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CHAPTER 1

Comparison of meta-analysis to
combined analysis of a replicated

microarray study

Darlene R. Goldstein1, Mauro Delorenzi2, Ruth Luthi-Carter3, and Thierry
Sengstag2

1École Polytechnique Fédérale de Lausanne (EPFL), Institut de mathématiques,
CH-1015 Lausanne, Switzerland;

2Bioinformatics Core Facility, Institut Suisse de Recherche Expérimentale sur le
Cancer (ISREC), and Swiss Institute of Bioinformatics, CH-1066 Epalinges,

Switzerland;
3École Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de

neurogénomique fonctionnelle, CH-1015 Lausanne, Switzerland

1.1 Introduction

Microarray technologies measure mRNA abundance for thousands of genes in par-
allel. The high throughput nature of microarrays has contributed to their rise in im-
portance for studying the molecular basis of fundamental biological processes and
complex disease traits. Whereas only a few years ago microarray experiments were
uncommon, they are now regularly used in a great variety of biological and medical
studies.

Several different types of microarray platforms are available. Those currently in
common use include high-density short oligonucleotide arrays, such as Affymetrix
GeneChip R© arrays; long oligonucleotide arrays, such as those produced by Agilent;
and cDNA arrays, fabricated in laboratories on site at many academic and commer-
cial institutions.

The widespread use of microarrays has resulted in a large-scale, rapid expansion of
data. Many research groups throughout the world are engaged in gene expression
studies of the same or similar conditions – specific cancers, for example. Data from
many microarray studies are deposited in publicly available databases such as Gene
Expression Omnibus Edgar et al. (2002); Barrett et al. (2005). It is hoped that ready
access to the data will facilitate the integration of information across different studies.

1
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Each microarray study gives rise to its own list of ‘interesting’ genes. The lists from
different studies, however, may not exhibit substantial concordance. Discordant re-
sults may produce scientific confusion or disagreement regarding the underlying bi-
ology, as well as lost time and misused resources. Consequently, the ability to syn-
thesize information across studies is essential.

Meta-analysis consists of statistical methods for combining results of independent
studies addressing related questions. One aim of combining results is to obtain in-
creased power – studies with small sample sizes are less likely to find effects even
when they exist. Putting results together increases the effective sample size, thereby
allowing more precise effect estimation and increasing power. The uncovering of
a significant effect from a combined analysis, where individual studies do not make
positive findings at the same significance level, has been referred to in the microarray
meta-analysis literature as ‘integration-driven discovery’ (IDD) Choi et al. (2003).

Given the limited size of most microarray studies to date, meta-analysis thus seems a
natural approach to the problem of integrating conclusions from different microarray
studies. Indeed, there is a recent and increasing literature for meta-analysis of mi-
croarray studies Rhodes et al. (2002, 2004a); Ghosh et al. (2003); Choi et al. (2003);
Stevens and Doerge (2005). Meta-analysis is not without problems, however.

A major difficulty with synthesizing results is the occurrence of study heterogeneity.
Studies which are apparently similar may in fact differ in many ways, some of which
may be quite subtle Sutton et al. (2000). In general, studies carried out by different
research groups may vary in:

– scientific research goals
– population of interest
– design
– quality of implementation
– subject inclusion and exclusion criteria
– baseline status of subjects (even with the same selection criteria)
– treatment dosage and timing
– management of study subjects
– outcome definition or measures
– statistical methods of analysis.

Additional issues more specific to the microarray context include:

– differences in the technology used for the study
– heterogeneity of measured expression from the same probe occurring mul-

tiple times on the array
– multiple (different) probes for the same gene
– variability in probes used by different platforms
– differences in quantification of gene expression, even when the same tech-

nology is used.
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In this chapter, we examine properties of different methods for combining informa-
tion from what is essentially a replicated experiment carried out with Affymetrix
GeneChips. Our aim is to demonstrate that even in this almost ideal situation, sev-
eral issues concerning appropriate data normalization and combination still arise.
We first give some background on the study, then describe the statistical analyses
and present results, and conclude with a discussion. Because the focus here is on
meta-analysis, we treat only briefly the specifics of microarray data analysis. For fur-
ther details on these aspects see e.g. Goldstein and Delorenzi (2004) for a review or
http://www.nslij-genetics.org/microarray/ for a bibliography of
papers on microarray data analysis.

1.2 Study description

The data were obtained from two experiments on the R6/2 mouse. The R6/2 mouse
line is transgenic for exon 1 of the human Huntington’s disease (HD) gene, thus
serving as an experimental model for the disease Mangiarini et al. (1996). These mice
exhibit mRNA changes weeks in advance of neuronal death or gliosis phenotypes
Luthi-Carter et al. (2000, 2002a).

Two separate studies were carried out to investigate the effects on gene expression of
different drugs on HD and normal (or wild type (WT)) mice in order to identify genes
differentially expressed between HD and WT mice. Each experiment was designed
as a 2x2 factorial layout, where one factor is drug/placebo treatment and the other is
HD/WT mouse.

We consider only the control groups for the two studies, which received the placebo
(injected with normal saline 30-60 minutes prior to sacrifice). In Study I there were
8 control mice, while in Study II there were 6 control mice. In each study, half of the
mice were HD and half WT.

The two experiments were carried out by the same laboratory a few months apart.
In each experiment, the same protocols were used throughout with regard to mouse
breeding, care and sacrifice, mRNA extraction, and hybridization to the microarray.
Thus, these data are essentially those of a completely replicated study.

Affymetrix GeneChips contain several (usually 11 – 20) 25-mer oligonucleotides
used to measure the abundance of a given target sequence, the perfect match (PM)
probes, as well as an equal number of negative controls, the mismatch (MM) probes.
The set of probes for a given target sequence is called a probe set. A single fluores-
cently labeled sample is hybridized to the array which is then scanned with a laser,
yielding absolute measures of fluorescence intensity. The intensities are indicative
of the amounts of mRNAs containing the target sequence in the sample, and thus
provide a means of quantifying levels of gene expression.

The studies were carried out with the Affymetrix MOE 430A (Mouse Expression
Array). These chips contain in total 22,690 probe sets, to which, with a slight abuse
of terminology, we refer henceforth as ‘genes’. The data are deposited in GEO with
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series accession number GSE1980, and should be publicly available by the end of
2005 at http://www.ncbi.nlm.nih.gov/geo/.

1.3 Statistical analyses

There are several components of the data analyses to be carried out. First, quality
of the hybridizations should be assessed so that low quality chips are removed from
further analysis. Before statistical analyses can take place, the primary data obtained
from scanning and image analysis of arrays must first be quantified using a measure
of gene expression. Once there is a measure of expression of each gene for each in-
dividual, we compute for each gene a statistic for assessing genes for differential ex-
pression between the HD and WT mice. Some determination of significance should
also be made for these statistics, taking into account the multiplicity of hypotheses
tested.

We compare analyses carried out under two scenarios: one, where the data are com-
bined and analyzed as a single set; and two, where the two data sets are analyzed
separately and their results are combined via meta-analysis. The steps are described
in detail below. All analyses reported here were coded in the R statistical program-
ming environment Ihaka and Gentleman (1996); R Development Core Team (200),
using the following packages from R (2.0.1) and BioConductor (release 1.5) Gentle-
man et al. (2004): affy Irizarry et al. (2004), affyPLM Bolstad (2004), car Fox
(2005), limma Smyth (2004), qvalue Dabney and with assistance from Gregory
R. Warnes, and rmeta Lumley (2004).

1.3.1 Chip quality assessment

We assessed all chips for quality with the RMA-QC approach described in Collin
(2004) and implemented in the BioConductor R package affyPLM Bolstad (2004).
In this method, gene expression is modeled as the sum of chip and probe effects, with
the model fit by robust regression (i.e. outliers are downweighted; see equation 1.1
below). Pseudoimages of the robust regression weights or residuals for each probe
provide a graphical means to assess chip quality; numerical measures indicative of
quality were also computed.

By these criteria, all 14 chips were of similar and suitably high quality that none
required exclusion.

1.3.2 Quantifying gene expression

Several methods of quantifying gene expression from probe fluorescence intensities
on Affymetrix GeneChips are in popular use, e.g. MAS5/GCOS Affymetrix (2001),
the Li-Wong method, implemented in dChip Li and Wong (2001), and Robust Multi-
chip Average (RMA) Irizarry et al. (2003a), among many others. For a comparison of
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methods see http://affycomp.biostat.jhsph.edu/ Cope et al. (2004),
where it is easily seen that no method is best under every circumstance. We have cho-
sen to use RMA, due to its demonstrated favorable properties Irizarry et al. (2003a,b);
Bolstad et al. (2003).

An important yet difficult aspect of gene expression quantification is normalization.
(The term ‘normalization’ as used here is not related to the normal, or Gaussian,
distribution.) The purpose of normalization is remove the effects of systematic vari-
ation other than that due to the effect of interest. Examples of such variation include
differences in sample preparation, scanning intensities, and variability among chips.
Ideally, any observed differences in gene expression remaining after normalization
are due to differential expression rather than artifactual differences in measured ex-
pression.

RMA consists of three steps: a background adjustment, quantile normalization and
probe set summarization. Background is estimated assuming that the observed signal
is the convolution of an exponential signal with Gaussian background (noise). Quan-
tile normalization forces equality of quantiles across samples. Such a normalization
is appropriate assuming that the true distributions of intensities are the same in all
samples (of course, the same probe may occur at different quantiles across samples).
For each probe set on the chip, the log2 background-corrected normalized signal
log2 b(PMij) is modeled as

log2 b(PMij) = μi + αj + εij , (1.1)

where μi is the summary measure of expression for the given probe set on chip i,
αj is a probe-specific effect, and εij are independently and identically distributed
mean 0 errors Irizarry et al. (2003b). For parameter identifiability, it is assumed that∑

j αj = 0. The model is fit via median polish Tukey (1977); the estimated chip
effect μi is the RMA value of the probe set for chip i. RMA values were computed
with the affy package.

1.3.3 Identifying differential expression

A commonly addressed problem in microarray experiments is detection of genes dif-
ferentially expressed under two or more conditions. A substantial number of statis-
tical papers propose methods for this purpose, with new ones still being introduced
(for an overview see Goldstein and Delorenzi (2004)). The high dimensionality of
microarray data has also brought to the fore multiple hypothesis testing issues. The
approach we adopt is described here.

Moderated t-statistic

Perhaps the most readily interpretable measure of differential expression is given by
the fold change (ratio) in expression of a given gene between two types of samples
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(HD and WT here). It is more convenient to consider fold change on the logarithmic
scale, M = (average) log2(fold change).

The measure M has the shortcoming of not taking into account differing variability
of different genes. The variability of M , though, is not the same across the range
of signal intensities. In particular, genes with larger variance across arrays are likely
to produce large values of M even when they are not truly differentially expressed
between the two sample types.

An obvious way to deal with differing variability is by standardization. Here M is
divided by its standard error, which is estimated based on expression measures of
the corresponding gene. Thus, the difference in average expression between sample
types is quantified with a t-statistic. However, a problem here is that the t-statistic
performs very poorly at identifying true differential expression with the small sample
sizes found in typical microarray studies.

Bayesian and empirical Bayes methods have been proposed as a compromise be-
tween single gene estimates of variability and no estimate of variability at all. These
use data from all genes to improve estimation of differential expression for single
genes Lönnstedt and Speed (2002); Smyth (2004). These methods have been shown
to perform well, in terms of true and false positive and negative rates, at identifying
differential expression. In addition, the methods have been extended to be applied to
a large variety of experimental designs through a linear modeling approach Smyth
(2004); Lönnstedt et al. (2001).

We follow the linear modeling approach here. For each gene g in a given study, the
measured gene expression vector Yg across samples is modeled as

Yg = Xβg + εg,

where X is the design matrix, βg is a vector of coefficients, and εg is a vector of error
terms. The design matrix X is the same for all genes within a study.

