, for example,assumingthat relative frequencies stabilize, we will be able toprove
that they do, within our theory.

1.2 SAMPLE SPACES AND EVENTS

As mentioned in the introduction, probability theory is a mathematical theory to
describe and analyze situations where randomness or uncertainty are present. Any
specific such situation will be referred to as arandom experiment. We use the term
“experiment” in a wide sense here; it could mean an actual physical experiment such
as flipping a coin or rolling a die, but it could also be a situation where we simply
observe something, such as the price of a stock at a given time, the amount of rain in
Houston in September, or the number of spam emails we receivein a day. After the
experiment is over, we call the result anoutcome. For any given experiment, there is
a set of possible outcomes, and we state the following definition.

Definition 1.2.1. The set of all possible outcomes in a random experiment is
called thesample space, denotedS.

Here are some examples of random experiments and their associated sample spaces.

Example1.2.1. Roll a die and observe the number.

Here we can get the numbers1 through6, and hence the sample space is

S = {1, 2, 3, 4, 5, 6}

Example1.2.2. Roll a die repeatedly and count the number of rolls it takes until the
first 6 appears.

Since the first6 may come in the first roll,1 is a possible outcome. Also, we may fail
to get6 in the first roll and then get6 in the second, so2 is also a possible outcome. If
we continue this argument we realize that any positive integer is a possible outcome
and the sample space is

S = {1, 2, ...}
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the set of positive integers.

Example1.2.3. Turn on a lightbulb and measure its lifetime, that is, the time until
it fails.

Here it is not immediately clear what the sample space shouldbe, since it depends on
how accurately we can measure time. The most convenient approach is to note that
the lifetime, at least in theory, can assume any nonnegativereal number and choose
as the sample space

S = [0,∞)

where the outcome 0 means that the lightbulb is broken to start with.

In these three examples, we have sample spaces of three different kinds. The first
is finite, meaning that it has a finite number of outcomes, whereas the second and
third are infinite. Although they are both infinite, they are different in the sense that
one has its points separated,{1, 2, ...} and the other is an entire continuum of points.
We call the first typecountable infinityand the seconduncountable infinity. We will
return to these concepts later as they turn out to form an important distinction.

In the examples above, the outcomes are always numbers and hence the sample
spaces are subsets of the real line. Here are some examples ofother types of sample
spaces.

Example1.2.4. Flip a coin twice and observe the sequence of heads and tails.

With H denoting heads andT denoting tails, one possible outcome isHT , which
means that we get heads in the first flip and tails in the second.Arguing like this,
there are four possible outcomes and the sample space is

S = {HH, HT, TH, TT }

Example1.2.5. Throw a dart at random on a dart board of radiusr.

If we think of the board as a disk in the plane with center at theorigin, an outcome is
an ordered pair of real numbers(x, y), and we can describe the sample space as

S = {(x, y) : x2 + y2 ≤ r2}
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Once we have described an experiment and its sample space, wewant to be able to
compute probabilities of the various things that may happen. What is the probability
that we get6 when we roll a die? That the first6 does not come before the fifth roll?
That the lightbulb works for at least1500 hours? That our dart hits the bull’s eye?
Certainly we need to make further assumptions to be able to answer these questions,
but before that, we realize that all these questions have something in common. They
all ask for probabilities of either single outcomes or groups of outcomes. Mathemat-
ically, we can describe these as subsets of the sample space.

Definition 1.2.2. A subset ofS, A ⊆ S, is called anevent.

Note the choice of words here. The terms “outcome” and “event” reflect the fact
that we are describing things that may happen in real life. Mathematically, these
are described as elements and subsets of the sample space. This duality is typical
for probability theory; there is a verbal description and a mathematical description
of the same situation. The verbal description is natural when real-world phenomena
are described and the mathematical formulation is necessary to develop a consistent
theory. See Table 1.1 for a list of set operations and their verbal description.

Example1.2.6. If we roll a die and observe the number, two possible events are that
we get an odd outcome and that we get at least4. If we view these as subsets of the
sample space we get

A = {1, 3, 5} and B = {4, 5, 6}

If we want to use the verbal description we might write this as

A = {odd outcome} and B = {at least4}

We always use “or” in its nonexclusive meaning; thus, “A or B occurs” includes the
possibility that both occur. Note that there are different ways to express combinations
of events; for example,A \ B = A ∩ Bc and(A ∪ B)c = Ac ∩ Bc. The latter is
known as one ofDe Morgan’s laws, and we state these without proof together with
some other basic set theoretic rules.
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Table 1.1 Basic set operations and their verbal description.

Notation Mathematical description Verbal description

A ∪ B The union ofA andB A or B (or both) occurs

A ∩ B The intersection ofA andB BothA andB occur

Ac The complement ofA A does not occur

A \ B The difference betweenA andB A occurs but notB

Ø The empty set Impossible event

Proposition 1.2.1. Let A, B, andC be events. Then

(a) (Distributive Laws) (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)

(b) (De Morgan’s Laws) (A ∪ B)c = Ac ∩ Bc

(A ∩ B)c = Ac ∪ Bc

As usual when dealing with set theory,Venn diagramsare useful. See Figure 1.2 for
an illustration of some of the set operations introduced above. We will later return to
how Venn diagrams can be used to calculate probabilities. IfA andB are such that
A ∩ B = Ø, they are said to bedisjoint or mutually exclusive. In words, this means
that they cannot both occur simultaneously in the experiment.

