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Preface

The Book

In November 2003, | was completing a review of an undergraeieatbook in prob-
ability and statistics. In the enclosed evaluation sheet tha question “Have you
ever considered writing a textbook?” and | suddenly redliteat the answer was
“Yes,” and had been for quite some time. For several yearslideen teaching a
course on calculus-based probability and statistics mémimathematics, science,
and engineering students. Other than the basic probathiétyry, my goal was to in-
clude topics from two areas: statistical inference andhastic processes. For many
students this was the only probability/statistics coutsy twould ever take, and |
found it desirable that they were familiar with confidendeimals and the maximum
likelihood method, as well as Markov chains and queueingrthé/Nhile there were
plenty of books covering one area or the other, it was sungligdifficult to find one
that covered both in a satisfying way and on the appropréitel lof difficulty. My
solution was to choose one textbook and supplement it witfute notes in the area
that was missing. As | changed texts often, plenty of lechates accumulated and
it seemed like a good idea to organize them into a textbookad pleased to learn
that the good people at Wiley agreed.

It is now more than a year later, and the book has been wrifféw first three
chapters develop probability theory and introduce therasiof probability, random
variables, and joint distributions. The following two cleys are shorter and of an
“introduction to” nature: Chapter 4 on limit theorems anda@ter 5 on simulation.
Statistical inference is treated in Chapter 6, which inelud section on Bayesian
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statistics, too often a neglected topic in undergraduats.téinally, in Chapter 7,
Markov chains in discrete and continuous time are introduche reference list
at the end of the book is by no means intended to be comprefeenather, it is a
subjective selection of the useful and the entertaining.

Throughout the text | have tried to convey an intuitive ursteending of concepts
and results, which is why a definition or a proposition is offgeceded by a short
discussion or a motivating example. | have also attemptedake the exposition
entertaining by choosing examples from the rich sourceréfud thought-provoking
probability problems. The data sets used in the statistiapter are of three different
kinds: real, fake but realistic, and unrealistic but ilhasive.

The people

Most textbook authors start by thanking their spouses. know that this is far
more than a formality, and | would like to thank\xurjrn not only for patiently
putting up with irregular work hours and an absentmindesigesater than usual but
also for valuable comments on the aesthetics of the mamscri

A number of people have commented on various parts and aspktite book.
First, | would like to thank Olle Haggstrom at Chalmers unsity of Technology,
Goteborg, Sweden for valuable comments on all chapters.rétnarks are always
accurate and insightful, and never obscured by unnecepsditgness. Second, |
would like to thank Kjell Doksum at the University of Wiscangor a very helpful
review of the statistics chapter. | have also enjoyed theeBiay enthusiasm of Peter
Muller at the University of Texas MD Anderson Cancer Center

Other people who have commented on parts of the book or bbenvase helpful
are my colleagues Dennis Cox, Kathy Ensor, Rudy Guerra, Memmmel, Rolf
Riedi, Javier Rojo, David W. Scott, and Jim Thompson at Rioé/&¥sity; Prof. Dr.
R.W.J. Meester at Vrije Universiteit, Amsterdam, The Nelnads; Timo Seppalainen
at the University of Wisconsin; Tom English at Behrend Ggdle Robert Lund at
Clemson University; and Jared Martin at Shell Exploratiod Rroduction. For help
with solutions to problems, | am grateful to several brigiteRgraduate students:
Blair Christian, Julie Cong, Talithia Daniel, Ginger Davis Deng, Gretchen Fix,
Hector Flores, Garrett Fox, Darrin Gershman, Jason Gensh8tau Han, Shannon
Neeley, Rick Ott, Galen Papkov, Bo Peng, Zhaoxia Yu, andyghang. Thanks to
Mikael Andersson at Stockholm University, Sweden for cimtiions to the problem
sections, and to Patrick King at ODS—Petrodata, Inc. foviging data with a dis-
tinct Texas flavor: oil rig charter rates. At Wiley, | wouldtd to thank Steve Quigley,
Susanne Steitz, and Kellsee Chu for always promptly anggeny questions. Fi-
nally, thanks to John Haigh, John Allen Paulos, Jeffrey Eif Sind an anonymous
Dutchman for agreeing to appear and be mildly mocked in fotes

PETER OLOFSSON

Houston, Texas, 2005
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Basic Probability Theory

1.1 INTRODUCTION

Probability theory is the mathematics of randomness. Thiesent immediately
invites the question “What is randomness?” This is a deegtourethat we cannot
attempt to answer without invoking the disciplines of pkdphy, psychology, math-
ematical complexity theory, and quantum physics, andtk#te would most likely
be no completely satisfactory answer. For our purposespfannial definition of
randomness as “what happens in a situation where we canedicpthe outcome
with certainty” is sufficient. In many cases, this might slynmean lack of infor-
mation. For example, if we flip a coin, we might think of the cune as random.
It will be either heads or tails, but we cannot say which, drttié coin is fair, we
believe that both outcomes are equally likely. However,é&f kmew the force from
the fingers at the flip, weight and shape of the coin, matendlshape of the table
surface, and several other parameters, we would be abledicpthe outcome with
certainty, according to the laws of physics. In this case s&randomness as a way
to describe uncertainty due to lack of informatibn.

Next question: “What is probability?” There are two maineiqiretations of
probability, one that could be termed “objective” and thieest'subjective.” The first
is the interpretation of a probability adimit of relative frequencieghe second, as
adegree of beliefLet us briefly describe each of these.

1To quote the French mathematician Pierre-Simon Laplace,ofrthe first to develop a mathematical
theory of probability: “Probability is composed partly afroignorance, partly of our knowledge.”
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For the first interpretation, suppose that we have an expatiwhere we are
interested in a particular outcome. We can repeat the expeatiover and over and
each time record whether we got the outcome of interest. Apraeeed, we count
the number of times that we got our outcome and divide thistrrioy the number of
times that we performed the experiment. The resulting iatilberelative frequency
of our outcome. As it can be observed empirically that suldtive frequencies tend
to stabilize as the number of repetitions of the experimemivg, we might think of
the limit of the relative frequencies as the probabilityraf butcome. In mathematical
notation, if we considen repetitions of the experiment andsf, of these gave our
outcome, then the relative frequency would f)e= S,,/n, and we might say that
the probability equalim,, ., f,,. Figure 1.1 shows a plot of the relative frequency
of heads in a computer simulation 80 hundred coin flips. Notice how there is
significant variation in the beginning but how the relatikegfuency settles in toward
1 quickly.