The moderated t-statistic for coefficient j and gene g is given by

mod tgj =
β̂gj

s̃g
√

vgj
,

where β̂gj is the estimate of coefficient j for gene g, s̃g is the square root of the
empirical Bayes shrinkage estimated variance, and vgj is the scaling for the variance,
reflecting sample size. That is, mod t is the ratio of M to its standard error, which
has now been estimated taking into account expression levels not only of gene g but
of all genes. It is similar to the ordinary t-statistic, but with a moderated standard
error estimate and correspondingly an increased number of degrees of freedom. For
a detailed explanation, refer to Smyth (2004). We base inference about effects on
mod t.
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Multiple hypothesis testing

The biological question of differential expression can be restated as a problem in
multiple hypothesis testing: the simultaneous test for each gene of the null hypothesis
of identical mean expression in the two sample types.

A multiplicity problem arises when attempting to assess the statistical significance
of the results on tests carried out on several thousands of genes simultaneously. With
whole genome coverage arrays consisting of probes for many thousands of genes,
most genes will not be differentially expressed between the conditions under investi-
gation. Thus, even a nominal p-value of say 0.01 cannot be characterized as ‘signif-
icant’, since such small p-values will occur by chance when such a large number of
tests are made.

Classical approaches to correction for multiple testing focus on control of the family-
wise error rate (FWER), or probability of at least one false positive result in all tested
hypotheses. The resulting procedures tend to be depressingly conservative though.
Recent developments in controlling the false discovery rate (FDR), or expected pro-
portion of false positive findings among the rejected hypotheses, appear to provide a
promising way to come up with meaningful significance measures among thousands
of genes Benjamini and Hochberg (1995a); Reiner et al. (2003). In general, proce-
dures controlling the FDR are typically less conservative than those controlling the
FWER. FDR control thus seems well suited for microarray studies.

The (nominal, unadjusted) p-value of a test reflects significance only for a single
gene considered in isolation. The q-value of a test measures the proportion of false
positives (FDR) incurred among rejected nulls when that test is called significant. It
has been described as the expected proportion of false positives among all test results
as or more extreme than the one obtained Storey (2002b); Storey and Tibshirani
(2003).

We make use of q-values to take into account the large number of individual hy-
potheses tested. The mod t p-values from a set of single gene tests are transformed
to q-values with the qvalue package Dabney and with assistance from Gregory
R. Warnes. We call a test result ‘significant’ by fixing a q-value (or FDR) threshold,
usually at 0.05. In many microarray studies a higher threshold may be more relevant.
For example, a FDR of 0.25 still suggests that three of four significant findings are
real. This may be all that is attainable with study sizes available in practice.

1.3.4 Combined data analysis

In the combined data analysis, we consider all 14 chips as a single data set from the
same experiment. This is not a completely artificial treatment, as most large exper-
iments take place over a period of time and include hybridizing groups of chips at
different times. RMA measures are obtained by quantifying expression, including
normalization, on all chips together.
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The linear modeling approach is used to identify genes differentially expressed be-
tween HD and WT mice. We consider a series of models, each of which includes an
effect on gene expression of HD over WT. There might also be additional variability
due to study, so we also allow for a study, or ‘batch’, effect as well as entertain the
possibility of an HD by study interaction.

The design matrices are set up using treatment contrasts so that the effects of interest
are included as coefficients in the models. Thus, for each gene g, the three com-
bined data linear models are given by (the subscript g is suppressed; I represents an
indicator random variable):

Model A: y = β0 + βHDI{HD=1} + ε

Model B: y = β0 + βHDI{HD=1} + βbatchI{batch=1} + ε

Model C: y = β0+βHDI{HD=1}+βbatchI{batch=I}+βHD×batchI{HD×batch=1}+ε.

The coefficients are estimated by ordinary least squares. The limma package is used
to compute for each gene under each model the statistic mod t and corresponding
p-values as a prelude to obtaining q-values.

1.3.5 Meta-analysis

In the meta-analyses, each experiment is first analyzed as a separate study. After
heterogeneity analysis, results from the two studies are combined under three meta-
analytic techniques: fixed effects meta-analysis, random effects meta-analysis, and
Fisher p-value combination. Computations were done with the R package rmeta
Lumley (2004).

In the separate study analyses, gene expression is again quantified with RMA, but
values are computed using only chips from the same study (8 chips for Study I or 6
chips for Study II). Linear modeling is carried out as above, but because each study
is analyzed individually the model includes only the HD effect (Model A). Fitting
the model produces effect estimates (coefficients) for each gene, while the empirical
Bayes procedure produces shrinkage estimates of variance, moderated t-statistics and
p-values, which in turn yield q-values and gene rankings based on evidence in favor
of differential expression between HD and WT mice.

Heterogeneity analysis

Prior to combining effect sizes from different studies, it is important to verify that
they are homogeneous – that is, that they all seem to be estimating the same un-
derlying population parameter. Existing graphical methods for assessing inter-study
heterogeneity, such as forest plots of individual study confidence intervals, seem of
limited usefulness in the microarray setting, as one such plot would be required for
each individual gene. We thus depend on numerical assessments to screen genes for
heterogeneous treatment effects across studies.
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The standard test of homogeneity Cochran (1954) tests, for each gene g, the null
hypothesis of homogeneity of treatment effects β i in k studies (the subscript g is
suppressed)

H0: β1 = β2 = · · · = βk

against the general alternative that at least one βi is different. The test statistic Q is
given by

Q =
k∑

i=1

wi(β̂i − β̄.)2, (1.2)

where β̂i estimates the treatment effect (the HD coefficient in the linear model for a
given gene) in study i, wi is the weight given to study i (most commonly taken as the
reciprocal of the variance of the outcome estimate), and β̄. is the weighted average
treatment effect

β̄. =
∑

i wiβ̂i∑
i wi

. (1.3)

Under the null hypothesis, the distribution of Q is approximately χ 2
k−1.

In the event that the null hypothesis is not rejected, any differences between studies
are assumed to be due to chance variation, and it is considered appropriate to combine
estimates via a fixed effects model. A major limitation of this approach, though,
is the low power of the test to detect even substantial heterogeneity due to small
sample sizes or a small number of studies. One way to avoid the risk of combining
heterogeneous results is to relax the significance criterion from 0.05 to 0.10, say.

If instead the test shows that significant heterogeneity exists between study results,
then combination via a random effects model is typically favored. Where possible,
heterogeneity should be scrutinized rather than ignored, with an aim toward explain-
ing important study differences Bailey (1987). Because our studies were carried out
by the same laboratory using identical protocols, tracking down reasons that some
genes show heterogeneity across studies while others do not seems an unsolvable
problem.

It should also be kept in mind that there is one homogeneity test per gene, so the
usual caveats regarding multiple hypothesis testing apply.

Fixed effects meta-analysis

Fixed effect (FE) meta-analysis assumes no heterogeneity between results of the dif-
ferent studies and therefore that a fixed effects model can be used to estimate the
assumed common underlying treatment effect. In FE meta-analysis, each individual
study estimate receives weight inversely proportional to its variance. The weighted
estimates are pooled as above to yield the estimate of the treatment effect given by
equation 1.3, where the weights wi are inversely proportional to the variances. These
weights are used as they minimize the variance of the combined estimate β̄. Cooper
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and Hedges (1994). The variance of the weighted estimator is just 1/
∑k

i=1 wi. Un-
der the assumption of normality of β̄., a p-value for each single gene test of HD
effect (i.e. differential expression between HD and WT for the given gene) is read-
ily obtained; corresponding q-values are obtained from the set of p-values across all
genes.

Random effects meta-analysis

If the study results do exhibit heterogeneity, then there is assumed to be no single
underlying value of HD effect but rather a distribution of values. In the presence
of heterogeneity, differences among study results are considered to arise from inter-
study variation of true effect size as well as chance variation. Use of a FE model
understates the true degree of variability of β̄., resulting in p-values which are arti-
ficially low. A more conservative approach is to use a model which accounts for the
additional source of variability due to study.

Random effects (RE) meta-analysis assumes that individual studies may be estimat-
ing different treatment effects. The aim is to estimate characteristics of the distribu-
tion of effects, particularly the mean population effect size and between study vari-
ance of effect sizes. As in the FE case we use weighted estimates, but the weights are
adjusted to take into account the additional variability between studies:

w∗
i =

1
(1/wi) + τ̂2

,

where τ̂ estimates inter-study variability (see Cooper and Hedges (1994) for a deriva-
tion). The estimated mean treatment effect is given by equation 1.3, but with w ∗

i in
place of the wi. Similarly, the variance of the weighted estimator is now given by
1/
∑k

i=1 w∗
i . When the inter-study variance is estimated as 0, the RE model reduces

to the FE model.

As for the FE model, single gene p-values from the RE model are obtained assuming
normality of the effect distribution; q-values are then computed from the p-values
across all genes.

Meta-analysis by Fisher p-value combination

In FE and RE meta-analysis, combined estimates of effect size provide the basis
for analysis. Other methods of meta-analysis, dating back to at least the 1930s, are
based on combining the p-values from independent studies. Although it is usually
preferable to base inference on effect sizes, there are situations for which combining
p-values may be considered justified – for example, when only p-values are reported
without a corresponding estimate of effect size, or when study characteristics (design,
treatment levels) are sufficiently different that combining effect estimates seems un-
acceptable Hasselblad (1995).

Several methods exist for combining p-values. One popular method is due to Fisher
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Fisher (1932). Under the null hypothesis of no treatment effect, the individual study
p-values pi are independent uniformly distributed U(0, 1) random variables. Upon
rescaling, the Fisher summary test statistic is given by

S = −2
k∑

i=1

log(pi). (1.4)

To assess the significance of the Fisher statistic S we need to determine its p-value.
The theoretical null distribution of S should be χ2

2k (here 2k = 4).

We compute p-values for the Fisher combined p-value statistic S in two ways: first,
with the χ2

4 approximation and second, by a resampling procedure proposed in Rhodes
et al. (2002). In the resampling procedure, rather than choosing a p-value at random
from U(0, 1) a p-value is instead chosen at random from each of the sets of p-values
from the two studies. These are then combined as in equation 1.4 into a randomized
summary statistic SR. We obtain an empirical distribution of SR by repeating the re-
sampling procedure 100,000 times. The p-value for the Fisher S statistic is estimated
as the proportion of the resampling-generated statistics S R

i greater than or equal to
the original observed value S. This method yields a more conservative estimate for
the p-value of S because the distribution of actual study p-values is not uniform.

1.4 Results

Here we present detailed results of the analyses outlined above for the combined data
set and for meta-analyses of separate experimental study outcomes.

1.4.1 Combined data

Combined vs. separate gene expression quantification

Because the first step of analysis requires a measure of gene expression, we compared
quantification of expression with the combined data (RMA values based on all 14
chips) to individual study quantification (we separately compute RMA values based
on the 8 chips from Study I and RMA values from the 6 chips from Study II). Figure
1.1 contains plots to explore this comparison.

Figures 1.1(a) and (c) show separate versus combined RMA values for one chip from
each study (chip 1 from Study I and chip 1 from Study II, or Chips I-1 and II-1).
These chips are representative of all chips in the respective studies – all plots were
quite similar within study – so our remarks on the plots apply to all chips. Each gene
on the chip is represented by a point in the plot, with the diagonal line representing
equal expression by each method.

As it is difficult to detect differences from the line of equality in these scatter plots,
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Figure 1.1: Comparison of RMA values when studies combined and separate. (a)
RMA values for chip I-1 computed within Study I vs. values computed from all chips
combined; (b) Difference (Separate – Combined) vs. Average RMA values for chip
I-1; (c) RMA values for chip II-1 computed within Study I vs. values computed from
all chips combined; (d) Difference vs. Average RMA values for chip II-1. Diagonal
and horizontal lines indicate equal values under both methods.
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we have also plotted the corresponding rotated and rescaled version, the Difference-
Average plot Tukey (1977) (a specific version of this plot is also called an MA plot
in the microarray literature; figures 1.1(b) and (d)). In this representation, the differ-
ence between RMA values computed separately and combined is plotted against the
average of the two values for the chip. If both RMA values were identical, all points
would fall on the horizontal line at 0. Differences are more readily detected in this
version of the plot.