As we will often deal with unions of more than two or three events, we need more
general versions of the results given above. Let us first introduce some notation. If
A1, A2, ..., An is a sequence of events, we denote

n
⋃

k=1

Ak = A1 ∪ A2 ∪ · · · ∪ An

the union of all theAk and

n
⋂

k=1

Ak = A1 ∩ A2 ∩ · · · ∩ An

the intersection of all theAk. In words, these are the events thatat least oneof the
Ak occurs and thatall theAk occur, respectively. The distributive and De Morgan’s
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A B

A ∩ B

A B

B \ A

Fig. 1.2 Venn diagrams of the intersection and the difference between events.

laws extend in the obvious way, for example
(

n
⋃

k=1

Ak

)c

=
n
⋂

k=1

Ac
k

It is also natural to consider infinite unions and intersections. For example, in Example
1.2.2, the event that the first6 comes in an odd roll is the infinite union{1} ∪ {3} ∪
{5} ∪ · · · and we can use the same type of notation as for finite unions andwrite

{first 6 in odd roll} =

∞
⋃

k=1

{2k − 1}

For infinite unions and intersections, distributive and De Morgan’s laws still extend
in the obvious way.

1.3 THE AXIOMS OF PROBABILITY

In the previous section, we laid the basis for a theory of probability by describing ran-
dom experiments in terms of the sample space, outcomes, and events. As mentioned,
we want to be able to compute probabilities of events. In the introduction, we men-
tioned two different interpretations of probability: as a limit of relative frequencies
and as a degree of belief. Since our aim is to build a consistent mathematical theory,
as widely applicable as possible, our definition of probability should not depend on
any particular interpretation. For example, it makes intuitive sense to require a prob-
ability to always be less than or equal to one (or equivalently, less than or equal to
100%). You cannot flip a coin10 times and get12 heads. Also, a statement such as “I
am 150% sure that it will rain tomorrow” may be used to expressextreme pessimism
regarding an upcoming picnic but is certainly not sensible from a logical point of
view. Also, a probability should be equal to one (or 100%), when there is absolute
certainty, regardless of any particular interpretation.

Other properties must hold as well. For example, if you thinkthere is a20% chance
that Bob is in his house, a30% chance that he is in his backyard, and a50% chance
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that he is at work, then the chance that he is at home is50%, the sum of20% and
30%. Relative frequencies are alsoadditivein this sense, and it is natural to demand
that the same rule apply for probabilities.

We now give a mathematical definition of probability, where it is defined as a real-
valued function of the events, satisfying three properties, which we refer to as the
axioms of probability. In the light of the discussion above, they should be intuitively
reasonable.

Definition 1.3.1. (Axioms of Probability). A probability measureis a
functionP , which assigns to each eventA a numberP (A) satisfying

(a) 0 ≤ P (A) ≤ 1

(b) P (S) = 1

(c) If A1, A2, ... is a sequence ofpairwise disjointevents, that is, ifi 6= j,
thenAi ∩ Aj = Ø, then

P

(

∞
⋃

k=1

Ak

)

=

∞
∑

k=1

P (Ak)

We readP (A) as “the probability ofA.” Note that a probability in this sense is a
real number between 0 and 1 but we will occasionally also use percentages so that,
for example, the phrases “The probability is0.2” and “There is a20% chance” mean
the same thing.2

The third axiom is the most powerful assumption when it comesto deducing prop-
erties and further results. Some texts prefer to state the third axiom for finite unions
only, but since infinite unions naturally arise even in simple examples, we choose
this more general version of the axioms. As it turns out, the finite case follows as
a consequence of the infinite. We next state this in a proposition and also that the
empty set has probability zero. Although intuitively obvious, we must prove that it
follows from the axioms. We leave this as an exercise.

2If the sample space is very large, it may be impossible to assign probabilities toall events. The class of
events then needs to be restricted to what is called aσ-field. For a more advanced treatment of probability
theory, this is a necessary restriction, but we can safely disregard this problem.
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Proposition 1.3.1. Let P be a probability measure. Then

(a) P (Ø) = 0

(b) If A1, ..., An are pairwise disjoint events, then

P (

n
⋃

k=1

Ak) =

n
∑

k=1

P (Ak)

In particular, ifA andB are disjoint, thenP (A ∪ B) = P (A) + P (B). In general,
unions need not be disjoint and we next show how to compute theprobability of
a union in general, as well as prove some other basic properties of the probability
measure.

Proposition 1.3.2. Let P be a probability measure on some sample spaceS
and letA andB be events. Then

(a) P (Ac) = 1 − P (A)

(b) P (A \ B) = P (A) − P (A ∩ B)

(c) P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

(d) If A ⊆ B, thenP (A) ≤ P (B)

Proof. We prove (b) and (c), and leave (a) and (d) as exercises. For (b), note that
A = (A ∩ B) ∪ (A \ B), which is a disjoint union, and Proposition 1.3.1 gives

P (A) = P (A ∩ B) + P (A \ B)

which proves the assertion. For (c), we writeA ∪ B = A ∪ (B \ A), which is a
disjoint union, and we get

P (A ∪ B) = P (A) + P (B \ A) = P (A) + P (B) − P (A ∩ B)

by part (b).

Note how we repeatedly used Proposition 1.3.1(b), the finiteversion of the third ax-
iom. In Proposition 1.3.2(c), for example, the eventsA andB are not necessarily
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disjoint but we can represent their union as a union of other events that are disjoint,
thus allowing us to apply the third axiom.