The second interpretation, probability as a degree of hédi@ot as easily quan-
tified but has obvious intuitive appeal. In many cases, itlays with the previous
interpretation, for example, the coin flip. If we are askedjt@ntify our degree of
belief that a coin flip gives heads, whereaneans “impossible” andl means “with
certainty,” we would probably settle fo} unless we have some specific reason to
believe that the coin is not fair. In some cases it is not fixss$0 repeat the experi-
ment in practice, but we can still imagine a sequence of itaged. For example, in
a weather forecast you will often hear statements like &hera30% chance of rain
tomorrow.” Of course, we cannot repeat the experimenteeithrains tomorrow or it
does not. Th&80% is the meteorologist’s measure of the chance of rain. Tlsestll
a connection to the relative frequency approach; we canimeagsequence of days
with similar weather conditions, same time of year, and spamil that in roughly
30% of the cases, it rains the following day.

The “degree of belief” approach becomes less clear forrstatés such as “the
Riemann hypothesis is true” or “there is life on other platietObviously these
are statements that are either true or false, but we do net kriach, and it is not

0 20 40 60 80 100

Fig. 1.1 Consecutive relative frequencies of heads(f coin flips.
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unreasonable to use probabilities to express how strorgbelieve in their truth. Itis
also obvious that different individuals may assign congdledifferent probabilities.

How, then, do we actuallgefinea probability? Instead of trying to use any of
these interpretations, we will state a strict mathematiegihition of probability. The
interpretations are still valid to develop intuition foetkituation at hand, but instead
of, for exampleassumingdhat relative frequencies stabilize, we will be ablgtove
that they do, within our theory.

1.2 SAMPLE SPACES AND EVENTS

As mentioned in the introduction, probability theory is atheamatical theory to
describe and analyze situations where randomness or aimtgrare present. Any
specific such situation will be referred to asamdom experimentWe use the term
“experiment” in a wide sense here; it could mean an actuasighl/experiment such
as flipping a coin or rolling a die, but it could also be a silatwhere we simply
observe something, such as the price of a stock at a giventtimeamount of rain in
Houston in September, or the number of spam emails we retreivday. After the
experiment is over, we call the result antcome For any given experiment, there is
a set of possible outcomes, and we state the following digimit

Definition 1.2.1. The set of all possible outcomes in a random experiment is
called thesample spacelenotedS.

Here are some examples of random experiments and theiratesbsample spaces.

Examplel.2.1. Roll a die and observe the humber.

Here we can get the numbelrshrough6, and hence the sample space is

S ={1,2,3,4,5,6} 0

Examplel.2.2. Roll a die repeatedly and count the number of rolls it takes the
first 6 appears.

Since the firs6 may come in the first rolll is a possible outcome. Also, we may fail
to get6 in the first roll and then get in the second, s is also a possible outcome. If
we continue this argument we realize that any positive entéga possible outcome
and the sample space is

S={1,2,..}
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the set of positive integers. 0

Examplel.2.3. Turn on a lightbulb and measure its lifetime, that is, theetimtil
it fails.

Here it is notimmediately clear what the sample space shmyldince it depends on
how accurately we can measure time. The most convenienbagpis to note that
the lifetime, at least in theory, can assume any nonnegaalenumber and choose
as the sample space

S =[0,00)

where the outcome 0 means that the lightbulb is broken tosttr. 0

In these three examples, we have sample spaces of threeedifféends. The first
is finite, meaning that it has a finite number of outcomes, whereasettens and
third are infinite. Although they are both infinite, they arffatent in the sense that
one has its points separatdd, 2, ...} and the other is an entire continuum of points.
We call the first typeountable infinityand the secondncountable infinityWe will
return to these concepts later as they turn out to form anitapbdistinction.

In the examples above, the outcomes are always numbers and tiee sample
spaces are subsets of the real line. Here are some exampliheofypes of sample
spaces.

Examplel.2.4. Flip a coin twice and observe the sequence of heads and tails.

With H denoting heads anfi denoting tails, one possible outcomeHd", which
means that we get heads in the first flip and tails in the secéngluing like this,
there are four possible outcomes and the sample space is

S ={HH,HT,TH, TT}

Examplel.2.5. Throw a dart at random on a dart board of radius

If we think of the board as a disk in the plane with center aiothigin, an outcome is
an ordered pair of real numbe(s, ), and we can describe the sample space as

S={(z,y):2® +y* <r?} -
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Once we have described an experiment and its sample spae@mnt¢o be able to
compute probabilities of the various things that may happ#hat is the probability
that we get when we roll a die? That the fir6tdoes not come before the fifth roll?
That the lightbulb works for at leagb00 hours? That our dart hits the bull's eye?
Certainly we need to make further assumptions to be ableswerthese questions,
but before that, we realize that all these questions havetong in common. They
all ask for probabilities of either single outcomes or gr@opoutcomes. Mathemat-
ically, we can describe these as subsets of the sample space.

Definition 1.2.2. A subset ofS, A C S, is called arevent

Note the choice of words here. The terms “outcome” and “éveitect the fact
that we are describing things that may happen in real life.thilaatically, these
are described as elements and subsets of the sample spaseadudlity is typical
for probability theory; there is a verbal description and @mematical description
of the same situation. The verbal description is naturalwieal-world phenomena
are described and the mathematical formulation is necessaevelop a consistent
theory. See Table 1.1 for a list of set operations and thebalalescription.