It is easily seen that Study I chips tends to have higher RMA values when all chips
are combined, while Study II chips have lower RMA values in the combined data set.
The tendency persists throughout the range of (log 2) signal intensities.

Many investigators have assumed that normalization of a set of chips together would
remove artifacts of this nature. In fact, this does not appear to be the case at all. The
persistence of the study batch artifact can be seen, for instance, using cluster analysis
Everitt et al. (2001); Kaufman and Rousseeuw (1990). When we cluster samples
(chips) based on gene expression, the ones from the same study cluster together. The
clustering details (algorithm, dissimilarity measure, number of genes) do not seem
to affect the cluster results to any great degree.

II−
5

II−
6

II−
4

II−
3

II−
1

II−
2

I−4

I−2

I−1 I−3

I−6

I−5 I−7 I−8

0.0
0

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

Figure 1.2: Cluster dendrogram of combined data RMA values. Samples are clus-
tered using all genes, Ward’s method and 1 – correlation dissimilarity.

Figure 1.2 shows an example of a dendrogram obtained clustering samples using all
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genes with Ward’s method of clustering and 1 – correlation dissimilarity. The major
cluster split occurs between Study I chips and Study II chips. There is a minor, and
less clean, split on HD status: Study I samples 1 – 4 and Study II samples 1 – 3 are
from the HD mice, the rest are WT mice. Thus, we see that even in what we might
expect to be quite homogeneous studies, the most striking difference is in fact purely
artifactual and is exactly of the sort that normalization is meant to remove. It is not
quite clear why the effects persist, they do not appear to vary systematically with
intensity (data not shown). However, quantile normalization of the entire set together
does not remove the study batch effect. The batch effect must be removed in another
way before reliable inference relating to differential expression can take place.

HD-study batch interaction

We next turn attention to linear modeling of gene expression in terms of the effects
of interest. Here, gene expression is obtained by computing RMA values for the
combined set of 14 chips. Although the primary focus is on the HD effect, we must
also consider the ramifications of other potential terms for the model. We have just
seen the need to include study batch in the model. We now consider Model C to
assess the need to include the HD by batch interaction term.

Histograms of p-values and q-values for the estimated interaction effects are shown
in figures 1.3(a) and (b). There are 2242 genes with unadjusted p-values less than
0.05, but only 3 q-values less than 0.10 and thus indication of interaction between
HD status and batch for only a few genes. In the face of this mild evidence, we
discard Model C and ignore the possibility of interaction in the rest of the analyses.

Detection of differentially expressed genes

On the other hand, we have seen that there is strong evidence of batch effects for
many genes. Using Model B to estimate HD and batch effects, we find evidence of
significant HD effects for several genes along with a staggering number of genes with
strong batch effects (figure 1.3(b) – (d)). While there are 785 genes with HD q-values
< 0.05, nearly one half of the genes (10571 out of 22690) have batch effects with
q-values < 0.05. It is not necessary to believe in the exactness of the p- and q-value
estimation to conclude that there are many genes with strong batch effects.

We consider Model A, which contains only the HD term, in order to compare genes
identified as differentially expressed between HD and WT mice with and without
batch effects. Not surprisingly, the significance of the HD effect is always higher (q-
value lower) for Model B, where a study batch effect is included in the model. This is
because we have controlled for an important source of variability here by introducing
an effective stratification factor (batch). There is within stratum homogeneity but
heterogeneity between strata, resulting in increased power to detect HD differences.

Figure 1.4 displays the q-values for individual gene HD effects both with and without
batch effects in the model. This plot shows the importance of the batch effect in
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Figure 1.3: Histograms of p-values and q-values for Model C interaction term (a, b),
and Model B HD (c, d) and study batch (e, f) effects.
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uncovering differential expression due to HD status. Use of Model B produces an
additional 681 significant genes at the same FDR of 0.05 (points in black to the left
of the vertical line and above the horizontal line at 0.05).
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Figure 1.4: q-values for HD effects without (Model A) vs. with (Model B) batch
effect. Solid diagonal line indicates equal values; dashed vertical and horizontal lines
indicate a FDR of 0.05. Highlighted points are genes with significant HD effects for
Model B but not for Model A.

A list of ‘interesting’ genes, those identified by the analysis as differentially ex-
pressed between HD and WT mice, can be produced upon selection of a significance
threshold for the HD effect q-value, such as a FDR of 0.05. For comparison with
results of meta-analyses of Studies I and II (below), we retain not only the gene list
but all of the mod t p-values and corresponding q-values obtained using Model B.

1.4.2 Meta-analysis of Study I and Study II

Another strategy for dealing with study batch effects is to quantify gene expression
separately for each study and then combine the studies by meta-analytic techniques.
This is how the problem would necessarily be handled in the case of unrelated studies
carried out by different research groups. Here, we are able to examine how meta-
analysis would compare with a combined data analysis.
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Heterogeneity analysis

We investigate heterogeneity of gene-specific HD estimates from Study I and Study
II by computing the statistic Q (equation 1.2) as well as estimating the inter-study
standard deviation (SD) τ for each gene. Characteristics of these are plotted in figure
1.5.

There is evidence of HD effect heterogeneity for some genes. Several genes have
small nominal, unadjusted p-values: 3273 for p < 0.05; 5230 for p < 0.10 (figure
1.5(a)). If we choose a more stringent criterion of significance, say a q-value of 0.10,
there are still 802 genes with significant heterogeneity. This is substantially larger
than the number of genes for which an interaction effect was detected, but also very
much smaller than the number with a significant batch effect.

The quantile-quantile plot (figure 1.5(c)) shows some deviation from the assumed
χ2

1 null distribution. This could be due to inadequacy of the χ 2
1 approximation, but

as it is unlikely that all the nulls are in fact true we instead interpret this as indica-
tive of the presence of genes for which the alternative holds, i.e. there is some true
heterogeneity. Since the χ2 test has low power to detect heterogeneity for the small
study number and sample sizes that we have, there is likely to be a greater degree of
heterogeneity, and for more genes, than suggested here.

The distribution of estimated inter-study SD τ̂ is highly skewed. Over 70% (16428)
of genes have τ̂ < 0.01 (figure 1.5(d)). The value of τ̂ corresponding to a FDR
of 0.10 is about 0.066. This gives some idea of what a ‘large’ value of τ is in this
context. An example of intensities for a gene displaying heterogeneity is provided in
Table 1.1, which gives the individual study RMA values of each chip for a gene with
τ̂ ≈ 0.1.

Table 1.1: Individual Chip RMA Values for a Gene with τ̂ ≈ 0.1

Chip number Summary
1 2 3 4 5 6 7 8 Mean SD

Study I 8.67 8.88 8.91 8.64 9.08 9.02 9.02 9.27 8.94 0.21
Study II 9.86 9.75 9.96 9.83 9.57 9.73 9.78 0.13

One purpose of testing homogeneity is for deciding between the FE and RE model
for combining effect estimates. There will not be a large difference between FE and
RE meta-analysis for genes with small τ . A general recommendation which has been
made is to carry out both then compare similarity of results. If the results are similar
then there is unlikely to be important heterogeneity and the FE model would typically
be reported. If results are different, it is usually considered preferable to use RE meta-
analysis to estimate the mean and SD of the effect size distribution. In the case of
extreme, unexplained heterogeneity, it is probably more suitable to avoid combining
the study results at all.
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Figure 1.5: Plots for heterogeneity analysis: histograms of (a) p-values and (b) q-
values for the homogeneity statistic Q; (c) quantile-quantile plot of Q compared to
the theoretical χ2

1 distribution with 95% confidence region (dashed lines); (d) his-
togram of gene-specific estimated inter-study SD for the 21419 genes for which
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√
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Fixed effects and random effects meta-analysis

Based on the results of the heterogeneity analyses, we would choose to adopt the
RE model for combining HD effect size estimates. Nevertheless, we investigate both
approaches here in order to compare them.

Figure 1.6(a) compares the combined HD (mean) effect estimated by the RE model
versus the FE model combined estimate. With the exception of a few genes, these
combined estimates tend to be remarkably similar.

Due to the additional variability included by the RE model, however, there is a great
deal of difference between the standardized estimates (figure 1.6(b)). Here, we can
see that the FE standardized estimates are stochastically larger than the RE ones:
about half of the genes have identical results for FE and RE, but for only 949 genes
(or 4%) is the RE standardized estimate larger than that of FE. This phenomenon
is also clearly reflected by the distributions of the corresponding q-values (figures
1.6(c) and (d)) – at any FDR, many more genes are called differentially expressed
between HD and WT by the FE model.

Figure 1.7 shows how the methods compare for compare for different degrees of
heterogeneity. In figures 1.7(a), (b) and (c), q-values are transformed by − log 10 so
that larger values are more significant. We see that significant effects in the RE meta-
analysis tend to be for more genes with more homogeneous effects across studies
(figures 1.7(a), (b)); that is, genes for which the inter-study variability does not over-
whelm the size of the estimated effect. The q-values from FE and RE are compared
directly in figure 1.7(c), where it is seen that the FE combined HD effect estimate is
more significant than that of RE for virtually all genes. Finally, the location (centered
at 0) and flatness of the loess curvefigure 1.7(d) show that heterogeneity is not more
frequently found for larger estimated mean HD effect sizes.
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Figure 1.6: Comparison of HD effects for FE and RE meta-analysis. (a) HD effects
estimated by RE vs. FE; (b) HD standardized effects estimated by RE vs. FE; q-
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Figure 1.7: Characteristics of FE and RE inference for varying heterogeneity.− log 10

q-value of homogeneity Q-statistic vs. − log10 q-value of combined HD effect esti-
mate from FE (a) and RE (b), vertical line indicates HD effect FDR of .05, horizontal
line indicates Q-statistic FDR of .10; (c) − log10 q-values for FE vs. RE, diagonal
line indicates equal values; (d) RE model estimated mean HD effect size vs. q-value
of Q-statistic. vertical line indicates Q-statistic FDR of .1, horizontal smooth line is
a loess curve.



22 META-ANALYSIS OF MICROARRAY STUDIES

Fisher p-value meta-analysis

Figure 1.8 displays results obtained by combining for each gene the HD mod t p-
values from Study I and Study II. The distribution of q-values obtained from p-values
derived from the χ2

4 distribution is compressed downward toward significance (a).
Resampling p-values are exceedingly conservative compared to χ 2

4-derived p-values
(b). Compared to RE model p-values the χ2

4 p-values are liberal (c), while the resam-
pling p-values are again conservative, although somewhat less than in comparison to
the χ2

4 p-values (d).
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Figure 1.8: Comparison of Fisher S statistic q-values. (a) Histogram of χ2
4 q-values;

scatter plot of q-values obtained by χ2
4 vs. resampling (b), χ2

4 vs. RE (c), resampling
vs. RE (d). Diagonal lines indicate equal values under both methods.
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The lack of agreement indicates the degree to which inference depends on the specific
method chosen. Even where the same statistic is used, there is a real problem deter-
mining its p-value – the χ2

4 assumption results in very different p-values from the
resampling-based ones. Caution must therefore be exercised in choosing a method
and interpreting results.

Comparison of results stratified by heterogeneity status

The findings presented thus far consider the entire set of genes in aggregate. How-
ever, the set of all genes can be viewed as a mixture of two types: genes for which
the HD effects are homogeneous and genes for which the effects are heterogeneous
across studies. It is therefore worth looking at characteristics of the analyses when
genes are stratified by heterogeneity status.