Example1.3.1. Mrs Boudreaux and Mrs Thibodeaux are chatting over their fence
when the new neighbor walks by. He is a man in his sixties with shabby clothes and a
distinct smell of cheap whiskey. Mrs B, who has seen him before, tells Mrs T that he
is a former Louisiana state senator. Mrs T finds this very hardto believe. “Yes,” says
Mrs B, “he is a former state senator who got into a scandal longago, had to resign
and started drinking.” “Oh,” says Mrs T, “that sounds more probable.” “No,” says
Mrs B, “I think you mean less probable.”

Actually, Mrs B is right. Consider the following two statements about the shabby
man: “He is a former state senator” and “He is a former state senator who got into
a scandal long ago, had to resign, and started drinking.” It is tempting to think that
the second is more probable because it gives a more exhaustive explanation of the
situation at hand. However, this is precisely why it is alessprobable statement. To
explain this with probabilities, consider the experiment of observing a person and the
two events

A = {he is a former state senator}

B = {he got into a scandal long ago, had to resign and started drinking}

The first statement then corresponds to the eventA and the second to the eventA∩B,
and sinceA∩B ⊆ A, we getP (A∩B) ≤ P (A). Of course, what Mrs T meant was
that it was easier to believe that the man was a former state senator once she knew
more about his background.

In their bookJudgment under Uncertainty, Kahneman et al. [5], show empirically
how people often make similar mistakes when asked to choose the most probable
among a set of statements. With a strict application of the rules of probability we get
it right.

Example1.3.2. Consider the following statement: “I heard on the news that there is
a 50% chance of rain on Saturday and a 50% chance of rain on Sunday. Then there
must be a 100% chance of rain during the weekend.”

This is, of course, not true. However, it may be harder to point out precisely where
the error lies, but we can address it with probability theory. The events of interest are

A = {rain on Saturday} and B = {rain on Sunday}

and the event of rain during the weekend is thenA ∪ B. The percentages are refor-
mulated as probabilities so thatP (A) = P (B) = 0.5 and we get
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P (rain during the weekend) = P (A ∪ B)

= P (A) + P (B) − P (A ∩ B)

= 1 − P (A ∩ B)

which is less than 1, that is, the chance of rain during the weekend is less than 100%.
The error in the statement lies in that we can add probabilities only when the events
are disjoint. In general, we need to subtract the probability of the intersection, which
in this case is the probability that it rains both Saturday and Sunday.

Example1.3.3. A dart board has area of143 in.2 (square inches). In the center of
the board, there is the “bulls eye,” which is a disk of area 1 in.2. The rest of the board
is divided into20 sectors numbered1, 2, ..., 20. There is also a triple ring that has an
area of10 in.2 and a double ring of area 15 in.2 (everything rounded to nearest inte-
gers). Suppose that you throw a dart at random on the board. What is the probability
that you get(a) double14, (b) 14 but not double,(c) triple or the bull’s eye,(d) an
even number or a double?

Introduce the eventsF = {14}, D = {double}, T = {triple}, B = {bull’s eye},
andE = {even}. We interpret “throw a dart at random” to mean that any region
is hit with a probability that equals the fraction of the total area of the board that
region occupies. For example, each number has area(143 − 1)/20 = 7.1 in.2 so the
corresponding probability is7.1/143. We get

P (double14) = P (D ∩ F ) =
0.75

143
≈ 0.005

P (14 but not double) = P (F \ D) = P (F ) − P (F ∩ D)

=
7.1

143
−

0.75

143
≈ 0.044

P (triple or bulls eye) = P (T ∪ B) = P (T ) + P (B)

=
10

143
+

1

143
≈ 0.077

P (even or double) = P (E ∪ D) = P (E) + P (D) − P (E ∩ D)

=
71

143
+

15

143
−

7.5

143
≈ 0.55
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Let us say a word here about the interplay between logical statements and events. In
the previous example, consider the eventsE = {even} andF = {14}. Clearly, if
we get14, we also get an even number. As a logical relation between statements, we
would express this as

the number is14 ⇒ the number is even

and in terms of events, we would say “IfF occurs, thenE must also occur.” But this
means thatF ⊆ E and hence

{the number is14} ⊆ {the number is even}

and thus the set-theoretic analog of “⇒” is “⊆” which is useful to keep in mind.
Venn diagrams turn out to provide a nice and useful interpretation of probabilities.

If we imagine the sample spaceS to be a rectangle of area1, we can interpret the
probability of an eventA as the area ofA (see Figure 1.3). For example, Proposition
1.3.2(c) says thatP (A ∪ B) = P (A) + P (B) − P (A ∩ B). With the interpretation
of probabilities as areas, we thus have

P (A ∪ B) = area ofA ∪ B

= area ofA + area ofB − area ofA ∩ B

= P (A) + P (B) − P (A ∩ B)

since when we add the areas ofA andB, we count the area ofA∩B twice and must
subtract it (think ofA andB as overlapping pancakes where we are interested only
in how much area they cover). Strictly speaking, this is not aproof but the method
can be helpful to find formulas that can then be proved formally. In the case of three
events, consider Figure 1.4 to argue that

Area ofA ∪ B ∪ C = area ofA + area ofB + area ofC

− area ofA ∩ B − area ofA ∩ C − area ofB ∩ C

+ area ofA ∩ B ∩ C

Total area= 1

S

area ofA

P (A ) =

Fig. 1.3 Probabilities with Venn diagrams.
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BA

C

Fig. 1.4 Venn diagram of three events.

since the piece in the middle was first added3 times and then removed3 times, so in
the end we have to add it again. Note that we must draw the diagram so that we get
all possible combinations of intersections between the events. We have argued for
the following proposition, which we state and prove formally.