Examplel.2.6. If we roll a die and observe the number, two possible eveettat
we get an odd outcome and that we get at ldast we view these as subsets of the
sample space we get

A=1{1,3,5} and B ={4,5,6}
If we want to use the verbal description we might write this as

A = {odd outcom¢ and B = {atleastd}

We always use “or” in its nonexclusive meaning; thud,dr B occurs” includes the
possibility that both occur. Note that there are differeaysito express combinations
of events; for exampled \ B = AN B¢ and(4A U B)¢ = A°N B°. The latter is
known as one obe Morgan’s lawsand we state these without proof together with
some other basic set theoretic rules.
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Table 1.1 Basic set operations and their verbal description.

Notation Mathematical description Verbal description
AUB Theunion ofA andB A or B (or both) occurs
AN B Theintersection off andB Both A and B occur

A° The complement oft A does not occur

A\ B Thedifference betweeA andB A occurs but noB

) The empty set Impossible event

Proposition 1.2.1. Let A, B, andC be events. Then
() (Distributive Lawg (ANB)UC=(AUC)N(BUCQC)
(AUB)NC=(ANnC)u(BNC)
(b) (De Morgan’s Lawg (AU B)¢ = A°N B¢

(AN B)° = A°U B

As usual when dealing with set theowgnn diagramsre useful. See Figure 1.2 for
an illustration of some of the set operations introducedrabVe will later return to
how Venn diagrams can be used to calculate probabilitied. dhd B are such that
AN B = @, they are said to bdisjointor mutually exclusiveln words, this means
that they cannot both occur simultaneously in the experimen

As we will often deal with unions of more than two or three egewe need more
general versions of the results given above. Let us firsbéhice some notation. If
Ay, As, ..., A, IS a sequence of events, we denote

UAk:AluAQU---UAn
k=1

the union of all the4,, and

n

() Ax=A1NnAyN---NA,
k=1

the intersection of all thel,.. In words, these are the events thateast oneof the
Ay, occurs and thadll the A, occur, respectively. The distributive and De Morgan’s
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ANB B\A

Fig. 1.2 Venn diagrams of the intersection and the difference betvesents.

laws extend in the obvious way, for example

(Ua) - A
k=1 k=1

Itis also natural to consider infinite unions and interseti For example, in Example
1.2.2, the event that the firstcomes in an odd roll is the infinite unidi} U {3} U
{5} U---and we can use the same type of notation as for finite unionsveted

{first6 in odd roll} = |_J {2k — 1}
k=1

For infinite unions and intersections, distributive and Derlyan’s laws still extend
in the obvious way.

1.3 THE AXIOMS OF PROBABILITY

In the previous section, we laid the basis for a theory of phility by describing ran-
dom experiments in terms of the sample space, outcomesyantse As mentioned,
we want to be able to compute probabilities of events. Ini®duction, we men-
tioned two different interpretations of probability: asimit of relative frequencies
and as a degree of belief. Since our aim is to build a congistathematical theory,
as widely applicable as possible, our definition of probghbdhould not depend on
any particular interpretation. For example, it makes titaisense to require a prob-
ability to always be less than or equal to one (or equivayetdks than or equal to
100%). You cannot flip a coih0 times and get2 heads. Also, a statement such as I
am 150% sure that it will rain tomorrow” may be used to expeedeeme pessimism
regarding an upcoming picnic but is certainly not sensibdenfa logical point of
view. Also, a probability should be equal to one (or 100%)ewlthere is absolute
certainty, regardless of any particular interpretation.

Other properties must hold as well. For example, if you thivgre is 20% chance
that Bob is in his house, 3% chance that he is in his backyard, an80& chance
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that he is at work, then the chance that he is at hon3@96, the sum 0f20% and
30%. Relative frequencies are aladditivein this sense, and it is natural to demand
that the same rule apply for probabilities.

We now give a mathematical definition of probability, wherie defined as a real-
valued function of the events, satisfying three propertidsich we refer to as the
axioms of probability In the light of the discussion above, they should be intelyi
reasonable.

Definition 1.3.1. (Axioms of Probability. A probability measureis a
function P, which assigns to each evesAta numberP(A) satisfying

(@ 0<PA)<1
(b) P(S)=1

(c) If Ay, Ao, ... Is a sequence gfairwise disjointevents, that is, if £ 7,
then4; N A; = O, then

(0n) - Sra
k=1 k=1

We readP(A) as “the probability ofA.” Note that a probability in this sense is a
real number between 0 and 1 but we will occasionally also eseemtages so that,
for example, the phrases “The probabilityi&” and “There is &20% chance” mean
the same thing.

The third axiom is the most powerful assumption when it cotoeleducing prop-
erties and further results. Some texts prefer to state thedkiom for finite unions
only, but since infinite unions naturally arise even in siempkamples, we choose
this more general version of the axioms. As it turns out, thieficase follows as
a consequence of the infinite. We next state this in a prdposind also that the
empty set has probability zero. Although intuitively obw# we must prove that it
follows from the axioms. We leave this as an exercise.

2|f the sample space is very large, it may be impossible t@agsiobabilities tall events. The class of
events then needs to be restricted to what is callediald. For a more advanced treatment of probability
theory, this is a necessary restriction, but we can safsledard this problem.
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Proposition 1.3.1. Let P be a probability measure. Then
@ P(@)=0

(b) If Ay, ..., A, are pairwise disjoint events, then

n

P(LnJ Ap) = P(Ay)

In particular, if A and B are disjoint, then?(A U B) = P(A) + P(B). In general,
unions need not be disjoint and we next show how to computgrbleability of

a union in general, as well as prove some other basic pregasfithe probability
measure.

Proposition 1.3.2. Let P be a probability measure on some sample sggace
and let4 and B be events. Then

(@) P(A€) = 1 — P(A)
(b) P(A\ B) = P(A) — P(AN B)
() P(AUB) = P(A) + P(B) — P(AN B)

(d) If A C B, thenP(A) < P(B)

Proof. We prove (b) and (c), and leave (a) and (d) as exercises. Fardte that
A= (AN B)U(A\ B),which is a disjoint union, and Proposition 1.3.1 gives

P(A) = P(ANB) + P(A\ B)

which proves the assertion. For (c), we writeJ B = AU (B \ A), which is a
disjoint union, and we get

P(AUB)=P(A)+ P(B\A)=P(A)+ P(B)— P(ANB)
by part (b). ]

Note how we repeatedly used Proposition 1.3.1(b), the firgtsion of the third ax-
iom. In Proposition 1.3.2(c), for example, the eveAtsind B are not necessarily
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disjoint but we can represent their union as a union of ottients that are disjoint,
thus allowing us to apply the third axiom.