Defining heterogeneity status requires a criterion for significance. In the microarray
context, one must consider its impact on the subsequent identification of differential
expression. To be more conservative in calling a gene differentially expressed, a fairly
liberal heterogeneity criterion would seem in order. Taking into consideration the
outcome of the heterogeneity analysis above, we decided on a FDR cut-off of 0.10
for Q. For this threshold, the number of genes for which studies are heterogeneous
is 802; there are thus 21888 homogeneous ones.

Table 1.2 gives the proportions of genes with significant HD effects for the four
meta-analysis methods, as well as the combined data, for all genes together and
also stratified by heterogeneity status (Hom. or Het.) at varying FDR for the HD
effect. The methods are: C = combined data, FE = fixed effects model, RE = ran-
dom effects model, FX = Fisher p-value combination method, χ 2 p-values, and FR
= Fisher p-value combination method, resampling method. The Fisher resampling
method proportions are extremely low, so the numbers of genes are also reported.
For RE, proportions given as zero are actual zeros.

Table 1.2: Significance Proportions for Meta-analysis Methods

Sig. at FDR = .10 Sig. at FDR = .05 Sig. at FDR = .01
Method All Hom. Het. All Hom. Het. All Hom. Het.

C 0.07 0.06 0.19 0.03 0.03 0.12 0.01 0.01 0.05

FE 0.18 0.17 0.38 0.12 0.11 0.30 0.06 0.05 0.21

RE 0.06 0.06 0.01 0.04 0.04 0.00 0.02 0.02 0.00

FX 0.08 0.06 0.70 0.04 0.03 0.29 0.01 0.01 0.10

FR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FR Number (5) (3) (2) (3) (2) (1) (3) (2) (1)

FE finds the most significant effects, followed by Fisher χ2 (FX). These two methods
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as well as the combined data method also find drastically higher rates of significant
effects for studies which are heterogeneous, pointing to the need for caution when
combining information. In contrast, RE finds lower rates of significant effects under
heterogeneity.

Pairwise agreement of meta-analysis results

Lastly, we look at agreement for pairs of methods stratified by heterogeneity status,
varying the FDR for calling a gene differentially expressed between HD and WT
(figure 1.9). The simple agreement rate is just the proportion of genes for which both
methods agree on whether or not the HD effect is significant. The correspondence
between plotting symbol and comparison pair is given in table 1.3.

Table 1.3: Correspondence of Plotting Symbol and Pair

Symbol 0 1 2 3 4 5 6 7 8 9

Pair FE FE FE FE FX FX FX C C RE
FR RE C FX RE FR C FR RE FR

The pairs appear to fall roughly into three groups when homogeneity and hetero-
geneity rates are considered jointly. Pairs 0 – 3 form one group. This group consists
of all pairwise comparisons with FE. These pairs have the lowest agreement under
homogeneity. Pairs 4, 5 and 6 have high homogeneity agreement and lower, but in-
creasing with decreasing FDR, heterogeneity agreement. FX appears in each of these
pairs. Finally, pairs 7, 8 and 9 have highest agreement under both homogeneity and
heterogeneity. These are all pairs are formed from C, RE, FR.

1.5 Discussion

Pooling raw data from different studies for analysis is not always possible; even
when it is possible it might not be recommended (e.g. to avoid Simpson’s paradox
Simpson (1951)). However, in the simple setup we have described here, where a
single lab has carried out the same experiment twice, one would think that combining
the raw data should be a fundamentally sound approach. In particular, carrying out
the normalization step on the aggregated data would seem not only desirable but also
necessary.

We have illustrated, however, that even in such an uncomplicated scenario, without
issues of different platforms or experimental designs and protocols, integrating the
available information might not be completely straightforward. We have seen persis-
tent batch effects that must be taken into account. We would recommend that new
methods developed for more complex situations also be tested in simpler cases so
that the properties of the methods may be better understood.



DISCUSSION 25

2
8

6

7

130

4

9

5

0.80 0.85 0.90 0.95 1.00

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

FDR = .10

(a) Homogeneity

H
et

er
og

en
ei

ty

2

8

6

7

1

3

0 4

9

5

0.88 0.90 0.92 0.94 0.96

0.
70

0.
80

0.
90

1.
00

FDR = .05

(b) Homogeneity

H
et

er
og

en
ei

ty

2

8
6

7

1

3

0

4

9

5

0.95 0.96 0.97 0.98 0.99

0.
80

0.
85

0.
90

0.
95

1.
00

FDR = .01

(c) Homogeneity

H
et

er
og

en
ei

ty

Figure 1.9: Simple agreement rates of pairs of methods for varying FDR. Agreement
rate under heterogeneity vs. agreement rate under homogeneity for (a) FDR = 0.10,
(b) FDR =0.05 and (c) FDR = 0.01. Dashed vertical and horizontal lines separate
groups of pairs.

The importance of considering variability across different labs has been noted in the
literature Irizarry et al. (2005); our work here suggests that within lab variability may
also need to be considered.

Our results also have substantial implications for large single studies, where patients
are recruited over time and arrays are not all hybridized at the same time. Avoid-
ance of problems before they arise calls for careful study design in advance. In addi-
tion, comprehensive exploratory data analyses are required once data are collected,
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to identify and adjust for sources of variability which could obscure the underlying
biology. The presence of strong batch effects may be indicative of aspects of labora-
tory practice in need of improvement. Analysis of data for batch effects can reveal
such problems and could therefore help in their rectification.

In this work we can compare results from different methods of analysis, but we are
unable to rigorously assess method performance or robustness because it is not fea-
sible at present to determine the truth of the findings. To date we can identify as true
positives only a subset of genes that are likely to be differentially expressed in R6/2
mice Luthi-Carter et al. (2000, 2002a), and we also do not yet know which identi-
fied genes are not (false positives), or which genes missed are in fact differentially
expressed (false negatives). It is advisable to build some truth into the experiment
where feasible, for example by using spike-in controls (specific RNAs added to the
sample in known quantities). Nevertheless, we hope that this survey of single meth-
ods and method agreement can provide some guidance to investigators in selecting
appropriate procedures.

In a similar investigation, Stevens and Doerge (2005) use a model to generate a
known truth and simulate data from their model to examine properties of meta-
analysis of microarray studies. Although this approach may provide some useful
broad guidelines, further empirical evidence is required to gain more refined insight
into the sources and magnitudes of variability and their effects on properties of meta-
analysis of microarray studies.

In most studies, researchers have the resources for further investigation into only a
few of the findings. A typical validation study consists of following up on a few
genes, often in the range of 5 – 20. The research community would benefit from
larger scale follow-up studies to enable the properties of different methodologies for
synthesis to be judged more critically.

Although a number of intriguing methods have been introduced for meta-analysis of
microarray data, the literature in this field is not yet fully developed. Clearly there is
a need for further empirical and theoretical research in this challenging area. Large
scale validation studies would provide a welcome opportunity to advance both bio-
logical and methodological knowledge.
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CHAPTER 2

Alternative Probeset Definitions for
Combining Microarray Data Across
Studies Using Different Versions of
Affymetrix Oligonucleotide Arrays

Jeffrey S. Morris, Chunlei Wu, Kevin R. Coombes, Keith A. Baggerly,
Jing Wang, & Li Zhang

University of Texas MD Anderson Cancer Center
Houston, TX, USA

2.1 Introduction

Many published microarray studies have small to moderate sample sizes, and thus
have low statistical power to detect significant relationships between gene expression
levels and outcomes of interest. By pooling data across multiple studies, however,
we can gain power, enabling us to detect new relationships. This type of pooling is
complicated by the fact that gene expression measurements from different microarray
platforms are not directly comparable.

In this chapter, we discuss two methods for combining information across differ-
ent versions of Affymetrix oligonucleotide arrays. Each involves a new approach for
combining probes on the array into probesets. The first approach involves identifying
”matching probes” present on both chips, and then assembling them into new probe-
sets based on Unigene clusters. We demonstrate that this method yields comparable
expression level quantifications across chips without sacrificing much precision or
significantly altering the relative ordering of the samples. We applied this method to
combine information across two lung cancer studies performed using the HuGeneFL
and U95Av2 chips, revealing some genes related to patient survival. It appears that
the gain in statistical power from the pooling was key to identifying many of these
genes, since most were not found by equivalent analyses performed separately on the
two data sets. We have found that this approach is not feasible for combining infor-
mation across the U95Av2 and U133A chips, which share fewer probes in common.
Our second method defines probesets as sets of probes matching the same full-length

1
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mRNA transcripts in current genomic databases. We found this method yielded com-
parable expression levels across U95Av2 and U133A chip types, and had better cor-
relation across chip types than Affymetrix’s matching probeset definitions.

2.2 Combining Microarray Data across Studies and Platforms

In recent years, microarrays have been used extensively in biomedical research. This
is evident from the fact that there are over 9000 articles published since 2000 that in-
volve microarrays, with over 3000 published in 2004 alone (http://www.ncbi.nlm.nih.
gov/entrez/query.fcgi?db=PubMed). Generally, these studies involve the identifica-
tion of individual genes or sets of genes whose expression profiles are related to
clinical or biological factors of interest, including tissue type, disease status, disease
subtype, patient prognosis, and biological pathway, to list a few. While microarrays
measure the expression levels for thousands of genes, because of cost limitations,
most studies are performed using only a small number of samples. As a result, in-
dividual studies often have limited power for detecting relevant biological relation-
ships.

More recently, there has been a movement within the scientific community to make
data from microarray studies publically available. This movement has been pro-
pelled by the establishment of standards for minimal information to provide when
posting data (MIAME, (Brazma et al., 2001)) and the requirement of many ma-
jor journals to make such data publically available. There are currently a number
of public repositories in which microarray data are posted, including ArrayExpress
(http://www.ebi.ac.uk/arrayexpress/) and Gene Expression Omnibus (GEO; http://
www.ncbi.nlm.nih.gov/geo/). This explosion of publically-available data makes it
possible to consider meta-analyses that combine information across multiple studies,
which allow one to assess the reliability of results reported in the individual studies
and also to uncover new biological insights not discovered in any individual study. If
done properly, this pooling of information across studies can provide increased power
to detect small consistent relationships that may have gone undetected in the individ-
ual analyses, and can provide results that are more likely to prove reproducible.

There is a small but growing number of studies in existing literature that attempt to
combine information across multiple data sets. Generally, there are three approaches
that are used: 1. Identify an intersection of genes that are significant across multiple
studies, 2. Validate results from a single individual study using data from other stud-
ies, or 3. Perform a single analysis after combining data across multiple studies. We
now briefly discuss the merits and drawbacks of each approach.

The idea behind the first approach is that if a gene is truly differentially expressed,
then this differential expression should be manifest across multiple data sets. How-
ever, this Venn diagram-based approach often reveals a shockingly small number of
genes that are found to be differentially expressed in multiple data sets. In a study
comparing normal and CLL B-cells, Wang et al. (2004) found that only 9 genes were
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found to be differentially expressed in all three studies conducted on three differ-
ent microarray platforms, out of 1172 that were differentially expressed in at least
one study. Similarly, in a study involving pancreatic cells, Tan et al. (2003) found
only 4 genes differentially expressed across 3 different platforms, among the 185
deemed differentially expressed on at least one platform. While perhaps identify-
ing the most reliably differentially expressed genes, this approach actually results in
reduced sensitivity for detecting biological relationships, since each (perhaps under-
powered) study must find the gene significant before it is declared so. Other less con-
servative approaches focused on identifying genes that are consistent across studies
include methods discussed in Rhodes et al. (2002) and Rhodes et al. (2004a), which
involve combining p-values across studies, and the integrative correlation method of
Parmigiani et al. (2004), which involves computing gene-gene pairwise correlations
on the expression levels and/or tests statistics for each individual study, then com-
puting a “correlation of correlations” across studies. This approach results in a list of
reproducible genes whose absolute or relative expression levels are correlated across
studies and platforms. It does not, however, provide additional power for detecting
biological relationships.

