Stat 310 Homework 12 Solutions

2nd May 2005

6.4 - 1

Approximate $P(\frac{1}{2} \leq \overline{X} \leq \frac{2}{3})$ where n=12 and X^U(0,1)

Using our transformation where $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} {}^{\sim} N(0, 1)$

$$P(\tfrac{1}{2} \leq \overline{X} \leq \tfrac{2}{3}) = P(\tfrac{1}{2} - \tfrac{1}{2} \leq \overline{X} - \tfrac{1}{2} \leq \tfrac{2}{3} - \tfrac{1}{2})$$

 $=P(\frac{0}{\frac{1}{\sqrt{12}}/\sqrt{12}}\leq \frac{\overline{X}-\frac{1}{2}}{\frac{1}{\sqrt{12}}/\sqrt{12}}\leq \frac{\frac{1}{6}}{\frac{1}{\sqrt{12}}/\sqrt{12}})=P(0\leq Z\leq 2)$ where Z is approximately standard normal

$$\approx 0.9772 - 0.5 = .4772$$

6.4 - 2

Approximate $P(-0.3 \le Y \le 1.5)$ where $Y=X_1+X_2+...+X_{15}$ and all X are iid with $f(x)=(\frac{3}{2})x^2,-1< x<1$

Use the fact that $\frac{Y-n\mu}{\sigma*\sqrt{n}}$ is approximately normal.

$$\mu=\int_{-1}^1 \frac{3}{2}x^3 dx = \frac{3}{8}x^4|_{-1}^1=0$$
 and $\sigma^2=\int_{-1}^1 \frac{3}{2}x^4 dx = \frac{3}{10}x^5|_{-1}^1=0.6$

Thus

$$P(-0.3 \le Y \le 1.5) = P(\frac{-0.3 - 15*0}{\sqrt{.6}*\sqrt{15}} \le \frac{Y - 15*0}{\sqrt{.6}*\sqrt{15}} \le \frac{1.5 - 15*0}{\sqrt{.6}*\sqrt{15}})$$

$$= P(-0.1 \le Z \le 0.5) \approx 0.2313$$

6.4 - 3

Approximate $P(2.5 \le \overline{X} \le 4)$ when X~exp(3) and n=36

Using method from 6.4-1

$$P(2.5 \le \overline{X} \le 4) = P(-1 \le Z \le 2) = 0.8185$$

6.4 - 5

 $X_1,...,X_{18}$ are i.i.d. $\chi^2(1)$ random variables.

(a) From Example 6.4-5, we know that $\sum_{i=1}^{n} X_i$ is a $\chi^2(n)$ variable when X_i are iid $\chi^2(1)$ variables.

Thus $Y = \sum_{i=1}^{18} X_i$ is distributed as a $\chi^2(18)$ variable.

(b) We approximate using the same method in 6.4-3

 $P(Y \le 9.390) = P(Z \le \frac{9.390-18}{\sqrt{2}*\sqrt{18}}) = P(Z \le -1.435) \approx 0.757$ which is higher than the actual probability of 0.05, and $P(Y \le 34.80) = P(Z \le 2.8) \approx 0.9974$ which is only slightly higher than the actual 0.99.

8.1-1

$$\alpha = P(H_0rejected|H_0true) = P(X = 2or3|p = \frac{1}{3})$$

$$= P(X = 2|p = \frac{1}{3}) + P(X = 3|p = \frac{1}{3}) = (3c2)(\frac{1}{3})^2(\frac{2}{3}) + (3c3)(\frac{1}{3})^3 = \frac{7}{27}$$

$$\beta = P(X = 0or1|p = \frac{2}{3}) = (3c0)(\frac{1}{3})^3 + (3c1)(\frac{2}{3})(\frac{1}{3})^2 = \frac{7}{27}.$$

8.1-8

 $H_0: p = 0.75$

 $H_1: p < 0.75$

(a) With $\alpha = 0.05$, we will reject when $z = \frac{\hat{p}-9}{\sqrt{\frac{p(1-p)}{n}}} < -1.645$

$$z = \frac{0.7 - 0.75}{\sqrt{\frac{.75 * .25}{390}}} = -2.28$$

Since z = -2.28 < -1.645, we reject H_0

(b) With $\alpha = 0.01$, we will reject when z < -2.326

z = -2.28 > -2.326, so we fail to reject H_0

(c) The approximate p-value for this test is P(z < -2.28) = 0.0113

8.2-3

(a) The test statistic is $z = \frac{\overline{X} - 170}{10/\sqrt{25}}$

For $\alpha = 0.05$ the critical region is $\{z : z \ge 1.645\}$

(b) In this case, $\overline{X}=172.52$ and z=1.26. Since z<1.645, we fail to reject H_0