Examplel.3.1. Mrs Boudreaux and Mrs Thibodeaux are chatting over theicden
when the new neighbor walks by. He is a man in his sixties witth®y clothes and a
distinct smell of cheap whiskey. Mrs B, who has seen him leefedls Mrs T that he
is a former Louisiana state senator. Mrs T finds this very kahltlieve. “Yes,” says
Mrs B, “he is a former state senator who got into a scandal &g had to resign
and started drinking.” “Oh,” says Mrs T, “that sounds morelyable.” “No,” says
Mrs B, “I think you mean less probable.”

Actually, Mrs B is right. Consider the following two stateme about the shabby
man: “He is a former state senator” and “He is a former statatee who got into
a scandal long ago, had to resign, and started drinkings tempting to think that
the second is more probable because it gives a more extmesiNanation of the
situation at hand. However, this is precisely why it iessprobable statement. To
explain this with probabilities, consider the experimefiloserving a person and the
two events

A {he is a former state senajor
B = {hegotinto a scandal long ago, had to resign and startedidghk

The first statement then corresponds to the exeatd the second to the evetin B,
andsinceAN B C A, we getP(ANB) < P(A). Of course, what Mrs T meant was
that it was easier to believe that the man was a former stasg@eonce she knew
more about his background.

In their bookJudgment under Uncertaintilahneman et al. [5], show empirically
how people often make similar mistakes when asked to chdmsenbst probable
among a set of statements. With a strict application of thesrof probability we get
it right. 0

Examplel.3.2. Consider the following statement: “I heard on the news thetd is
a 50% chance of rain on Saturday and a 50% chance of rain oragumtien there
must be a 100% chance of rain during the weekend.”

This is, of course, not true. However, it may be harder to fpoin precisely where
the error lies, but we can address it with probability theditye events of interest are

A = {rainon Saturday and B = {rain on Sunday

and the event of rain during the weekend is thien B. The percentages are refor-
mulated as probabilities so thR{A) = P(B) = 0.5 and we get
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P(rain during the weekend P(AUB)
P(A)+ P(B)— P(ANB)

1— P(ANB)

which is less than 1, that is, the chance of rain during thekeseg is less than 100%.
The error in the statement lies in that we can add probasliinly when the events
are disjoint. In general, we need to subtract the probgluifithe intersection, which
in this case is the probability that it rains both Saturday Sanday. 0

Example1.3.3. A dart board has area @#3 in? (square inches). In the center of
the board, there is the “bulls eye,” which is a disk of area?l ifhe rest of the board
is divided into20 sectors numbered 2, ..., 20. There is also a triple ring that has an
area of10 in2 and a double ring of area 153r{everything rounded to nearest inte-
gers). Suppose that you throw a dart at random on the boardt M/the probability
that you gefa) double14, (b) 14 but not double(c) triple or the bull's eye(d) an
even number or a double?

Introduce the event8' = {14}, D = {doublé, T' = {triple}, B = {bull's eye},
andE = {ever}. We interpret “throw a dart at random” to mean that any region
is hit with a probability that equals the fraction of the {ctaea of the board that
region occupies. For example, each number has(@rsa— 1)/20 = 7.1 in2 so the
corresponding probability i5.1/143. We get

0.75
P(double14) = P(DNF) = {52 ~ 0.005

P(14butnotdouble = P(F\ D) = P(F)— P(FND)
71 075

= _—— — ) .044
143 143 0.0

P(tripleorbullseye = P(T'UB) = P(T)+ P(B)

10 1
= 13 + 3 = 0.077
P(evenordouble = P(FUD) = P(E)+ P(D)—-P(END)
71 15 7.5
= + — =~ 0.55

143 " 143 143 0
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Let us say a word here about the interplay between logicedrstents and events. In
the previous example, consider the evefits= {ever}t andF' = {14}. Clearly, if
we getl4, we also get an even number. As a logical relation betwedsrnsents, we
would express this as

the number i44 = the number is even

and in terms of events, we would say Hfoccurs, ther must also occur.” But this
means that’ C E and hence

{the numberid4} C {the number is even

and thus the set-theoretic analog ef* is “ C” which is useful to keep in mind.

Venn diagrams turn out to provide a nice and useful integpiat of probabilities.
If we imagine the sample spaceto be a rectangle of areg we can interpret the
probability of an eventl as the area ofl (see Figure 1.3). For example, Proposition
1.3.2(c) says thaP(A U B) = P(A) + P(B) — P(AN B). With the interpretation
of probabilities as areas, we thus have

P(AUB) = areaofAUB
= areaofA + areaofB — areaofAN B
P(A)+ P(B)— P(ANnB)

since when we add the areas4dfnd B, we count the area of N B twice and must
subtract it (think ofA and B as overlapping pancakes where we are interested only
in how much area they cover). Strictly speaking, this is nptaof but the method

can be helpful to find formulas that can then be proved foynédithe case of three
events, consider Figure 1.4 to argue that

AreaofAUBUC = areaofd + areaofB + areaofC
— areaofANB— areaofANC — areaofBNC
+ areaofANBNC

P(A) =

area ofA

Total area= 1

Fig. 1.3 Probabilities with Venn diagrams.
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Fig. 1.4 Venn diagram of three events.

since the piece in the middle was first adddimes and then removelitimes, so in
the end we have to add it again. Note that we must draw thealiago that we get
all possible combinations of intersections between thatsveWe have argued for
the following proposition, which we state and prove formall

Proposition 1.3.3. Let A, B, andC be three events. Then
P(AuUBUC) = P(A)+ P(B)+ P(C)
— P(ANnB)—-P(ANnC)—-P(BNC)
+ P(ANBNC)

Proof. By applying Proposition 1.3.2(c) twice — first to the two eteeA U B and
C and secondly to the eventsand B — we obtain

P(AUBUC) = P(AUB)+P(C)-—P((AUB)NC)
= P(A)+P(B)—P(ANB)+P(C)—P((AUB)NC)

The first four terms are what they should be. To deal with teetkrm, note that by
the distributive laws for set operations, we obtain

(AUB)NC=(ANnC)U(BNC)
and yet another application of Proposition 1.3.2(c) gives

P((AUB)NC) = P(AnC)u(BNQ))
P(ANC)+P(BNC)—PANBNC(C)
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which gives the desired result. ]

Examplel.3.4. Choose a number at random from the numbers, 100. What is
the probability that the chosen number is divisible by eithg, or5?