A number of studies take the second approach, identifying biological relationships
using the data from a single study, then using data from other studies for valida-
tion of these relationships (Beer et al., 2002; Sorlie et al., 2003; Stec et al., 2005;
Wright et al., 2003). Since the studies may differ with respect to their patient popu-
lations, microarray platforms, and sample handling and processing, results surviving
this stringent form of validation are likely to be real. However, like the first approach,
this use of multiple data sets does not yield any additional power for detecting bio-
logical relationships since only a single data set is used in the discovery process.

In the third approach, the data is actually combined across studies and a single anal-
ysis is performed on the pooled data set. This is our primary interest in this chapter.
The clear advantage of this approach is the possibility of increased power for detect-
ing biological relationships, since the pooled data set is significantly larger than any
of the individual data sets. The difficulty is that there are important differences be-
tween the studies that must be taken into account before it is possible to successfully
pool the data. The studies may differ with respect to their patient populations, sam-
ple handling, or sample preparations. These differences can be manifest in both the
clinical outcomes and the microarray data, and may affect the genes in a differential
manner. It has been shown that it is possible to obtain comparable microarray data
from different laboratories on a common platform if rigorous experimental protocols
are established and followed across the different sites (Dobbin et al., 2005). However,
posted data from different studies were likely generated using different protocols, so
these factors come into play in the meta-analysis context. These problems are further
exacerbated if the studies are conducted on different microarray platforms, which
have technical differences that make their gene expression levels fundamentally in-
comparable (Kuo et al., 2002; Tan et al., 2003; Mah et al., 2004; Marshall, 2004;
Mecham et al., 2004a).

Some of this heterogeneity can be handled by modeling study effects for each gene
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using fixed or random effects in the context of mixed models or Bayesian hierar-
chical models, standard approaches used in meta-analysis (Normand, 1999; Ghosh,
2004; Wang et al., 2004). These approaches appropriately account for the study-
to-study variability when performing inference in the meta-analysis, and provide a
simple first-order correction for each gene that aligns the mean expression levels for
the different studies. Other approaches involve first-order corrections, but use meth-
ods that are more sophisticated mathematically. One is based on the singular value
decomposition (Alter et al., 2000; Nielsen et al., 2002), and normalizes the raw ex-
pression levels within studies using the first eigenvectors for the genes and arrays.
This approach assumes that these eigenvectors represent the study-to-study variabil-
ity, which is assumed to dominate all other factors. Another approach (Benito et al.,
2004) normalizes using a new method called “distance weighted discrimination”
(DWD), which performs supervised discrimination to identify linear combinations
of genes associated with the study effect, which is subsequently removed. However,
these approaches, when applied to the raw expression levels, do not appear to be suf-
ficient to make data comparable across different platforms. For one, they only adjust
the mean of the distributions for the two studies, but do not adjust for higher order
distributional properties like the variances or quantiles. In a study comparing data
from spotted cDNA glass arrays and Affymetrix oligonucleotide arrays, Kuo et al.
(2002) concluded that “data from spotted cDNA microarrays could not be directly
combined with data from synthesized oligonucleotide arrays,” and further, that it is
unlikely that the data could be normalized using a common standardizing index.

For this reason, many studies do not attempt to combine the raw expression profiles
across platforms, but instead only combine unitless summary measures derived from
the raw data. The assumption is that, while the raw expression levels for the different
studies may not be comparable, these unitless statistics should be, since they are at
least on a common scale. For example, Wang et al. (2004) and Choi et al. (2003) first
compute the standardardized log fold changes between two experimental conditions,
then combine these across studies using hierarchical models. Similarly, Ghosh et al.
(2003) and Tan et al. (2003) first compute t-statistics comparing two experimental
conditions, then combine these t-statistics across studies. Shen et al. (2004) combine
the posterior probabilities of being over-expressed, under-expressed, or similarly ex-
pressed between two experimental conditions across data sets. These approaches are
promising and all result in increased power to detect biological relationships in the
data, and can in principle be used across different platforms. However, we believe it
would be inherently better to work with the raw expression levels, if we could get
them to be comparable. In that case, we would not be limited to dichotomous compar-
isons, but could relate gene expression levels with any type of outcome (e.g. survival
or time to progression). Also, these summary measures make implicit assumptions
about the comparability of the reference populations in the different studies that, if
not true, may adversely affect inference. For example, using t-statistics assumes that
the mean and standard deviation of the true gene expression levels should be the same
across studies, and are only different because of technical reasons. By using the raw
expression levels, one could avoid making such assumptions.
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Some studies have explicitly used sequence information to try to obtain compara-
ble expression levels across platforms (Morris et al., 2005; Mecham et al., 2004a;
Mah et al., 2004; Wu et al., 2005; Ji et al., 2005). This idea is natural, since much
of the systematic variability between expression level measurements between (and
even within) platforms is attributable to sequence-related factors, such as cross-
hybridization, alternative splicing, inaccurate annotation of gene sequences, and RNA
degradation. Cross-hybridization occurs when a gene hybridizes to “near matches”
on the array, which can attenuate estimates of gene expression. Certain sequences
are more likely to cross-hybridize (Zhang et al., 2003), so may result in less reli-
able measurements of gene expression. Also, single genes may be transcribed into
multiple different mRNA variants. These alternatively spliced variants may cause
some sequences corresponding to different exons from the same gene to be discor-
dant. Additionally, not all probes on microarrays map to annotated sequences in pub-
lic databases. These probes tend to be less reliable (Mecham et al., 2004b), which
may explain some of the lack of concordance across platforms. In a study involving
matched samples run on Affymetrix and nylon cDNA arrays, Ji et al. (2005) showed
that the correlation of expression levels these platforms was greater for sequences
with matches in the RefSeq database. Finally, RNA degradation can affect probes
differentially, since sequences closer to the endpoints of the gene may be more sus-
ceptible to this degradation than sequences near the middle. These factors are relevant
when comparing completely different technologies, e.g. spotted glass cDNA arrays
and Affymetrix oligonucleotide arrays, as well as when comparing different versions
of the same technologies, e.g. different versions of Affymetrix arrays or glass cDNA
arrays constructed using different clones. We believe that methods that explicitly take
into account these known biological and technological factors ultimately will result
in the most successful methods for combining information across platforms.

2.3 Overview of Affymetrix Oligonucleotide Arrays

Generally speaking, there are two major types of microarrays, cDNA arrays and
oligonucleotide arrays. One key difference between these technologies is that on
cDNA arrays, genes are represented by a single cDNA clone spotted on the array,
while on oligonucleotide arrays (Lockhart et al., 1996), genes are represented by
“probes,” or short sequences of nucleotides from the target gene sequence. Affymetrix,
Inc. (Santa Clara, CA) is the largest producer of oligonucleotide arrays, which they
call GeneChips. Affymetrix GeneChips contain multiple probes for each gene. For
the remainder of this chapter, we focus our attention on Affymetrix oligonucelotide
arrays, which in practice are the most commonly used arrays today.

The Affymetrix probes each consist of a sequence of 25 bases from the target gene,
which generally contains a total of several hundred or thousand base pairs. Since not
all sequences bind equally well, there is natural variability between the expression
level measurements for different probes taken from the same gene. In order to av-
erage over some of this variability, each gene is represented by a number of probes,
which together form a “probeset.” These probes are scattered across the array. For
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each probe, there is also a corresponding “mismatch” probe, which contains the iden-
tical sequence except with the 13th base replaced by its Watson-Crick complement.
The mismatch probes are intended for normalization, although they have not been
shown to be clearly useful for that purpose (?).

The probes are constructed based on sequence information contained in GenBank
(http://www.psc.edu/general/software/packages/genbank/genbank.html), a public
archive of DNA sequence information, Unigene (http://www.ncbi.nlm.nih.gov/entrez/
query.fcgi?db=unigene), which partititions these sequences into non-redundant clus-
ters presumably corresponding to genes, and RefSeq (http://www.ncbi.nlm.nih.gov/
RefSeq/), which is constructed by the NCBI to represent the state of the art in terms of
the sequences of known genes. As this information has evolved over time, Affymetrix
has produced different versions of its GeneChip. The most commonly used chip types
used in human studies include the HuGeneFL, the U95Av2, and the U133A.

The HuGeneFL was introduced in November 1998, and its sequence clusters are
based upon Unigene build 18. It contains information on roughly 5600 genes, and
each gene is represented by roughly 20 probe pairs. The probes corresponding to the
same probeset are placed together in the same region of the array. The U95Av2 was
introduced in April 2000, and is based upon Unigene build 95. It contains information
on roughly 10,000 genes, each of which is represented by 16 probe pairs. The probes
are randomly distributed across the array. The U133A was first introduced in January
2002, and is based upon Unigene build 133. It contains information on 14,500 genes,
and contains 11 probes per gene. The probes are arranged on the array in such a way
as to optimize the probe synthesis efficiency.

Frequently, researchers wish to combine information across experiments conducted
using different versions of Affymetrix GeneChips. As new studies are conducted us-
ing more recent versions of the chips, researchers want to still use information from
previous studies performed using older generations. Also, some researchers may
want to perform meta-analyses on data collected from multiple studies performed
at different institutions. It is not easy to merge information across chip types, since
there are some genes represented on newer chips that were not on previous ones, and
even the common genes are represented by different sets of probes on the different
chips, so their expression levels are not generally comparable.

In the remainder of this chapter, we describe in detail two methods we have devel-
oped (Morris et al., 2005; Wu et al., 2005) to combine information across studies
using different Affymetrix chip types. These methods use sequence information to
define new probesets that yield comparable expression levels across different chip
types. Our hope is that the raw expression level values using these redefined probe-
sets are sufficiently comparable that they can be combined across versions. For each
method, we describe the method and use an example data set to demonstrate the
concordance of expression levels across different array types.
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2.4 Partial Probesets

The incompatibility of expression levels across chip types is largely due to the fact
that different sets of probes are used to represent the same genes on different chips.
We expect, however, that individual probes present on multiple chips should yield
comparable expression levels across chips. Thus, one approach for obtaining com-
parable expression levels across studies using two different chip types is to only use
“matching probes” that are present on both chip types.

For example, suppose we have microarray data from two studies, one performed
on the HuGeneFL chip and the other on the U95Av2. The HuGeneFL contains a
total of roughly 130,000 probes partitioned into 6,633 probesets, each containing 20
probe pairs, while the U95Av2 contains a total of roughly 200,000 probes partitioned
into 12,625 probesets, each containing 16 probe pairs. There are a total of 34,428
“matching probes” that are present on both chip types.

After identifying these matching probes, we then recombined these into new probe-
sets based on the most current build of Unigene. We refer to these new probesets as
“partial probesets.” Note that because they are explicitly based on Unigene clusters,
these probesets will not precisely correspond to Affymetrix-determined probesets.
Frequently, multiple Affymetrix probesets map to the same Unigene cluster. We then
eliminated any probesets containing just one or two probes, since we expected the
gene expression measurements based on so few probes to be less reliable. When per-
formed based on Unigene build 160, this left us with 4,101 partial probesets. In gen-
eral, we expect these probesets to be smaller than the Affymetrix-defined probesets,
since they only use the matching probes. Figure 2.1 contains a plot of the number of
probes within each of these partial probesets. Most of the probesets (84%) contained
10 or fewer probes, and the median probeset size was seven. There were several
probesets containing more than 20 probes.

