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Abstract

We present a Poisson approximation with applications to extreme value theory. Let X1; X2; : : : be i.i.d. and let M
(1)
n ¿M

(2)
n

¿ · · ·¿M ( j)
n be the j largest order statistics. Then the asymptotic behavior of the vector (M (1)

n ; : : : ; M
( j)
n ) is the same as

that of (M (1)
N ; : : : ; M

( j)
N ) where N is a random variable which is independent of X1; X2; : : : and has a Poisson distribution

with mean n. The distribution of (M (1)
N ; : : : ; M

( j)
N ) is easy to obtain since the points X1; X2; : : : ; XN form a Poisson process

on the real line. The mean measure is n dF where F is the distribution function of the Xi. We apply this to the problem
of multiple maxima in discrete samples, in particular from the geometric distribution where it is known that the number
of maxima has no limiting distribution. c© 1999 Elsevier Science B.V. All rights reserved

Keywords: Poisson approximation; Maxima in discrete samples; Extreme value theory; Geometric distribution

1. Introduction

Poisson approximation is a technique with many applications in probability theory and statistics. The liter-
ature on the subject is vast and we mention only two general references: Aldous (1989) and Barbour et al.
(1992). In this paper, we investigate a special case of Poisson approximation with applications to extreme
value theory. This was �rst described in Nordin and Olofsson (1989) where the method was used primarily for
extreme values in continuous distributions. In this paper, we will apply the technique to problems of multiple
maxima in discrete samples. The idea behind our Poisson approximation, originally suggested by Olle Nerman
(Nerman, 1989), is to consider not a �xed number of observations X1; : : : ; Xn but a random number X1; : : : ; XN
where N has a Poisson distribution with mean n. Then the maxima of these two sequences will have the same
asymptotic behavior as n→∞ and the second sample is nice because it consitutes a Poisson process. This is
de�nitely part of the “folklore” on Poisson approximation and in the following sections we make it strict.

2. The Poisson process

We �rst show that a Poisson number of i.i.d. random variables gives rise to a Poisson process. Here and
in the sequel, X1; X2; : : : will denote a sequence of i.i.d. random variables distributed as a generic random
variable X with distribution function F .
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Theorem 2.1. Let X1; X2; : : : be i.i.d. random variables with the common distribution function F . Let N
be independent of X1; X2; : : : and have a Poisson distribution with mean n and de�ne the random counting
measure SN through

SN (·) =
N∑
k=1

�Xk (·):

Then SN (·) is a nonhomogeneous Poisson process with mean measure n dF .

Proof. We will use uniqueness of Laplace functionals for random measures. Let f be a nonnegative bounded
function. The Laplace functional of a random measure M on R is 	M (f) = E[exp(−

∫
R f(x) dM (x))]. The

Laplace functional uniquely determines the random measure and M is a Poisson process with mean measure
(�) if and only if

	M (f) = exp
(
−
∫
R
(1− e−f(x)) d�(x)

)
;

see, for instance, Resnick (1992). The Laplace functional of SN is

E

[
exp

(
−

N∑
k=1

f(Xk)

)]
=

∞∑
m=0

E

[
exp

(
−

m∑
k=1

f(Xk)

)]
P(N = m)

=
∞∑
m=0

(E[e−f(X )])me−n
nm

m!

= exp(nE[e−f(X )]− n) = exp
(
−
∫
R
(1− e−f(x))n dF(x)

)

and the result follows.

3. Joint distributions of the j largest order statistics

The next theorem tells us that the Poisson approximation is indeed useful. Let M (1)
n ¿M (2)

n : : :¿M ( j)
n be

the j largest order statistics and let the vector Mn = (M
(1)
n ; : : : ; M ( j)

n ). Let ‖ · ‖ denote total variation, i.e. if
� and � are probability measures, ‖ � − � ‖ =sup

A
|�(A)− �(A)|.

Theorem 3.1. As n→∞,
‖P(Mn ∈ ·)− P(MN ∈ ·)‖ → 0:

Proof. First note that MN 6=Mn ⇔ M (i)
N 6= M (i)

n for some i6j. Hence,

‖P(Mn ∈ ·)− P(MN ∈ ·)‖6
j∑
i=1

P(M (i)
N 6= M (i)

n ):

We will show that all the terms go to 0 as n→∞. Let (k)i = k(k − 1) : : : (k − i + 1). For any �xed k6n,
note that M (i)

k ¡M (i)
n if and only if not all M (1)

n ; : : : ; M (i)
n are attained among X1; : : : ; Xk . Hence,

P(M (i)
k ¡M (i)

n )61−
(k)i
(n)i
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with equality if F is continuous (clearly the possibility of ties make distinct maxima less likely). Since
P(N = k − i) = (k)i=niP(N = k) we obtain

P(M (i)
N ¡M (i)

n ) =
n∑
k=0

P(M (i)
k ¡M (i)

n )P(N = k)6
n∑
k=0

(
1− (k)i

(n)i

)
P(N = k)

6
n∑
k=0

P(N = k)−
n∑
k=i

(k)i
ni
P(N = k) =

n∑
k=n−i+1

P(N = k)6iP(N = n):

Finally, note that E[(N )i] = ni, and hence

P(M (i)
N ¿M (i)

n ) =
∞∑

k=n+1

P(M (i)
k ¿M (i)

n )P(N = k)

6
∞∑

k=n+1

(
1− (n)i

(k)i

)
P(N = k)6

∞∑
k=n+1

(
(k)i
(n)i

− 1
)
P(N = k)

= E
[
(N )i
(n)i

− 1
]
+

n∑
k=i

(
1− (k)i

(n)i

)
P(N = k)6

ni

(n)i
− 1 + iP(N = n)

by the above calculations. Since ni=(n)i→ 1 and P(N = n)→ 0 as n→∞, the proof is complete.