Introduce the events
Ay = {divisible byk}, fork =1,2, ...

We interpret “at random” to mean that any set of numbers haslapility that is
equal to its relative size, that is, the number of elementisléd by 100. We then get

P(Ag) = 0.5, P(Ag) =0.33, andP(A5) =0.2

For the intersection, first note that, for examplg,N As is the event that the number
is divisible by both2 and3, which is the same as saying it is divisible byHence
Ao N A3 = Ag and

P(As N Ag) = P(Ag) = 0.16
Similarly, we get
P(Ag n A5) = P(Alo) =0.1, P(A3 n A5) = P(A15) =0.06

and
P(AQ NAzN A5) = P(Ago) =0.03

The event of interest id, U A3 U A5, and Proposition 1.3.3 yields

P(A3U A3 U As) = 0.5+ 0.334+ 0.2 — (0.16 4+ 0.1 + 0.06) + 0.03 = 0.74
O

It is now easy to believe that the general formula for a unibn @vents starts by
adding the probabilities of the events, then subtractiegtiobabilities of the pairwise
intersections, adding the probabilities of intersectiohBiples and so on, finishing
with either adding or subtracting the intersection of a8 thevents, depending on
whethem is odd or even. We state this in a proposition that is sometiraferred to
as theinclusion—exclusion formuldt can, for example, be proved by induction, but
we leave the proof as an exercise.
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Proposition 1.3.4. Let Ay, Ao, ..., A, be a sequence af events. Then
P (U Ak) = ZP(Ak)
k=1 k=1
— Z P(Al n Aj)

1<j

+ ) P(A;NA;NAy)

i<j<k

+ (=1)" T P(A;NAyN---NAY)

We finish this section with a theoretical result that will keeful from time to time.
A sequence of events is said toibereasingif

Ay C Ay C e

anddecreasingf
A1 DA D

In each case we can define tirait of the sequence. If the sequence is increasing,
we define

lim A, = | A
and if the sequence is decreasing
lim A, = ) A

Note how this is similar to limits of sequences of numberghwi andD correspond-
ing to < and>, respectively, and union and intersection correspondirsgipremum
and infimum. The following proposition states that the pholig measure is @on-
tinuous set functionThe proof is outlined in Problem 15.

Proposition 1.3.5. If Ay, Ao, ... is either increasing or decreasing, then

P(lim A,)= lim P(A,)

n—oo n—oo
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1.4 FINITE SAMPLE SPACES AND COMBINATORICS

The results in the previous section hold for an arbitrarygarspace. In this section
we will assume that is finite, S = {s1, ..., s, }, say. In this case, we can always
define the probability measure by assigning probabilitebé¢ individual outcomes.

Proposition 1.4.1. Suppose thaty, ..., p,, are numbers such that

(a)pk > Oa k= 15"'5”

) p=1
k=1

and for any eventl C S, define

P(A)= Y

k:spk€A

ThenP is a probability measure.

Proof. Clearly, the first two axioms of probability are satisfiedr &ee third, note
that in a finite sample space, we cannot have infinitely magjpitit events, so we
only have to check this for a disjoint union of two evertand B. We get

P(AUB)= > pe= ) et Y pe=PA)+P(B)

k:sp,€AUB k:sp €A k:sx€B

and we are done. (Why are two events enough?) ]

Hence, when dealing with finite sample spaces, we do not meexicitly give the
probability of every event, only for each outcome. We refethie numberg, ..., p,
as aprobability distributionon S.

Examplel.4.1. Consider the experiment of flipping a fair coin twice and dinm
the number of heads. We can take the sample space

S ={HH,HT,TH, TT}

andletp; = ... =py = %. Alternatively, since all we are interested in is the number
of heads and this can lfe1, or 2, we can use the sample space

5={0,1,2}
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andletpg = ,p1 = 1, py = 1. 0

Of particular interest is the case when all outcomes arelgdiileely. If S hasn
equally likely outcomes, thepy = ps = -+ = p, = % which is called auniform
distributionon S. The formula for the probability of an eveAtnow simplifies to

P(A) = Y 1_#4

n n
k:sp,€A

where# A denotes the number of elementsdn This formula is often referred to as
the classical definition of probabilitysince historically this was the first context in
which probabilities were studied. The outcomes in the eveoan be described as
favorableto A and we get the following formulation.

Corollary 1.4.2. In afinite sample space with uniform probability distritmurt

_ # favorable outcomes

P4) = # possible outcomes

In daily language, the term “at random” is often used for stbvimg that has a uniform
distribution. Although our concept of randomness is moneegal, this colloquial
notion is so common that we will also use it (and already havbys, if we say “pick

a number at random from ..., 10,” we mean “pick a number according to a uniform
probability distribution on the sample spafe 2, ..., 10}.”

Examplel.4.2. Roll a fair die3 times. What is the probability that all numbers are
the same?

The sample space is the set of %16 ordered triplegi, j, k), and since the die is fair,
these are all equally probable and we have a uniform prababistribution. The
event of interest is

A={(1,1,1),(2,2,2),...,(6,6,6)}

which has six outcomes and probability
_ # favorable outcomes 6 1

P(A) = _ =
(4) # possible outcomes 216 36 O
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Example1.4.3. Consider a randomly chosen family with three children. What
the probability that they have exactly one daughter?