2.5 Example: CAMDA 2003 Lung Cancer Data

Two independent studies were performed at Harvard University (Bhattacharjee et al.,
2001) and University of Michigan (Beer et al., 2002), both focusing on the same
question of relating gene expression data to survival in lung cancer patients. These
data were part of the 2003 critial assesssment of microarray data analysis (CAMDA)
competition (http:/www.camda.duke.edu/camda2003).These studies both used Affymetrix
GeneChips, but the Michigan study used the HuGeneFL while the Harvard study
used the U95Av2. Our goal in analyzing these data was to combine information
across both data sets to identify prognostic genes, whose expression levels provided
prognostic information on patient survival over and above what is already provided
by known clinical factors. We used partial probesets to quantify the gene expression
levels, and demonstrated that this resulted in comparable expression levels across the
two chip types, without any loss of precision from using only a subset of the probes.
We identified a number of prognostic genes in our pooled analysis that were not dis-
covered in the analyses performed on the individual studies, highlighting the benefit
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Figure 2.1: Histogram of number of probes in each “partial probeset.”

of pooling data across studies. We first summarize these data sets, then describe our
analyses to validate the partial probeset method and obtain prognostic genes. More
details of this analysis can be found in Morris et al. (2005).

2.5.1 Overview of Data Sets

The Harvard study analyzed 186 lung tumor samples using U95Av2 Affymetrix
GeneChips. From these, 125 were adenocarcinomas for which clinical information
on the corresponding patients was available, including gender, age, stage of disease,
and survival time. Applying hierarchical clustering to these data, Bhattacharjee et al.
(2001) identified four distinct subtypes of adenocarcinoma with different molecular
profiles, and further demonstrated that these subtypes had different survival prog-
noses.

The Michigan study analyzed 86 lung adenocarcinoma samples using HuGeneFL
Affymetrix GeneChips. All of these samples also had corresponding clinical infor-
mation, including gender, age, stage of disease, and survival time. Using univariate
Cox regressions, they identified a number of genes whose expression levels were
associated with patient survival. They subsequently constructed a “risk index” using
the top 50 genes, and demonstrated that this risk index helped predict patient survival
both in their own data and in independently obtained data from another experiment
(Bhattacharjee et al., 2001).

In our own analysis, we first performed various quality control checks, after which
we removed 10 arrays from the Michigan study and one from the Harvard study that
demonstrated poor quality. This left us with a total of 200 arrays, 124 from the Har-
vard study and 76 from the Michigan study. Using the partial probeset definitions
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described above, we quantified the gene expression levels for each partial probe-
set using the Positional Dependent Nearest Neighbor (PDNN) model (Zhang et al.,
2003). Other quantification methods could have been used, but we chose this one
because we believe its use of probe sequence information to predict patterns of spe-
cific and nonspecific hybridization intensities can lead to more reliable and accurate
quantifications.

We also performed other preprocessing steps. We removed the half of the probesets
with the lowest mean expression levels across all samples, then normalized the log
expression values by using a linear transformation to force each chip to have a com-
mon mean and standard deviation across genes. We next removed the probesets with
the smallest variability across chips (standard deviation < 0.20), since we consid-
ered them unlikely to be discriminatory and more likely to be spuriously flagged as
prognostic. Finally, we removed the probesets with poor relative agreement (Spear-
man correlation< 0.90) between the partial probeset and full probeset quantifications
(see next section). After this preprocessing, 1036 probesets remained and were con-
sidered in our subsequent analyses.

2.5.2 Validation of Partial Probesets

Before analyzing the microarray data to identify prognostic genes, we assessed whether
our method for combining information across different Affymetrix chip types per-
formed acceptably. First, we checked whether the expression levels appeared to be
comparable across chip types. Specifically, we computed the median and median
absolute deviation (MAD) log expression level for each partial probeset across the
Michigan samples run on the HuGeneFL chip and also for the Harvard samples run
on the U95Av2 chip. Since the patient populations in the two studies appeared to
reasonably similar, we expected to see high concordance in these quantities between
the two chips if the expression levels were comparable. We did not, however, expect
perfect concordance, since different patients were used in the two studies. Figure 2.2
contains a plot of these quantities, and demonstrates good concordance between the
center and spread in the distribution of gene expression values on the two chips. The
concordance between these values was 0.961 for the median and 0.820 for the MAD,
so it appears that using the partial probeset method yielded reasonably comparable
expression levels across the two chips.

Recall that partial probesets use only the matching probes, while completely ignor-
ing expression level information for the non-matching probes. This means that partial
probesets are generally smaller than the Affymetrix-defined probesets. The median
size of our partial probesets was seven, while the Affymetrix-defined probesets for
the HuGeneFL and U95Av2 chips have 20 and 16 probes, respectively. Since ad-
ditional probes can increase the precision in measuring the expression level of the
corresponding gene, one might expect a loss of precision when using the partial
probesets to quantify expression levels. To investigate this possibility, we quantified
the expression levels for the full probesets of the Harvard samples using the PDNN
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Figure 2.2: Median (a) and median absolute deviation (b) expression levels for
each partial probeset based on the Harvard samples run on the U95Av2 chips vs.
the Michigan samples run on the HuGeneFL chip. The high concordance in these
measures suggests we obtain reasonably comparable expression levels by using the
matched probes.

model. The full probesets consisted of all probes on the array mapping to the Uni-
gene cluster, i.e., not just the matching ones. We plotted the standard deviation for
each gene using the full probeset versus the standard deviation for the partial probe-
set, given in Figure 2.3. If the partial probeset quantifications were considerably less
precise, we would expect measurement error to cause the standard deviation to be
larger for the partial probesets. There was no evidence of significant precision loss
in this plot, as there is strong agreement between the standard deviations for each
gene using the two methods (concordance=0.942). This may seem surprising at first,
but upon further thought is reasonable, since we expect that the probes Affymetrix
retained in formulating the new chips may in some sense be the “best” ones.

We computed Spearman correlations between the partial and full probeset quantifica-
tions for each probeset to confirm that our method preserved the relative ordering of
the samples, i.e., the ranks. For example, we expected that a sample with the largest
expression level for a given gene using the full set of probes will also demonstrate the
largest expression level for that gene when using only the matched probes. The me-
dian Spearman correlation across all probesets was 0.95, suggesting that our method
did a good job of preserving the relative ordering of the samples. Interestingly, but not
surprisingly, most of the lower Spearman correlations occur for probesets with less
heterogeneous expression levels across samples and/or probesets containing smaller
numbers of probes. It appears that our partial probeset method worked quite well.
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Figure 2.3: Standard deviation across Harvard samples for each gene based on full
and partial probesets. A “full probeset” contains all probes on the U95Av2 chip map-
ping to a unique Unigene ID, while the corresponding “partial probeset.”

2.5.3 Pooling Across Studies to Identify Prognostic Genes

We pooled the data across these two studies to identify prognostic genes offering pre-
dictive information on patient survival. We were not primarily interested in finding
genes that were simply surrogates for known clinical prognostic factors like stage,
since these factors are easily available without collecting microarray data. Rather,
we were interested in finding genes that explained the variability in patient survival
that remained after modeling the clinical predictors. Thus, we fit multivariable sur-
vival models, including clinical covariates in all survival models we used to identify
prognostic genes.

We screened the 1036 genes to find potentially prognostic ones by fitting a series
of multivariable Cox models containing age, stage (dichotomized as low, stages I-
II, and high, stages III-IV), institution, and the log-expression of one of the genes
as predictors. The institution effect was included in the model to account for differ-
ences in survival that were evident between the two studies, even after accounting for
known clinical covariates. We obtained the exact p-values for each gene’s coefficient
using a permutation approach. In this approach, we first generated 100,000 datasets
by randomly permuting the gene expression values across samples while keeping the
clinical covariates fixed. We subsequently obtained the permutation p-value for each
gene by counting the proportion of fitted Cox coefficients that were more extreme
than the coefficient for the true dataset. A small p-value for a given gene indicated
potential for that gene to provide prognostic information on survival beyond the clin-
ical covariates. We also obtained p-values using asymptotic likelihood ratio tests
(LRT) and the bootstrap to assess robustness of our results.
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If there were no prognostic genes, statistical theory suggests that a histogram of these
p-values should follow a uniform distribution. An overabundance of small p-values
would indicate the presence of prognostic genes. We fit a Beta-Uniform mixture
model to this histogram of p-values using a method called the Beta-Uniform Mix-
ture method (BUM, Pounds and Morris, 2003), which partitions the histogram into
two components, a Beta component containing the prognostic genes and Uniform
component containing the non-significant ones. We used this model to identify a p-
value cutoff that controlled the false discovery rate (FDR, (Benjamini and Hochberg,
1995a) to be no more than 0.20. This means that of the genes flagged as prognostic,
we expect at most 1 in 5 were false positives.

Permutation Test 
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Figure 2.4: Histogram of p-values from permutation test on gene coefficient in Cox
model containing clinical covariates and each one of the 1036 candidate genes. The
corresponding histogram for the LRT is nearly identical.

Figure 2.4 contains the histogram of permutation test p-values. The overabundance
of very small p-values indicates the presence of some genes providing information
on patient prognosis beyond what is offered by the modeled clinical factors. Table
2.1 contains a set of 26 genes that are flagged by the BUM method using FDR< 0.20,
which are those genes with p-values less than 0.0025. Many of these genes appear to
be biologically interesting and worthy of future consideration. We were able to link
10 of our 26 prognostic genes to lung cancer based on the existing literature. Four
others could be linked to cancer in general or other lung disease in the literature.
These genes are discussed in more detail in Morris et al. (2005).

None of the genes we identified appeared in the list of top 100 genes from the Michi-
gan analysis (Beer et al., 2002), and we only found one (CPE) that was mentioned
in the Harvard paper (Bhattacharjee et al., 2001). CPE was one of the genes defining
a neuroendocrine cluster that they identified and associated with poor prognosis. We
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Table 2.1: Set of genes flagged as prognostic by applying BUM on the permuta-
tion p-values with FDR < 0.20. Also included are the LRT and bootstrap p-values
and estimates of the Cox model coefficient. A ’*’ indicates the p-value was below
the BUM significance threshold. The identity of the genes is also given. A negative
coefficient indicates that larger expression levels of that gene correspond to a better
survival outcome.

Gene Identity Coef Prognostic p-values
Permut. LRT Bootstrap

FCGRT -2.07 < 0.00001* 0.00014* 0.0006*
ENO2 1.46 0.00001* 0.00002* < 0.0001*
NFRKB -2.81 0.00001* 0.00435 0.00404*
RRM1 1.81 0.00002* 0.00008* < 0.0001*
TBCE -2.35 0.00004* 0.00069* 0.0006*
Phosph. mutase 1 1.92 0.00008* 0.00020* 0.0004*
ATIC 1.81 0.00009* 0.00153* 0.0004*
CHKL -1.43 0.00010* 0.02305 0.0260
DDX3 -2.37 0.00017* 0.00012* 0.0002*
OST -1.64 0.00020* 0.00010* 0.0010*
CPE 0.72 0.00031* 0.00053* 0.0010*
ADRBK1 -2.20 0.00044* 0.00678 0.0030*
BCL9 -1.64 0.00067* 0.03602 0.0460
BZW1 1.33 0.00068* 0.00279* 0.0006*
TPS1 -0.64 0.00106* 0.00217* < 0.0001*
CLU -0.52 0.00109* 0.00239* 0.0024*
OGDH -2.19 0.00118* 0.00405 0.0020*
STK25 2.29 0.00122* 0.00152* 0.0080
KCC2 -1.70 0.00143* 0.00988 0.0220
SEPW1 -1.29 0.00145* 0.01026 0.0160
FSCN1 0.66 0.00150* 0.00241* 0.0103
MRPL19 1.12 0.00211* 0.03213 0.0340
ALDH9 -1.18 0.00223* 0.00378* 0.0020*
PFN2 0.63 0.00248* 0.00351* 0.0020*
BTG2 -0.75 0.00232* 0.00580 0.0140
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repeated our analysis separately for the Harvard and Michigan data sets, i.e. without
pooling, and only eight and one of the 26 genes, respectively, were flagged as having
p-values less than 0.0025, while 17 are not flagged, including the top gene in our list
(FCGRT). Thus, it appears that our pooled analysis revealed new biological insights
contained in these data that were not identified when analyzing them separately.