(c) The p-value is $P(z \ge 1.26) = 0.1038$

8.2-6

(a) $H_0: \mu = 3.4$

(b) $H_1: \mu > 3.4$

(c) The test statistic is $t = \frac{\overline{X} - 3.4}{s/3}$

(d) For $\alpha = 0.05$, the critical region is $\{t : t \ge 1.86\}$

(e) In this case $t = \frac{3.556 - 3.4}{0.167/3} = 2.802$

(f)t = 2.802 > 1.86, so we reject H_0

(g) The p-value is in between 0.01 and 0.025. If using a computer to find, the p-value is 0.0116.

8.2-11

- (a) The test statistic is $\chi^2 = \frac{24*s^2}{(140)^2}$. The critical region is $\chi^2 \leq 36.42$
- (b) In this case, $\chi^2 = 29.18$
- (c) The confidence interval for μ is approximately

$$[0, \overline{X} + \frac{t.98(24)*s}{5}] = [0, 725.432]$$

8.4-2

$$H_o: p_1 = 0.4, p_2 = 0.2, p_3 = 0.2, p_4 = 0.1, p_5 = 0.1$$

We are given n=580, with respective frequencies 224,119,130,48,59. To test, use the following statistic:

$$q_{k-1} = \sum \frac{(y_i - n * p_i)^2}{n * p_i}$$
, which is $\chi^2(4)$

So,
$$q_4 = \frac{(224 - 232)^2}{232} + \frac{(119 - 116)^2}{119} + \frac{(130 - 116)^2}{116} + \frac{(48 - 58)^2}{58} + \frac{(59 - 58)^2}{58} = 3.784$$

Since the expected value of q_4 is 4 when H_0 holds, we wil fail to reject H_0 at any reasonable α level

8.4-4

Since there are 3 colors (yellow, white, purple) with respective probabilities $p_1=\frac{1}{4}, p_2=\frac{1}{4}, p_3=\frac{1}{2}$, n=40, and observed numbers are 6, 7, and 27. Our statistic is:

$$q_2 = \frac{(6-10)^2}{10} + \frac{(7-10)^2}{10} + \frac{(27-20)^2}{20} = 4.95.$$

At an $\alpha = .05$, we would reject is $q_2 > 5.991$. Since 4.95 < 5.991, we fail to reject the null.

8.4-9

We will use the table from Example 3.5-3 to find our observed frequencies for $A_1, ..., A_{11}$, and then use the Poisson table to find $P(x \in A_i)$ when $\lambda = 5.6$. Then multiply the probabilities by n=100 to find expected frequencies under the null hypothesis that X is a Poisson process. Here are the results to be used:

Frequency	$P(x \in A_i)$	Expected
1	$P(x \le 1) = 0.024$	P * 100 = 2.4
4	P(x=2) = .058	5.8
13	P(x=3) = 0.079	7.9
19	0.151	15.1
17	0.170	17
15	0.158	15.8
9	0.127	12.7
12	0.111	11.1
7	0.055	5.5
2	0.031	3.1
2	$P(x \ge 11) = 0.028$	2.8

The following statistic is used:

$$q_{10} = \frac{(1-2.4)^2}{2.4} + \dots + \frac{(2-2.8)^2}{2.8} = 6.113$$

Since 6.113 < 18.31, we fail to reject the null hypothesis.

8.5-6

For this problem, we use the following statistic:

$$q_{(k-1)*(h-1)} = \sum_{i=1}^k \sum_{j=1}^h \frac{(Y_{ij} - n(Y_{i.}/n)(Y_{.j}/n))^2}{n(Y_{i.}/n)(Y_{.j}/n)}$$

In this case

$$q_4 = \frac{(21 - 100(60/100)(30/100))^2}{100(60/100)(30/100)} + \frac{(5 - 100(60/100)(8/100))^2}{100(60/100)(8/100)} + \dots + \frac{(12 - 100(40/100)(25/100))^2}{100(40/100)(25/100)}$$

$$= 8.410$$

Since 8.410 < 9.488,we fail to reject the null hypothesis that sport preference is independent of gender. The p-value is between 0.05 and 0.10. It is approximately 0.78.