There are eight possible sequences of boys and girls (in ofd@rth), and we get
the sample space

S = {bbb, bbg, bgb, bgg, gbb, gbg, ggb, 999}

where, for exampleibg means that the oldest child is a boy, the middle child a boy,
and the youngest child a girl. If we assume that all outcomegqually likely, we
get a uniform probability distribution off, and since there are three outcomes with
one girl, we get

3

P(one daughter= 3 O

Examplel.4.4. Consider a randomly chosen girl who has two siblings. Whetds
probability that she has no sisters?

Although this seems like the same problem as in the previcarsple, itis not. If, for
example, the family has three girls, the chosen girl can peathese three, so there
are three different outcomes and the sample space needts thisinto account. Let
g* denote the chosen girl to get the sample space

S =19"99,999,999",979b, 99'b, g"bg, gbg™, bg”g,bgg™, g"bb, bg’b, bbg™ }

and sinces out of 12 equally likely outcomes have no sisters we get
: 1
P(no sisters = 1

which is smaller than th§ we got above. On averad&].5% of families with three
children have a single daughter &% of girls in three-children families are single
daughters. 0

1.4.1 Combinatorics

Combinatorics, “the mathematics of counting,” gives risatwealth of probability
problems. The typical situation is that we have a set of dbjegom which we draw
repeatedly in such a way that all objects are equally likelpe drawn. It is often
tedious to list the sample space explicitly, but by countambinations we can find
the total number of cases and the number of favorable caseappty the methods
from the previous section.
The first problem is to find general expressions for the totathiper of combi-

nations when we draw times from a set of: distinguishable objects. There are
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different ways to interpret this. For example, we can dweti or without replace-
ment depending on whether the same object can be drawn more tican @e can
also drawwith or without regard to orderdepending on whether it matters in which
order the objects are drawn. With these distinctions, theedour different cases,
illustrated in the following simple example.

Examplel.4.5. Choose two numbers from the 4@t 2, 3} and list the possible out-
comes.

Let us first choose with regard to order. If we choose withaepinent, the possible
outcomes are

(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1), (3,2),(3,3)
and if we choose without replacement
(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)

Next, let us choose without regard to order. This means thagxample, the out-
comes(1,2) and(2, 1) are regarded as the same and we denote {tibg} to stress
that this is thesetof 1 and2, notthe ordered pair. If we choose with replacement, the
possible cases are

{1,1},{1,2},{1,3},{2,2},{2,3},{3,3}

and if we choose without replacement

{1,2},{1,3},{2,3}

To find expressions in the four cases for arbitrary valuesarfidk, we first need the
following result. It is intuitively quite clear, and we sgait without proof.

Proposition 1.4.3. If we are to performr experiments in order, such that
there aren; possible outcomes of the first experimemnt,possible outcome
of the second experiment., n,. possible outcomes of theéh experiment, the
there is a total ofins - - - n,. outcomes of the sequence of thexperiments.

)

This is called thdundamental principle of countingr themultiplication principle
Let us illustrate it by a simple example.
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Examplel1.4.6. A Swedish license plate consists of three letters followgthibee
digits. How many possible license plates are there?

Although there are@s letters in the Swedish alphabet, or2y are used for license
plates. Hence we have= 6,n; = ny = n3 = 23, andny = n5 = ng = 10. This
gives a total o233 x 10% ~ 12.2 million different license plates. O

We can now address the problem of drawinggmes from a set of objects. It turns
out that choosing with regard to order is the simplest, sodedtart with this and first
consider the case of choosing with replacement. The firglablspn be chosen im
ways, and for each such choice, we hawsays to choose also the second object,
ways to choose the third, and so on. The fundamental primoiptounting gives

nxnx---xn:nk
ways to choose with replacement and with regard to order.
If we instead choose without replacement, the first objetbeschosen in ways,
the second im — 1 ways, since the first object has been removed, the third-ir2
ways and so on. The fundamental principle of counting gives

nn—1)---(n—k+1)
ways to choose without replacement and with regard to o&temetimes the notation
nkg=nn—-1)--(n—k+1)

will be used for convenience, but this is not standard.

Examplel.4.7. From a group oR0 students, half of whom are female, a student
council president and vice president are chosen at randohat W the probability
of getting a female president and a male vice president?

The set of objects is th20 students. Assuming that the president is drawn first, we
need to take order into account, since, for example, (BreBdice) is a favorable
outcome but (Bruce, Brenda) is not. Also, drawing is donénauit replacement.
Thus, we havé = 2 andn = 20 and there ar20 x 19 = 380 equally likely different
ways to choose a president and a vice president. The sangde ispthe set of these
380 combinations and to find the probability, we need the numbimorable cases.
By the fundamental principle of counting, thisli@ x 10 = 100. The probability of
getting a female president and male vice preside@%sw 0.26. 0

Example1.4.8. A human gene consists of nucleotide base pairs of four éiffier
kinds, A, C, G, andT'. If a particular region of interest of a gene rsbase pairs,
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what s the probability that a randomly chosen individua ha base pairs in common
with a particular reference sequence in a database?

The set of objects i§A, C, G, T'}, and we drav20 times with replacement and with
regard to order. ThuB = 20 andn = 4, so there ard?° possible outcomes, and
let us, for the sake of this example, assume that they ardlgdjkaly (which would
not be true in reality). For the number of favorable outcomes- 3 instead of 4
since we need to avoid one particular letter in each choi@nck the probability is
3%0/420 ~ 0.003. O

Examplel.4.9. (The Birthday Problem. This problem is a favorite in the proba-
bility literature. In a group of 100 people, what is the prblity that at least two
have the same birthday?