Proposition 1.3.3. Let A, B, andC be three events. Then

P (A ∪ B ∪ C) = P (A) + P (B) + P (C)

− P (A ∩ B) − P (A ∩ C) − P (B ∩ C)

+ P (A ∩ B ∩ C)

Proof. By applying Proposition 1.3.2(c) twice — first to the two eventsA∪B and
C and secondly to the eventsA andB — we obtain

P (A ∪ B ∪ C) = P (A ∪ B) + P (C) − P ((A ∪ B) ∩ C)

= P (A) + P (B) − P (A ∩ B) + P (C) − P ((A ∪ B) ∩ C)

The first four terms are what they should be. To deal with the last term, note that by
the distributive laws for set operations, we obtain

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)

and yet another application of Proposition 1.3.2(c) gives

P ((A ∪ B) ∩ C) = P ((A ∩ C) ∪ (B ∩ C))

= P (A ∩ C) + P (B ∩ C) − P (A ∩ B ∩ C)
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which gives the desired result.

Example1.3.4. Choose a number at random from the numbers1, ..., 100. What is
the probability that the chosen number is divisible by either 2, 3, or 5?

Introduce the events

Ak = {divisible byk}, for k = 1, 2, ...

We interpret “at random” to mean that any set of numbers has a probability that is
equal to its relative size, that is, the number of elements divided by 100. We then get

P (A2) = 0.5, P (A3) = 0.33, andP (A5) = 0.2

For the intersection, first note that, for example,A2 ∩A3 is the event that the number
is divisible by both2 and3, which is the same as saying it is divisible by6. Hence
A2 ∩ A3 = A6 and

P (A2 ∩ A3) = P (A6) = 0.16

Similarly, we get

P (A2 ∩ A5) = P (A10) = 0.1, P (A3 ∩ A5) = P (A15) = 0.06

and

P (A2 ∩ A3 ∩ A5) = P (A30) = 0.03

The event of interest isA2 ∪ A3 ∪ A5, and Proposition 1.3.3 yields

P (A2 ∪ A3 ∪ A5) = 0.5 + 0.33 + 0.2 − (0.16 + 0.1 + 0.06) + 0.03 = 0.74

It is now easy to believe that the general formula for a union of n events starts by
adding the probabilities of the events, then subtracting the probabilities of the pairwise
intersections, adding the probabilities of intersectionsof triples and so on, finishing
with either adding or subtracting the intersection of all the n events, depending on
whethern is odd or even. We state this in a proposition that is sometimes referred to
as theinclusion–exclusion formula. It can, for example, be proved by induction, but
we leave the proof as an exercise.



THE AXIOMS OF PROBABILITY 15

Proposition 1.3.4. Let A1, A2, ..., An be a sequence ofn events. Then

P

(

n
⋃

k=1

Ak

)

=

n
∑

k=1

P (Ak)

−
∑

i<j

P (Ai ∩ Aj)

+
∑

i<j<k

P (Ai ∩ Aj ∩ Ak)

...

+ (−1)n+1P (A1 ∩ A2 ∩ · · · ∩ An)

We finish this section with a theoretical result that will be useful from time to time.
A sequence of events is said to beincreasingif

A1 ⊆ A2 ⊆ · · ·

anddecreasingif
A1 ⊇ A2 ⊇ · · ·

In each case we can define thelimit of the sequence. If the sequence is increasing,
we define

lim
n→∞

An =

∞
⋃

k=1

Ak

and if the sequence is decreasing

lim
n→∞

An =

∞
⋂

k=1

Ak

Note how this is similar to limits of sequences of numbers, with⊆ and⊇ correspond-
ing to≤ and≥, respectively, and union and intersection corresponding to supremum
and infimum. The following proposition states that the probability measure is acon-
tinuous set function. The proof is outlined in Problem 15.

Proposition 1.3.5. If A1, A2, ... is either increasing or decreasing, then

P ( lim
n→∞

An) = lim
n→∞

P (An)
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1.4 FINITE SAMPLE SPACES AND COMBINATORICS

The results in the previous section hold for an arbitrary sample spaceS. In this section
we will assume thatS is finite, S = {s1, ..., sn}, say. In this case, we can always
define the probability measure by assigning probabilities to the individual outcomes.

Proposition 1.4.1. Suppose thatp1, ..., pn are numbers such that

(a) pk ≥ 0, k = 1, ..., n

(b)
n
∑

k=1

pk = 1

and for any eventA ⊆ S, define

P (A) =
∑

k:sk∈A

pk

ThenP is a probability measure.

Proof. Clearly, the first two axioms of probability are satisfied. For the third, note
that in a finite sample space, we cannot have infinitely many disjoint events, so we
only have to check this for a disjoint union of two eventsA andB. We get

P (A ∪ B) =
∑

k:sk∈A∪B

pk =
∑

k:sk∈A

pk +
∑

k:sk∈B

pk = P (A) + P (B)

and we are done. (Why are two events enough?)