2.6 Full-Length Transcript Based Probesets

The analyses presented in the previous section suggest that by using partial probesets,
we were able to obtain comparable expression levels across studies conducted at
different institutions using different chip types (HuGeneFL and U95Av2), allowing
us to perform a pooled analysis that revealed new biological insights into lung cancer.
Unfortunately, this approach is not feasible when combining information across the
U95Av2 and U133A chips, since these chips share fewer probes in common than
the HuGeneFl and U95Av2. There are 34,428 probes (14%) on the U95Av2 that are
also present on the HuGeneFl, while there are only 11,582 probes (6%) that are also
present on the U133A. If we form partial probesets and eliminate those with less than
3 probes, we are left with only 628 probesets. Thus, we have explored less stringent
alternative approaches to use for combining information across these chip types.

One of the primary reasons probes yield discordant measurements is that they may
be responding to different transcripts alternatively spliced from the same gene. When
the transcripts are differentially regulated, the corresponding probes can yield con-
flicting signals. The current design of arrays ignores the effects of alternative splic-
ing. Thus, if we differentiate the probes that match sets of alternatively spliced tran-
scripts, we may be able to resolve the discordant measurements. Based on this idea,
we developed a new method to regroup the probes into probesets. In our new def-
inition of a probeset, all probes in the probeset must match the same set of full-
length gene sequences. We refer to such a probeset as a “Full-Length Transcript
Based Probeset” (FLTBP, (Wu et al., 2005). Assuming complete inclusion of alter-
natively spliced transcripts, we can in principle ensure concordant behavior of the
probes within these probesets.

We now describe how we obtained these transcript-based probesets. First, we con-
structed a comprehensive library of full-length mRNA transcript sequences in the hu-
man genome by combining records in RefSeq (http://www.ncbi.nlm.nih.gov/RefSeq/)
and HinvDB (http:// hinvdb.ddbj.nig.ac.jp/index.jsp) databases. As of January 2005,
RefSeq (build 111504, human section) contained 28,712 full-length transcript se-
quences representing 23,809 genes. H-InvDB (version 1.7) contained 41,118 se-
quences representing 21,037 genes. All of the sequences in this database were val-
idated by full-length cDNA clones. We estimate that collectively the two databases
represent approximately 29,000 genes with 50,000 non-redundant transcripts.

We used this library as the basis for defining our probesets. For each probe sequence
used on the U133A and U95Av2 arrays, we identified all matching full-length tran-
scripts using the Blast program (http://www.ncbi.nlm.nih.gov/blast/). We aggregated



FULL-LENGTH TRANSCRIPT BASED PROBESETS 15

the IDs of those transcripts with exact matches to construct a matched target list. We
found that 15% of the probes on the U95Av2 and 13% of the probes on the U133A
had no exact match in our library, and 38% of the probes on the U133A and 33% of
the probes on the U95Av2 matched more than two targets in our library, demonstrat-
ing that it was very common for one probe to match multiple targets.

By grouping the probes within the same matched target lists, we formed 23,972 and
14,148 probesets on the U133A and U95Av2, respectively. We call these probesets
“Full-Length Transcript Based Probesets” (FLTBPs). Because multiple probes in a
probeset are essential to reduce noise and bias, we discarded all small probesets
containing less than 3 probes, leaving us with 18,011 and 11,228 FLTBPs on the
U133A and U95Av2, respectively. Collectively, these FLTBPs contained 82% of the
probes on the arrays.

These new probesets were very different from the original ones. Only 9,893 of the
original probesets on U133A and 5,257 original probesets on U95Av2 were the
same after regrouping. Figure 2.5 shows a histogram of the number of probes in
each FLTBP. The probesets outside of the major peaks reflect division and fusion
of the original probesets. Detailed information of our probesets are stored on our
web site (http://odin.mdacc.tmc.edu/∼zhangli/FLTBP). This website also contains
chip design files (CDF) using FLTBPs following the format designed by Affymetrix
(http://www. affymetrix.com/index.affx). These CDF files can be used to run MAS5,
RMA and dChip algorithms in Bioconductor (http://www.bioconductor.org/).

Figure 2.5: Histogram of number of probes per FLTBP.

By matching the matched target lists of FLTBPs on the two arrays, we found 9,642
pairs of FLTBPs that can be mapped between the U133A and U95Av2. Affymetrix
has their own method for mapping probesets between different chip types (http://www.
affymetrix.com/Auth/support/downloads/comparisons/best match.zip), which yields



16 ALTERNATIVE AFFYMETRIX PROBESET DEFINITIONS

9,480 pairs of probesets between the U95Av2 and U133A chips. There are numerous
differences between these Affy-defined mappings and our FLTBPs. Only 52% of the
probe sets on the U133A and 48% of the probesets on the U95Av2 are mapped the
same way as our FLTBPs.

2.7 Example: Lung Cell Line Data

To compare our mapping method with that of Affymetrix, we used a data set con-
sisting of 28 paired measurements obtained by hybridizing identical samples on both
the U133A and U95Av2 arrays. Because of this paired design, we expect very little
biological variability between paired measurements on the two arrays, so any dif-
ferences observed should be attributable to technical sources. We now describe this
dataset and use it to demonstrate that the FLTBPs result in quantifications that are
more comparable across chip types than Affymetrix- based probesets.

2.7.1 Overview of Data Set

Thirty RNA samples from variant lung cancer or normal lung cell lines and one
human reference sample were hybridized on both U133A and U95Av2 arrays. Our
quality control procedures revealed that three array images had obvious defects, so
were discarded. This left us with 28 pairs of samples that we used in this study.

We preprocessed and quantified the gene expressions with PDNN (Zhang et al. 2003)
using the PerfectMatch software (ver2.2) (http://odin.mdacc.tmc.edu/∼zhangli/ Per-
fectMatch). For comparison, we also preprocessed and quantified the data using other
competing methods, RMA (Irizarry et al., 2003a), MAS5 (http://www. affymetrix.com/
products/software/specific/mas.affx) and dChip (Li and Wong, 2001), using Bio-
Conductor (v1.5, http://www.bioconductor.org/), following the default settings in the
affy package (Irizarry et al., 2004).

2.7.2 Validation of Transcript-Based Probesets

In order to assess comparability across chip types, for each gene, we computed the
correlations between the paired U95Av2 and U133A measurements across samples.
To enhance the contrast between two different mapping methods, in our comparisons
we focused on the probesets that differed between the two methods. Approximately
1/3 of the probesets were mapped differently, which resulted in 3,309 and 3,527
paired probesets for FLTBP method and Affymetrix method, respectively.

Figure 2.6 contains a histogram of these correlations across probesets for the two
mapping methods and four quantification methods. These histograms summarize the
observed distribution of the paired correlations across probesets. Figure 2.6A clearly
demonstrates that, when using the PDNN quantification method, the FLTBP map-
ping tends to yield better correlations than the Affymetrix mapping (p < 0.00001,
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Figure 2.6: Distribution of gene-to-gene correlation between probesets on two
U95Av2 and U133A arrays, combining information over all samples, using both
Affymetrix-defined probesets and FLTBPs. The correlations were computed using
four different quantification methods, (A) PDNN, (B) RMA, (C) MAS5.0, and (D)
dChip.

Kolmogorov-Smirnov [KS] test). Notice the two peaks evident in the distribution
of correlations for the Affymetrix mapping. The minor peak contains a large group
of probesets with poor correlation across chip types. With other quantification meth-
ods, there is also evidence that the FLTBP method tends to result in better correlation
across chip types than the Affymetrix method, although this evidence is not as strong
(Figures 2.6B-D, p = 0.00031, 0.00575, and 0.00005 respectively). This improve-
ment from using the FLTBPs is likely due to the fact that the FLTBP adjusts for some
of the heterogeneity that is due to alternative splicing.

Note also that, when compared with Figure 2.6A, the distributions in Figure 2.6B-
D are shifted more towards low correlations. This suggests that, for these data, the
PDNN quantification tended to yield generally higher correlations than the RMA,
MAS5, or dChip quantifications. This is even more evident in the sample-by-sample
correlations between the chip types computed across genes, as shown in Figure 2.7.
This increased correlation observed from the PDNN method may reflect the man-
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Figure 2.7: Distribution of sample-to-sample correlation between probesets on two
U95Av2 and U133A arrays, combining information over all genes, using both
Affymetrix-defined probesets and FLTBPs. The correlations were computed using
four different quantification methods, PDNN, RMA, MAS5.0, and dChip, respec-
tively.

ner in which the PDNN model estimates and adjusts for the effects of non-specific
binding.

¿From Figure 6A, we see that even when using the FLTBPs, not all genes displayed
high correlations across chip types. Many of these low correlations were observed
for genes that appeared to have low biological variability in these data. Low vari-
ability would make the noise component of the measurements dominate, resulting in
low correlations. There are, however, some probesets with low correlations that do
not have small variances. It is possible that some of the sequences corresponding to
these probesets were strongly affected by RNA degradation, or the currently avail-
able collection of transcripts may not include certain alternatively spliced variants
that were differentially expressed across the sample tests, causing the correlations to
become attenuated. Further work needs to be done to further reduce the effects of
cross-hybridization and RNA degradation, which will hopefully lead to even more
comparable expression levels across platforms.

2.8 Summary

In this chapter, we have illustrated the benefit of pooling data across multiple mi-
croarray studies. We performed a pooled analysis over two lung cancer microarray
studies, and identified new prognostic genes that were not detected by separate anal-
yses performed on the individual data sets. We also described two new probeset def-
initions that result in more comparable expression levels across different versions
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of Affymetrix oligonucleotide chips. The first method is based on partial probesets,
which only use probes present on both chip types and combine them together based
on Unigene cluster information. This approach works very well, but has limited ap-
plicability, since it is only feasible to apply across chip types that share many probes
in common. The second method does not restrict us solely to matching probes, but
works by recombining probes based on the set of full-length mRNA transcripts to
which they map. In this way, the probesets map to the same set of alternatively
spliced transcripts. Combined with the PDNN quantification method which accounts
for non-specific binding, this approach appears to result in more comparable expres-
sion levels across chip types than Affymetrix’s matched probesets. The benefit of
this approach is that it does not restrict attention to matched probes, so can be widely
applied to combine data across any chip types. It may even be possible to use this
principle to match up oligonucleotide array data with cDNA data, although this re-
mains to be seen.





CHAPTER 3

Significance testing for small
microarray experiments

Charles Kooperberg, Aaron Aragaki, Charles C. Carey, and Suzannah Rutherford
Fred Hutchinson Cancer Research Center, PO Box 19024, Seattle, WA 98109

3.1 Introduction

When there are many degrees of freedom it is sometimes less critical which signif-
icance test is carried out, as most analysis will give approximately the same result.
However, when there are few degrees of freedom the choice of which significance
test is being used can have a strong effect on the results of an analysis. Unfortu-
nately, this is often the case for microarray experiments, as research laboratories
often perform such experiments with only a few (say less than five) repeats, Reasons
for the small number of repeats include availability of specimens and economics.
Kooperberg et al. (2005) compared several approaches to significance testing for ex-
periments with a small number of oligonucleotide (one-color) arrays. In this paper
we summarize the results from that analysis, include a couple of additional methods,
and describe a similar comparison for methods of carrying out significance testing
for two-color (red-green) arrays.

The limited number of repeats, together with the large variability that even the best
microarray platforms have, make small sample comparisons unattractive. A standard
T-test for an experiment with six two-color arrays has, depending on whether other
variables are controlled for, at most five degrees of freedom. The resulting two-sided
test, with α = 0.05 and a Bonferoni correction for 10000 genes requires a T-statistic
of 20.6 or more for significance. The lack of degrees of freedom is really what drives
the extremely large significance threshold for T-statistics: the same α and Bonferoni
correction for 20 arrays requires a T-statistic of 6.3 or more while a normal distribu-
tion only requires a Z-statistic of 4.6 or more, on the other hand reducing the number
of genes of interest on the original array from 10000 to 500 only reduces the required
T-statistic to 11.3.