Hence we can use the Poisson approximation for any event involving the j largest values for any �xed j.
In the next section we will use this to investigate the problem of multiple maxima in a discrete sample,
especially for the geometric distribution.

4. Multiple maxima in a discrete sample

In R�ade (1991), the following problem is proposed. Toss n coins, probability p for heads, remove all that
fell heads and toss the remaining coins again. Proceed in this way until all coins show heads. What can be
said about the asymptotic behavior of the number of coins involved in the last toss as n→∞?
This problem has been solved and extended by several authors; among these are Baryshnikov et al. (1995),

Brands et al. (1993) and Eisenberg et al. (1993). We will deduce some of their results by applying our
Poisson approximation which makes some computations shorter and intuitively appealing.
First note that, with Xi denoting the number of tosses needed for the ith coin, the number of coins involved

in the last toss will equal the number of Xi that need the maximum number of tosses to show heads.
Generally, consider a discrete sample X1; X2; : : : where the Xi have frequency function f and denote

G( j) = P(X¿j). Assume that the Xi are unbounded (otherwise the number of maxima will clearly in-
crease inde�netely). Let Kn denote the number of maxima. The event {Kn= k} is then the same as the event
{M (1)

n = · · ·=M (k)
n ¿M (k+1)

n } and by Theorem (3.1), the asymptotics of P(Kn= k) will be the same as those
of P(KN = k) where N is Poisson with mean n.
Therefore let N have a Poisson distribution with mean n and �x j. By Theorem 2.1, the number of Xi that

equals j has a Poisson distribution with mean nf( j) and these numbers for di�erent j are independent. To
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have k maxima attained in j thus has probability

P(KN = k;M
(1)
N = j) =

(nf( j)) k

k!
e−nf( j)e−nG( j+1)

=
(nf( j)) k

k!
e−nG( j)

since the process must have k points in j and no points from j+1 on and G( j)=G( j+1)+f( j). Summing
over j yields

P(KN = k) =
∞∑
j=1

(nf( j)) k

k!
e−nG( j): (4.1)

Of particular interest is the case k = 1, a unique maximum. Note that

P(KN = 1) = n
∞∑
j=1

f( j)e−nG( j) = nL(n) (4.2)

where L is the Laplace–Stieltjes transform of the random variable G(X ). This reminds us of the techniques
in Baryshnikov et al. (1995) where a Tauberian theorem is used to show that lim P(Kn=1) exists (and must
equal one) if and only if f(k)=G(k)→ 0 as k→∞.

5. Subsequential limits in the geometric case

For a geometric distribution with success probability p=1−q we have f( j)=pqj and G( j)=qj; j=0; 1; : : :
and hence, by (4.1),

P(KN = k) =
∞∑
j=1

(npqj) k

k!
e−nq

j
: (5.1)

It is known that P(Kn = k) does not converge as n→∞; there are di�erent subsequential limits along dif-
ferent subsequences. For an intuitively appealing explanation of this slightly surprising fact, see Baryshnikov
et al. (1995). The following theorem is from Eisenberg et al. (1993). We prove it by using our Poisson
approximation.

Theorem 5.1. Let Kn denote the number of maxima in a sample of size n from a geometric distribution
with success probability p= 1− q. If n(m) is any sequence such that n(m)qm→ c as m→∞, then,

P(Kn(m) = k)→ ckpk

k!

∞∑
j=−∞

qje−cq
j

as m→∞.

Proof. By (5.1)

P(Kn(m) = k) =
∞∑
j=1

(n(m)pqj) k

k!
e−n(m)q

j
=
n(m) kpk

k!

∞∑
j=−m+1

qk(m+j)e−n(m)q
mq j

=
(n(m)qm) kpk

k!

∞∑
j=−m+1

qkje−n(m)q
mq j → ckpk

k!

∞∑
j=−∞

qkje−cq
j

as m→∞.
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6. Logarithmic summability of P(Nn = k)

We will now prove a result from Baryshnikov et al. (1995). A sequence {an} is called logarithmically
summable to a if (logm)−1

∑m
n=1 n

−1an→ a as m→∞.

Theorem 6.1. The probabilities P(Kn = k) are logarithmically summable to pk=k|log q|, that is
1

logm

m∑
n=1

P(Kn = k)
n

→ pk

k|log q|
for k = 1; 2; : : : as m→∞.

Proof. Plugging in the expression for P(Kn = k), we obtain
m∑
n=1

P(Kn = k)
n

=
m∑
n=1

∞∑
j=1

(npqj) k

k!
1
n
e−nq

j
=
pk

k!

∞∑
j=1

m∑
n=1

nk−1qjke−nq
j
:

The sum
∑m

n=1 n
k−1qjke−nq

j
is decreasing in j and hence the sum over j will di�er at most

∑m
n=1 n

k−1e−n

from the corresponding integral∫ ∞

0

m∑
n=1

nk−1qxke−nq
x
dx: (6.1)

Since nk−1e−n is summable, (logm)−1
∑m

n=1 n
k−1e−n→ 0 as m→∞ and we can use the integral instead of

the sum. The change of variables y = qx yields∫ ∞

0
qxke−nq

x
dx =

1
|log q|

∫ 1

0
yk−1e−ny dy ∼ 1

|log q|
(k − 1)!
nk

as n→∞. Hence,
pk

k!

∫ ∞

0
nk−1qxke−nq

x
dx ∼ pk

k|log q|
1
n

as n→∞ and hence

1
logm

m∑
n=1

P(Kn = k)
n

→ pk

k|log q|
as m→∞.
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