To simplify the solution, we disregard leap years and assaingiform distribution

of birthdays over th&65 days of the year. To assign birthdayslt@) people, we

choosel 00 out of 365 with replacement and g865'°° different combinations. The
sample space is the set of those combinations, and the eviatgmrest is

A = {at least two birthdays are equal
and as it turns out, it is easier to deal with its complement
A°¢ = {all 100 birthdays are differeht

To find the probability ofA<, note that the number of cases favorabld tas obtained
by choosingl00 days out of365 withoutreplacement and hence

365 x 364 x --- x 266
B 365100

Yes, that is a sequence of gig followed by a7! Hence, we can be almost certain
that any group ofl00 people has at least two people sharing birthdays. A similar
calculation reveals the probability of a shared birthdagady exceed§ at23 peo-

ple, a quite surprising result. Abo@0% of school classes thus ought to have kids
who share birthdays, something that those with idle timeheir thands can check
empirically. 0

P(A)=1-P(A%) =1 ~ 0.9999997

A check of real-life birthday distributions will reveal théaie assumption of birthdays
being uniformly distributed over the year is not true. Hoegthe already high proba-
bility of shared birthdays only gets higher with a nonunifatistribution. Intuitively,
this is because the less uniform the distribution, the miffiewlt it becomes to avoid
birthdays already taken. For an extreme example, suppasevbrybody was born
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in January, in which case there would be oslydays to choose from instead 865.
Thus, in a group of 00 people, there would be absolute certainty of shared biythda
Generally, it can be shown that the uniform distribution imizes the probability of
shared birthdays (we return to this in Problems 46 and 47).

Examplel.4.10. (The Birthday Problem continuell A while ago | was in a group
of exactly100 people and asked for their birthdays. It turned out that dgltad the
same birthday as | do. In the light of the previous problemyldahis not be a very
unlikely coincidence?

No, because here we are only considering the case of avadmparticular birthday.
Hence, with

B = {at least one out df9 birthdays is the same as mine

we get
B¢ = {99 birthdays are different from mirje

and the number of cases favorableR6 is obtained by choosing with replacement
from the364 days that do not match my birthday. We get

36499

~ 3650 ~ 0.24

P(B)=1-P(B%) =1
Thus, it is actually quite likely that nobody shares my hidlg, and it is at the same
time almost certain that at least somebody shares somelsedy kirthday. 0

Next we turn to the case of choosing without regard to ordest,Fsuppose that we
choose without replacement and 4ebe the number of possible ways, in which this
can be done. Now, there angn — 1) ---(n — k + 1) ways to choose with regard
to order and each such ordered set can be obtained by firssiclyadbe objects and
then order them. Since there arevays to choose the unordered objects Ahdays

to order them, we get the relation

nn—1)---(n—k+1) =z x k!

and hence there are ) i

L, M= )k'(n —k+1) (1.4.1)
ways to choose without replacement, without regard to ofdesther words, this is
the number of subsets of sizef a set of size:, called thebinomial coefficientread

“n chooset” and usually denoted and defined as

(1) = 5w
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but we use the expression in Equation (1.4.1) for computatiBy convention,

(-

and from the definition it follows immediately that

(1) =02

which is useful for computations. For some further progsitsee Problem 21.

Examplel.4.11. In Texas Lotto, you choose five of the numbeérs., 44 and one
bonus ball number, also from, ...,44. Winning numbers are chosen randomly.
Which is more likely: that you match the first five numbers bottthe bonus ball or
that you match four of the first five numbers and the bonus ball?

Since we have to match five of our six numbers in each casehate/d not equally
likely? Let us compute the probabilities and see. The sebjsfats is{1, 2, ..., 44}
and the first five numbers are drawn without replacement atiebwi regard to order.
Hence there ar(a454) combinations and for each of these there are thkepossible

choices of the bonus ball. Thus, there is a tota 9§ x 44 = 47, 784, 352 different
combinations. Introduce the events

A = {match the first five numbers but not the bonus ball
B = {match four of the first five numbers and the bonus}ball

For A, the number of favorable caseslix 43 (only one way to match the first five
numbers43 ways to avoid the winning bonus ball). Hence

1 x43
44

( > x 44
5

To find the number of cases favorableBonote that there ar@i) = 5 ways to match

four out of five winning numbers and theéﬁg) = 39 ways to avoid the fifth winning
number. There is only one choice for the bonus ball and we get

P(A) = ~9x 1077

5 x 39 x 1
P(B)= 22270 41070

44
44
()~

so B is more thant times as likely asi. 0
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Examplel.4.12. You are dealta poker hand ¢ards out 062 without replacement).
(a) What is the probability that you get no heartf® What is the probability that
you get exactlyk hearts?Ac) What is the most likely number of hearts?

We will solve this by disregarding order. The number of polestases is the number
of ways in which we can choosgeout of 52 cards, which equal({f). In (a), to get
a favorable case, we need to choosé alhrds from the39 that are not hearts. Since
this can be done i) ways, we get

(5)
P(no hearty = A5/ ~ 0.22
52
(5)
In (b), we need to choodecards among th&3 hearts, and for each such choice, the
remainingb — k cards are chosen among the remairidghat are not hearts. This

gives
(13) ( 39 )
P(khearts):u k=0,1,...,5

52 ) - ) VAR
5

andfor (c), direct computation gives the most likely nurdmr, which has probability
0.41. 0

The problem in the previous example can also be solved bydaidder into account.
Hence, we imagine that we get the cards one by one and listithender and note
that there aré52); different cases. There afé3);(39)5— ways to choose so that
we getk hearts and — k£ nonhearts in a particular order. Since there@beways to
choose position for the hearts, we get

() 13 9)5-s
(52)5

which is the same as we got when we disregarded order abodeedt not matter
to the solution of the problem whether we take order into antcbut we must be
consistent and count the same way for the total and the fal@namber of cases. In
this particular example, it is probably easier to disregarter.

P(k hearts =

Example1.4.13. An urn containsl0 white balls,10 red balls, and 0 black balls.
You draws5 balls at random without replacement. What is the probaihiat you do
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not get all colors?

Introduce the events
R = {noredball}, W = {nowhite ball§, B = {no black ball$

The event of interest is theR U W U B, and we will apply Proposition 1.3.3. First
note that by symmetry?(R) = P(W) = P(B). Also, each intersection of any two
events has the same probability and findtyhn W N B = @. We get

P(notall colorg =3P(R) —3P(RNW)

In order to get no red balls, tlieballs must be chosen among tieballs that are not

red and hence %0 20
rm=(3)/(5)

Similarly, to get neither red, nor white balls, théballs must be chosen among the

black balls and 10 30
P(RNW) = (5)/(5)

P(notallcolorg = 3 <<250> - (150>) /<350) ~ 0.32 -

The final case, choosing with replacement and without reggaailder, turns out to
be the trickiest. As we noted above, when we choose withqlacement, each
unordered set of objects corresponds to exacllyordered sets. The relation is not
so simple when we choose with replacement. For example rbieslared sef1, 1}
corresponds to one ordered §&t1), whereas the unordered ddt 2} corresponds

to two ordered setfl, 2) and(2, 1). To find the general expression, we need to take
a less direct route.