Hence, when dealing with finite sample spaces, we do not need to explicitly give the
probability of every event, only for each outcome. We refer to the numbersp1, ..., pn

as aprobability distributiononS.

Example1.4.1. Consider the experiment of flipping a fair coin twice and counting
the number of heads. We can take the sample space

S = {HH, HT, TH, TT }

and letp1 = ... = p4 = 1

4
. Alternatively, since all we are interested in is the number

of heads and this can be0, 1, or 2, we can use the sample space

S = {0, 1, 2}
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and letp0 = 1

4
, p1 = 1

2
, p2 = 1

4
.

Of particular interest is the case when all outcomes are equally likely. If S hasn
equally likely outcomes, thenp1 = p2 = · · · = pn = 1

n
, which is called auniform

distributiononS. The formula for the probability of an eventA now simplifies to

P (A) =
∑

k:sk∈A

1

n
=

#A

n

where#A denotes the number of elements inA. This formula is often referred to as
theclassical definition of probability, since historically this was the first context in
which probabilities were studied. The outcomes in the eventA can be described as
favorableto A and we get the following formulation.

Corollary 1.4.2. In a finite sample space with uniform probability distribution

P (A) =
# favorable outcomes
# possible outcomes

In daily language, the term “at random” is often used for something that has a uniform
distribution. Although our concept of randomness is more general, this colloquial
notion is so common that we will also use it (and already have). Thus, if we say “pick
a number at random from1, ..., 10,” we mean “pick a number according to a uniform
probability distribution on the sample space{1, 2, ..., 10}.”

Example1.4.2. Roll a fair die3 times. What is the probability that all numbers are
the same?

The sample space is the set of the216 ordered triples(i, j, k), and since the die is fair,
these are all equally probable and we have a uniform probability distribution. The
event of interest is

A = {(1, 1, 1), (2, 2, 2), ..., (6, 6, 6)}

which has six outcomes and probability

P (A) =
# favorable outcomes
# possible outcomes

=
6

216
=

1

36
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Example1.4.3. Consider a randomly chosen family with three children. Whatis
the probability that they have exactly one daughter?

There are eight possible sequences of boys and girls (in order of birth), and we get
the sample space

S = {bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg}

where, for example,bbg means that the oldest child is a boy, the middle child a boy,
and the youngest child a girl. If we assume that all outcomes are equally likely, we
get a uniform probability distribution onS, and since there are three outcomes with
one girl, we get

P (one daughter) =
3

8

Example1.4.4. Consider a randomly chosen girl who has two siblings. What isthe
probability that she has no sisters?

Although this seems like the same problem as in the previous example, it is not. If, for
example, the family has three girls, the chosen girl can be any of these three, so there
are three different outcomes and the sample space needs to take this into account. Let
g∗ denote the chosen girl to get the sample space

S = {g∗gg, gg∗g, ggg∗, g∗gb, gg∗b, g∗bg, gbg∗, bg∗g, bgg∗, g∗bb, bg∗b, bbg∗}

and since3 out of12 equally likely outcomes have no sisters we get

P (no sisters) =
1

4

which is smaller than the3
8

we got above. On average,37.5% of families with three
children have a single daughter and25% of girls in three-children families are single
daughters.

1.4.1 Combinatorics

Combinatorics, “the mathematics of counting,” gives rise to a wealth of probability
problems. The typical situation is that we have a set of objects from which we draw
repeatedly in such a way that all objects are equally likely to be drawn. It is often
tedious to list the sample space explicitly, but by countingcombinations we can find
the total number of cases and the number of favorable cases and apply the methods
from the previous section.

The first problem is to find general expressions for the total number of combi-
nations when we drawk times from a set ofn distinguishable objects. There are
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different ways to interpret this. For example, we can drawwith or without replace-
ment, depending on whether the same object can be drawn more than once. We can
also drawwith or without regard to order, depending on whether it matters in which
order the objects are drawn. With these distinctions, thereare four different cases,
illustrated in the following simple example.

Example1.4.5. Choose two numbers from the set{1, 2, 3} and list the possible out-
comes.

Let us first choose with regard to order. If we choose with replacement, the possible
outcomes are

(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)

and if we choose without replacement

(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)

Next, let us choose without regard to order. This means that,for example, the out-
comes(1, 2) and(2, 1) are regarded as the same and we denote it by{1, 2} to stress
that this is thesetof 1 and2, not the ordered pair. If we choose with replacement, the
possible cases are

{1, 1}, {1, 2}, {1, 3}, {2, 2}, {2, 3}, {3, 3}

and if we choose without replacement

{1, 2}, {1, 3}, {2, 3}

To find expressions in the four cases for arbitrary values ofn andk, we first need the
following result. It is intuitively quite clear, and we state it without proof.

Proposition 1.4.3. If we are to performr experiments in order, such that
there aren1 possible outcomes of the first experiment,n2 possible outcomes
of the second experiment, ..., nr possible outcomes of therth experiment, then
there is a total ofn1n2 · · ·nr outcomes of the sequence of ther experiments.

This is called thefundamental principle of countingor themultiplication principle.
Let us illustrate it by a simple example.
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Example1.4.6. A Swedish license plate consists of three letters followed by three
digits. How many possible license plates are there?

Although there are28 letters in the Swedish alphabet, only23 are used for license
plates. Hence we haver = 6, n1 = n2 = n3 = 23, andn4 = n5 = n6 = 10. This
gives a total of233 × 103 ≈ 12.2 million different license plates.

We can now address the problem of drawingk times from a set ofn objects. It turns
out that choosing with regard to order is the simplest, so letus start with this and first
consider the case of choosing with replacement. The first object can be chosen inn
ways, and for each such choice, we haven ways to choose also the second object,n
ways to choose the third, and so on. The fundamental principle of counting gives

n × n × · · · × n = nk

ways to choose with replacement and with regard to order.
If we instead choose without replacement, the first object can be chosen inn ways,

the second inn − 1 ways, since the first object has been removed, the third inn − 2
ways and so on. The fundamental principle of counting gives

n(n − 1) · · · (n − k + 1)

ways to choose without replacement and with regard to order.Sometimes the notation

(n)k = n(n − 1) · · · (n − k + 1)

will be used for convenience, but this is not standard.

Example1.4.7. From a group of20 students, half of whom are female, a student
council president and vice president are chosen at random. What is the probability
of getting a female president and a male vice president?

The set of objects is the20 students. Assuming that the president is drawn first, we
need to take order into account, since, for example, (Brenda, Bruce) is a favorable
outcome but (Bruce, Brenda) is not. Also, drawing is done without replacement.
Thus, we havek = 2 andn = 20 and there are20×19 = 380 equally likely different
ways to choose a president and a vice president. The sample space is the set of these
380 combinations and to find the probability, we need the number of favorable cases.
By the fundamental principle of counting, this is10 × 10 = 100. The probability of
getting a female president and male vice president is100

380
≈ 0.26.

Example1.4.8. A human gene consists of nucleotide base pairs of four different
kinds,A, C, G, andT . If a particular region of interest of a gene has20 base pairs,
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what is the probability that a randomlychosen individual has no base pairs in common
with a particular reference sequence in a database?

The set of objects is{A, C, G, T }, and we draw20 times with replacement and with
regard to order. Thusk = 20 andn = 4, so there are420 possible outcomes, and
let us, for the sake of this example, assume that they are equally likely (which would
not be true in reality). For the number of favorable outcomes, n = 3 instead of 4
since we need to avoid one particular letter in each choice. Hence the probability is
320/420 ≈ 0.003.

Example1.4.9. (The Birthday Problem). This problem is a favorite in the proba-
bility literature. In a group of 100 people, what is the probability that at least two
have the same birthday?

To simplify the solution, we disregard leap years and assumea uniform distribution
of birthdays over the365 days of the year. To assign birthdays to100 people, we
choose100 out of365 with replacement and get365100 different combinations. The
sample space is the set of those combinations, and the event of interest is

A = {at least two birthdays are equal}

and as it turns out, it is easier to deal with its complement

Ac = {all 100 birthdays are different}

To find the probability ofAc, note that the number of cases favorable toAc is obtained
by choosing100 days out of365 withoutreplacement and hence

P (A) = 1 − P (Ac) = 1 −
365 × 364 × · · · × 266

365100
≈ 0.9999997

Yes, that is a sequence of six9s followed by a7! Hence, we can be almost certain
that any group of100 people has at least two people sharing birthdays. A similar
calculation reveals the probability of a shared birthday already exceeds1

2
at 23 peo-

ple, a quite surprising result. About50% of school classes thus ought to have kids
who share birthdays, something that those with idle time on their hands can check
empirically.

A check of real-life birthday distributions will reveal that the assumption of birthdays
being uniformly distributed over the year is not true. However, the already high proba-
bility of shared birthdays only gets higher with a nonuniform distribution. Intuitively,
this is because the less uniform the distribution, the more difficult it becomes to avoid
birthdays already taken. For an extreme example, suppose that everybody was born
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in January, in which case there would be only31 days to choose from instead of365.
Thus, in a group of100 people, there would be absolute certainty of shared birthdays.
Generally, it can be shown that the uniform distribution minimizes the probability of
shared birthdays (we return to this in Problems 46 and 47).

Example1.4.10. (The Birthday Problem continued). A while ago I was in a group
of exactly100 people and asked for their birthdays. It turned out that nobody had the
same birthday as I do. In the light of the previous problem, would this not be a very
unlikely coincidence?

No, because here we are only considering the case of avoidingone particular birthday.
Hence, with

B = {at least one out of99 birthdays is the same as mine}

we get
Bc = {99 birthdays are different from mine}

and the number of cases favorable toBc is obtained by choosing with replacement
from the364 days that do not match my birthday. We get

P (B) = 1 − P (Bc) = 1 −
36499

36599
≈ 0.24

Thus, it is actually quite likely that nobody shares my birthday, and it is at the same
time almost certain that at least somebody shares somebody else’s birthday.

Next we turn to the case of choosing without regard to order. First, suppose that we
choose without replacement and letx be the number of possible ways, in which this
can be done. Now, there aren(n − 1) · · · (n − k + 1) ways to choose with regard
to order and each such ordered set can be obtained by first choosing the objects and
then order them. Since there arex ways to choose the unordered objects andk! ways
to order them, we get the relation

n(n − 1) · · · (n − k + 1) = x × k!

and hence there are

x =
n(n − 1) · · · (n − k + 1)

k!
(1.4.1)

ways to choose without replacement, without regard to order. In other words, this is
the number of subsets of sizek of a set of sizen, called thebinomial coefficient, read
“n choosek” and usually denoted and defined as

(

n

k

)

=
n!

(n − k)!k!