Imagine a row ofn slots, numbered fromh to n and separated by single walls
where slot numbeyj represents thgth object.. Whenever objegtis drawn, a ball is
put in slot numbey. After k draws, we will thus havé balls distributed over the
slots (and slots corresponding to objects never drawn apgy@nirhe question now
reduces to how many ways there are to distriduballs overn slots. This is equiv-
alent to rearranging the — 1 inner walls and thé balls, which in turn is equivalent
to choosing positions for thk balls from a total ofn — 1 + & positions. But this
can be done ir(”ji*’“) ways, and hence this is the number of ways to choose with
replacement and without regard to order.

We get

Examplel.4.14. The Texas Lottery game “Pick 3" is played by picking three rum
bers with replacement from the numbérd, ...,9. You can play “exact order” or
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“any order.” With the “exact order” option, you win when yomumbers match the
winning numbers in the exact order they are drawn. With timy ‘@der” option, you
win whenever your numbers match the winning numbers in adgrorHow many
possible winning combinations are there with the “any drdetion?

We haven = 10, k = 3, and the winning numbers are chosen with replacement and
without regard to order and hence there are

10-1+3 12
= =220
()=

possible winning combinations. 0

Example1.4.15. Draw twice from the se{1,...,9} at random with replacement.
What is the probability that the two drawn numbers are equal?

We haven = 9 andk = 2. Taking order into account, there @&e 9 = 81 possible
cases9 of which are favorable. Hence the probability§?§ = é If we disregard
order, we havg”~1*?) = 45 possible cases and stilifavorable and the probability
is 415 = % Since whether we draw with or without regard to order doésaem to
matter to the question, why do we get different results?

The problem is that in the second case, when we draw withgatdeo order, the
distribution is not uniform For example, the outconid, 2} corresponds to the two
equally likely ordered outcomdd, 2) and(2, 1) and is thus twice as likely as the
outcome{1, 1}, which corresponds to only one ordered outcdrmd). Thus, the
first solution% is correct. 0

Thus, when we draw with replacement but without regard tegmle must be careful
when we compute probabilities, since the distribution isumaform, as it is in the
other three cases. Luckily, this case is far more uncommapptications than are
the other three cases. There is one interesting applicationgh, that has to do with
the number of integer solutions to a certain type of equatibwe look again at the
way in which we arrived at the formula and let denote the number of balls in slot
j,» we realize that we must havg + - - - 4+ x,, = k and get the following observation.

Corollary 1.4.4. There are ("‘,1*’“) non-negative integer solutions

(21, ..., z,) to the equation; + - - - + x,, = k.
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The four different ways of choosirfgout of n objects are summarized in Table 1.2.
Note that when we choose without replaceméntiust be less than or equal #Q
but when we choose with replacement, there is no such réstric

We finish with another favorite problem from the probabilitgrature. It com-
bines combinatorics with previous results concerning tiobability of a union.

Example1.4.16. (The Matching Problen). The numberd,2,...,n are listed in
random order. Whenever a number remains in its originaltiposin the permuta-
tion, we call this a “match.” For example if = 5, then there are two matches in the
permutatior82541 and none ire3451. (a) What is the probability that there are no
matches®b) What happens to the probability in (a) @s— co?

Before we solve this, let us try to think about part (b). Ddeget easier or harder to
avoid matches when is large? It seems possible to argue for both. With so many
choices, it is easy to avoid a match in each particular psitiOn the other hand,
there are many positions to try, so it should not be too hagett@t least one match.
Itis not easy to have good intuition for what happens here.

To solve the problem, we first consider the complement of neines and introduce
the events

A = {atleast one match
A = {matchinthekthdraw}, £ =1,2,..,n
so that N
A= A
k=1

We will apply Proposition 1.3.4, so we need to figure out thebpbilities of the
eventsA, as well as all intersections of two events, three events amahs

First note that there are! different permutations of the numbers2,...,n. To
get a match in positioh, there is only one choice for that number and the rest can be

Table 1.2 Choosingk out of n objects

With replacement  Without replacement

With regard to order nk nn—1)--(n—k+1)

Without regard to ordef (n -l k) (n)

k
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ordered in(n — 1)! different ways. We get the probability

— 1
P(Ay) = # favorable outcomes (n — 1)!

1
# possible outcomes  n! n

which means that the first sum in Proposition 1.3.4 equalg get a match in both
theith andjth positions, we have only one choice for each of these twitipps and
the remaining: — 2 numbers can be ordered{n — 2)! ways and

P(AiﬂAj):(n_m!: 1

n! nin—1)

Since there aré;) ways to select two events; andA ;, we get, the following equation
for the second sum in Proposition 1.3.4:

n 1
ZP(AlﬂAj) = (2)7’”(”_1)
_ n(n—l)x 1 _ 1

2! n(n—1) 2!

Proceeding to the third sum, a similar argument gives toafjted: < j < k

n 1 1

i<j<k

and the pattern emerges. Tfta sum in Proposition 1.3.4 equalg;!, and with the
alternating signs we get

~ (1 (D
P(at least one matgh= 1 — 2; e 1- ZO
J= J=

which finally gives

~ (=1
P(no matches= -

This is interesting. First, the probability is not monotdnen, so we cannot say
that it gets easier or harder to avoid matches ascreases. Second, as— oo,
we recognize the limit as the Taylor expansioreof and hence the probability of
no matches convergesto' ~ 0.37 asn — oo. We can also note how rapid the
convergence is; already far = 4, the probability is0.375. Thus, for all practical
purposes, the probability to get no matche8.8 regardless ofi. In Problem 32,
you are asked to find the probability of exacflynatches. 0