FINITE SAMPLE SPACES AND COMBINATORICS 23

but we use the expression in Equation (1.4.1) for computations. By convention,
(

n

0

)

= 1

and from the definition it follows immediately that
(

n

k

)

=

(

n

n − k

)

which is useful for computations. For some further properties, see Problem 21.

Example1.4.11. In Texas Lotto, you choose five of the numbers1, ..., 44 and one
bonus ball number, also from1, ..., 44. Winning numbers are chosen randomly.
Which is more likely: that you match the first five numbers but not the bonus ball or
that you match four of the first five numbers and the bonus ball?

Since we have to match five of our six numbers in each case, are the two not equally
likely? Let us compute the probabilities and see. The set of objects is{1, 2, ..., 44}
and the first five numbers are drawn without replacement and without regard to order.
Hence there are

(

44

5

)

combinations and for each of these there are then44 possible
choices of the bonus ball. Thus, there is a total of

(

44

5

)

× 44 = 47, 784, 352 different
combinations. Introduce the events

A = {match the first five numbers but not the bonus ball}

B = {match four of the first five numbers and the bonus ball}

ForA, the number of favorable cases is1 × 43 (only one way to match the first five
numbers,43 ways to avoid the winning bonus ball). Hence

P (A) =
1 × 43

(

44

5

)

× 44

≈ 9 × 10−7

To find the number of cases favorable toB, note that there are
(

5

4

)

= 5 ways to match
four out of five winning numbers and then

(

39

1

)

= 39 ways to avoid the fifth winning
number. There is only one choice for the bonus ball and we get

P (B) =
5 × 39 × 1
(

44

5

)

× 44

≈ 4 × 10−6

soB is more than4 times as likely asA.
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Example1.4.12. You are dealt a poker hand (5 cards out of52 without replacement).
(a) What is the probability that you get no hearts?(b) What is the probability that
you get exactlyk hearts?(c) What is the most likely number of hearts?

We will solve this by disregarding order. The number of possible cases is the number
of ways in which we can choose5 out of 52 cards, which equals

(

52

5

)

. In (a), to get
a favorable case, we need to choose all5 cards from the39 that are not hearts. Since
this can be done in

(

39

5

)

ways, we get

P (no hearts) =

(

39

5

)

(

52

5

) ≈ 0.22

In (b), we need to choosek cards among the13 hearts, and for each such choice, the
remaining5 − k cards are chosen among the remaining39 that are not hearts. This
gives

P (k hearts) =

(

13

k

)(

39

5 − k

)

(

52

5

) , k = 0, 1, ..., 5

and for (c), direct computation gives the most likelynumberas1, which has probability
0.41.

The problem in the previous example can also be solved by taking order into account.
Hence, we imagine that we get the cards one by one and list themin order and note
that there are(52)5 different cases. There are(13)k(39)5−k ways to choose so that
we getk hearts and5− k nonhearts in a particular order. Since there are

(

5

k

)

ways to
choose position for thek hearts, we get

P (k hearts) =

(

5

k

)

(13)k(39)5−k

(52)5

which is the same as we got when we disregarded order above. Itdoes not matter
to the solution of the problem whether we take order into account, but we must be
consistent and count the same way for the total and the favorable number of cases. In
this particular example, it is probably easier to disregardorder.

Example1.4.13. An urn contains10 white balls,10 red balls, and10 black balls.
You draw5 balls at random without replacement. What is the probability that you do
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not get all colors?

Introduce the events

R = {no red balls}, W = {no white balls}, B = {no black balls}

The event of interest is thenR ∪ W ∪ B, and we will apply Proposition 1.3.3. First
note that by symmetry,P (R) = P (W ) = P (B). Also, each intersection of any two
events has the same probability and finallyR ∩ W ∩ B = Ø. We get

P (not all colors) = 3P (R) − 3P (R ∩ W )

In order to get no red balls, the5 balls must be chosen among the20 balls that are not
red and hence

P (R) =

(

20

5

)/(

30

5

)

Similarly, to get neither red, nor white balls, the5 balls must be chosen among the
black balls and

P (R ∩ W ) =

(

10

5

)/(

30

5

)

We get

P (not all colors) = 3

((

20

5

)

−

(

10

5

))/(

30

5

)

≈ 0.32

The final case, choosing with replacement and without regardto order, turns out to
be the trickiest. As we noted above, when we choose without replacement, each
unordered set ofk objects corresponds to exactlyk! ordered sets. The relation is not
so simple when we choose with replacement. For example, the unordered set{1, 1}
corresponds to one ordered set(1, 1), whereas the unordered set{1, 2} corresponds
to two ordered sets(1, 2) and(2, 1). To find the general expression, we need to take
a less direct route.

Imagine a row ofn slots, numbered from1 to n and separated by single walls
where slot numberj represents thejth object.. Whenever objectj is drawn, a ball is
put in slot numberj. After k draws, we will thus havek balls distributed over then
slots (and slots corresponding to objects never drawn are empty). The question now
reduces to how many ways there are to distributek balls overn slots. This is equiv-
alent to rearranging then− 1 inner walls and thek balls, which in turn is equivalent
to choosing positions for thek balls from a total ofn − 1 + k positions. But this
can be done in

(

n−1+k
k

)

ways, and hence this is the number of ways to choose with
replacement and without regard to order.

Example1.4.14. The Texas Lottery game “Pick 3” is played by picking three num-
bers with replacement from the numbers0, 1, ..., 9. You can play “exact order” or
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“any order.” With the “exact order” option, you win when yournumbers match the
winning numbers in the exact order they are drawn. With the “any order” option, you
win whenever your numbers match the winning numbers in any order. How many
possible winning combinations are there with the “any order” option?

We haven = 10, k = 3, and the winning numbers are chosen with replacement and
without regard to order and hence there are

(

10 − 1 + 3

3

)

=

(

12

3

)

= 220

possible winning combinations.

Example1.4.15. Draw twice from the set{1, ..., 9} at random with replacement.
What is the probability that the two drawn numbers are equal?

We haven = 9 andk = 2. Taking order into account, there are9 × 9 = 81 possible
cases,9 of which are favorable. Hence the probability is9

81
= 1

9
. If we disregard

order, we have
(

9−1+2

2

)

= 45 possible cases and still9 favorable and the probability
is 9

45
= 1

5
. Since whether we draw with or without regard to order does not seem to

matter to the question, why do we get different results?
The problem is that in the second case, when we draw without regard to order, the

distribution is not uniform. For example, the outcome{1, 2} corresponds to the two
equally likely ordered outcomes(1, 2) and(2, 1) and is thus twice as likely as the
outcome{1, 1}, which corresponds to only one ordered outcome(1, 1). Thus, the
first solution1

9
is correct.

Thus, when we draw with replacement but without regard to order, we must be careful
when we compute probabilities, since the distribution is not uniform, as it is in the
other three cases. Luckily, this case is far more uncommon inapplications than are
the other three cases. There is one interesting application, though, that has to do with
the number of integer solutions to a certain type of equation. If we look again at the
way in which we arrived at the formula and letxj denote the number of balls in slot
j, we realize that we must havex1 + · · ·+xn = k and get the following observation.

Corollary 1.4.4. There are
(

n−1+k
k

)

non-negative integer solutions
(x1, ..., xn) to the equationx1 + · · · + xn = k.
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The four different ways of choosingk out ofn objects are summarized in Table 1.2.
Note that when we choose without replacement,k must be less than or equal ton,
but when we choose with replacement, there is no such restriction.

We finish with another favorite problem from the probabilityliterature. It com-
bines combinatorics with previous results concerning the probability of a union.

Example1.4.16. (The Matching Problem). The numbers1, 2, ..., n are listed in
random order. Whenever a number remains in its original position in the permuta-
tion, we call this a “match.” For example, ifn = 5, then there are two matches in the
permutation32541 and none in23451. (a) What is the probability that there are no
matches?(b) What happens to the probability in (a) asn → ∞?

Before we solve this, let us try to think about part (b). Does it get easier or harder to
avoid matches whenn is large? It seems possible to argue for both. With so many
choices, it is easy to avoid a match in each particular position. On the other hand,
there are many positions to try, so it should not be too hard toget at least one match.
It is not easy to have good intuition for what happens here.

To solve the problem, wefirst consider the complement of no matches and introduce
the events

A = {at least one match}

Ak = {match in thekth draw}, k = 1, 2, ..., n

so that

A =

n
⋃

k=1

Ak

We will apply Proposition 1.3.4, so we need to figure out the probabilities of the
eventsAk as well as all intersections of two events, three events and so on.

First note that there aren! different permutations of the numbers1, 2, ..., n. To
get a match in positionk, there is only one choice for that number and the rest can be

Table 1.2 Choosingk out ofn objects

With replacement Without replacement

With regard to order nk n(n − 1) · · · (n − k + 1)

Without regard to order

(

n − 1 + k

k

) (

n

k

)
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ordered in(n − 1)! different ways. We get the probability

P (Ak) =
# favorable outcomes
# possible outcomes

=
(n − 1)!

n!
=

1

n

which means that the first sum in Proposition 1.3.4 equals1. To get a match in both
theith andjth positions, we have only one choice for each of these two positions and
the remainingn − 2 numbers can be ordered in(n − 2)! ways and

P (Ai ∩ Aj) =
(n − 2)!

n!
=

1

n(n − 1)

Since there are
(

n
2

)

ways to select two eventsAi andAj, we get, the following equation
for the second sum in Proposition 1.3.4:

∑

i<j

P (Ai ∩ Aj) =

(

n

2

)

1

n(n − 1)

=
n(n − 1)

2!
×

1

n(n − 1)
=

1

2!

Proceeding to the third sum, a similar argument gives that, for fixedi < j < k

∑

i<j<k

P (Ai ∩ Aj ∩ Ak) =

(

n

3

)

×
1

n(n − 1)(n − 2)
=

1

3!

and the pattern emerges. Thejth sum in Proposition 1.3.4 equals1/j!, and with the
alternating signs we get

P (at least one match) = 1 −
n
∑

j=2

(−1)j

j!
= 1 −

n
∑

j=0

(−1)j

j!

which finally gives

P (no matches) =

n
∑

j=0

(−1)j

j!

This is interesting. First, the probability is not monotonein n, so we cannot say
that it gets easier or harder to avoid matches asn increases. Second, asn → ∞,
we recognize the limit as the Taylor expansion ofe−1 and hence the probability of
no matches converges toe−1 ≈ 0.37 asn → ∞. We can also note how rapid the
convergence is; already forn = 4, the probability is0.375. Thus, for all practical
purposes, the probability to get no matches is0.37 regardless ofn. In Problem 32,
you are asked to find the probability of exactlyj matches.