Nonparametric (Wilcoxon) or permutation tests are no easy way out. For example,
for an experiment with k two-color (spotted) arrays, a P-value for a permutation
test can be no smaller than 2−k; if we want a two-sided test with α = 0.05 and

21
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a Bonferoni correction for 10000 genes, we need k to be at least 19. Reducing the
number of genes to 500 reduces the minimum k to 15. Similarly, for a one-color
(oligonucleotide) array the P-value for a permutation tests with k cases and k controls
a P-value cannot be smaller than

(
2k
k

)
; so for a two-sided test with α = 0.05 and a

Bonferoni correction for 10000 genes, we need at least 2k = 22 arrays. Reducing
the number of genes to 500 reduces the minimum number of arrays to 18.

As permutation tests are not going to help us, we need to obtain a better estimate for
the residual variance to overcome the lack of repeats. There are two obvious choices:
we can combine different genes in the same experiment or we can combine different
experiments, if similar experiments were carried out. When genes are combined we
can either choose to combine those genes for which the general expression level is
similar as do, for example, Huang and Pan (2002) and Jain et al. (2003) or we can
choose to combine all genes. An alternative approach to obtain more power with
small experiments is to add a stabilizing constant to the estimate of the variance for
each gene or to use some (Bayesian) model for the expression levels. SAM (Tusher
et al., 2001) is a methodology that adds a constant to the estimate the variance. The
approaches by Baldi and Long (2001), Lönnstedt and Speed (2002), Smyth (2004)
and Cui et al. (2005) are four related (empirical) Bayesian approaches. Wright and
Simon (2003) discuss a closely related frequentist approach.

In this paper we do not control for multiple comparisons. In practice, when one car-
ries out tests for many thousands of genes simultaneously, a multiple comparisons
correction or a correction of the false discovery (FDR) rate is essential. See Dudoit
et al. (2003) for an extensive overview of multiple comparisons corrections. While
several of these proposals use permutation arguments to correct for multiple compar-
isons, permutation typically either requires a substantial number of replicates (that
are not available in small experiments), or they require implicit assumptions about
similarities in the variational properties of different genes. In either scenario, we be-
lieve that only well calibrated marginal P-values are going to yield good multiple
comparison corrected P-values.

P-values have the advantage that there are well established measures such as Type
I error and power that can be used to judge the performance of a test. The FDR
(Benjamini and Hochberg, 1995a) does not have such a simple measure, to check
whether estimates of the FDR are accurate on a single experiment In addition, just
like for multiple comparison procedures, there are procedures to approximate the
FDR from P-values.

3.2 Methods

Most of the methods that we compare in this paper can be used either for one-color
(oligonucleotide) arrays or for two-color (spotted) arrays. We assume that the arrays
have been properly normalized; see Section 3.6 for how we normalized our arrays.
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3.2.1 Notation

Two-color spotted arrays For each gene and each two-color array we have an ex-
pression ratio xm

ijl summarizing the (log-)expression ratio between experimental con-
ditions k = 1 and k = 2 (that may be different between experiments) for gene
i = 1, . . . , n in experiment j = 1, . . . J on replicate array l = 1, . . . , Lj . For each
gene on each array we also have an estimate of the overall expression x a

ijl, typically
this will be the (geometric) average of the normalized expression for both channels
of the array. Unless there is confusion we will write xijl instead of xm

ijl for the log-
expression ratios.

Let μij be the “true” (log-)expression ratio of gene i in experiment j for condition
1 relative to condition 2. Set μ̂ij =

∑
l xijl/Lj , s2

ij =
∑

l(xijl − μ̂ij)2, and xa
ij =∑

l x
a
ijl/Lj .

One-color oligonucleotide arrays Similarly, for each gene and each one-color array
we have a (log-)expression xijkl , for experimental conditions k = 1 and k = 2, for
gene i = 1, . . . , n in experiment j = 1, . . . J on replicate array l = 1, . . . , Ljk.

Let μijk be the “true” mean (log-)expression level of gene i in experiment j under
condition k. Set μ̂ijk =

∑
l xijkl/Ljk and s2

ijk =
∑

l(xijkl − μ̂ijk)2.

3.2.2 Significance Tests

All significance tests that we consider in this paper can be written in the form

μ̂ij

σ̃ij/
√

Lj

,

for two-color arrays and
μ̂ij1 − μ̂ij2

σ̃ij

√
1

Lj1
+ 1

Lj2

,

for one-color arrays. Here σ̃ij is an estimate of the variance of xijl. The methods that
we discuss differ primarily in how the estimate σ̃ij is obtained. The traditional test
statistics estimate σ̃ij uses only the data on gene i and experiment j. The approaches
that inflate the variance and those that combine genes also use data on genes i ∗,
i∗ �= i; implicitly to estimate hyper-parameters for the empirical Bayes approach
that inflates the variance, or explicitly to smooth the estimates for σ̃ ij . Finally the
approaches that combine experiments use data on experiments j ∗, j∗ �= j. Most of
the methods below have a proper reference distribution, but alternatively significance
levels can be obtained using permutations (see Section 3.2.3); in fact, some of the
authors recommend permutations as the method to obtain P-values.

Below we describe the test-statistics we are including in our comparison. We provide
details for the two-color arrays, modifications for one-color arrays are indicated.
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T-statistic. The traditional T-statistic is

tij =
μ̂ij

σ̂ij/
√

Lj

,

where σ̂2
ij = s2

ij/(Lj − 1), provided Lj > 1. The reference distribution is the
T-distribution with Lj − 1 degrees of freedom, and the main assumption is that
for each gene i and experiment j the xijkl are independent having a normal distri-
bution with variance σij , although the T-test is generally considered to be robust
against departures from normality.
The two-sample T-statistic is the equivalent test for one-color arrays. This statis-
tic assumes that the variance for both experimental conditions is the same. An
alternative is the Welch (1938) two-sample T-statistic that does not make that as-
sumption. In Kooperberg et al. (2005) it was shown that this approach has almost
no power for small sample sizes, and should probably be avoided for small mi-
croarray experiments.

Methods combining genes: smoothing the variance

There have been several proposals in the literature to combine the estimates of the
variance for several genes to obtain better estimates, so that the resulting test has
more degrees of freedom. Typically the assumption that is made is that genes with the
same expression level have approximately the same variance. Under this assumption
estimates for the variance can be obtained by smoothing the variance as a function of
the expression level. For one-color arrays there are methods which smooth the vari-
ances jointly and methods which smooth variances separately for both experimental
conditions.

LPE Jain et al. (2003) describe a method they call “Local Pooled Error test” (LPE).
As described in this paper, LPE only is applicable to one-color arrays. In their ap-
proach, let σ̂ijk be the the sample variance of the xijkl , for l = 1, . . . , Ljk. LPE
regularizes these estimates for each j and k separately by smoothing the σ̂ ijk ver-
sus μ̂ijk . The assumption being made here is that genes with the same expression
level for the same experiment and the same condition have (approximately) the
same variance. As the smoothing spline that is used effectively involves averag-
ing a large number of genes, the authors use a normal reference distribution. In our
study we have used the implementation by the authors, available in the R-package
(Ihaka and Gentleman, 1996) LPE, which is available from CRAN/Bioconductor ∗

Since the method averages the variance separately for two conditions, it is cur-
rently only available for one-color arrays, where both experimental conditions are
measured separately.

Loess Huang and Pan (2002) make several related proposals. The main difference
between their approach and the approach by Jain et al. (2003) is that they first
compute σ̂ij and smooth these estimates against μ̂ij = μ̂ij1 + μ̂ij2 for one-color
experiments and against xa

ij for two-color experiments. Their simulation results

∗ CRAN: The Comprehensive R Archive Network; see http://www.r-project.org.
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show that, not unexpectedly, for the null-model a normal reference distribution is
appropriate. We reimplemented their approach using a loess smoother.

Methods combining genes: (empirical-)Bayesian model for σ

Rather than smoothing the variance explicitly as a function of the expression level,
we can include information from other genes for the analysis of a particular gene by
making assumptions about the distribution of the variance for all genes. The informa-
tion about the other genes then allows us to estimate some (hyper-)parameters, that
can be used to stabilize the variance estimate. There are a variety of such methods
with different motivations: ad-hoc (e.g. SAM (Tusher et al., 2001) using an (em-
pirical) Bayes argument (e.g. (Baldi and Long, 2001; Lönnstedt and Speed, 2002;
Smyth, 2004), a James-Stein type estimator (Cui et al., 2005) or a frequentist ap-
proach (Wright and Simon, 2003).

The first three approaches that we discuss combine the sample variance σ̂ 2
ij with

another estimate σ0ij that has dij degrees of freedom, yielding a variance estimate
of

σ̃2
ij =

dijσ
2
0ij + (Lj − 1)σ̂2

ij

Lj + dij − 1
, (3.1)

that can be used in a T-test with Lj + dij − 1 degrees of freedom. The three methods
Cyber-T, Limma, RVM use this approach; they differ primarily in the methods to
obtain σ0ij and dij .

Cyber-T The Cyber-T approach of Baldi and Long (2001) is motivated as a fully
Bayesian procedure. However as implemented in practice (see Section 5 of Baldi
& Long 2001) the test is carried out using a T-test on (for two-color arrays) L j +
ν0 − 1 degrees of freedom, and an estimate of the variance (compare 3.1) of

σ̃2
ij =

ν0σ
2
0ij + (Lj − 1)σ̂2

ij

Lj + ν0 − 1
, (3.2)

where σ2
0ij is an estimate of the “prior variance” that is obtained as a running

average of the variance estimates of the genes in a “window” of size w of similar
xa

ij . Thus the Cyber-T approach uses the average of a smoothed variance (like
LPE and Loess, only using another smoother) with the regular variance of the
T-statistic. A non-Bayesian interpretation of Cyber-T is thus that it combines a
smoothed estimated (as in Loess and LPE) with a traditional estimate from the
T-test.
We used the defaults ν0 = 10 and the window width w = 101 from the R-
software available on http://visitor.ics.uci.edu/genex/cybert.
Note that the paper of Baldi and Long mentions another default of ν 0 = 10− Lj .

Limma Smyth (2004) generalizes the approach from Lönnstedt and Speed (2002)
The main assumption in Smyth’s model is a prior distribution on the variances
σ2

ij :
1

σ2
ij

∼ 1
d0js2

0j

χ2
d0j

.
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(We include the index j for the parameters of the prior, as they may be different
for different experiments j = 1, . . . , J .) The model also includes priors on the co-
efficients for each gene in a linear regression model, which in the two sample case
reduces to the difference between the mean expression for the two groups. Using
methods of moments estimators estimates d0j , s2

0j , and a few other parameters are
obtained. An inflated variance

σ̃2
ij =

d0js
2
0j + (Lj − 1)σ̂2

ij

Lj + d0j − 1
, (3.3)

(compare 3.2) is used for a “moderated T-test” with d0j + Lj − 1 degrees of
freedom. Thus, a main difference between the approach of Smyth (2004) and the
approach of Baldi & Long (2001) is that Limma uses one single estimate for the
prior variance (s2

0j) for all genes and it estimates the prior degrees of freedom d 0j

based on the data, while the latter uses a smooth estimate for the prior variance
σ2

0ij , but it uses a fixed number of prior degrees of freedom ν 0. The approach
of Smyth (2004) is available from the Bioconductor package Limma. We used
Limma with the default options.

RVM The Random Variance Model (RVM) of Wright and Simon (2003) inflate the
variance similar to Baldi & Long (2001) and Smyth (2004), and obtain a model
similar to (3.1). They assume an inverse Gamma model for σ 2, and estimate the
two parameters from this model using the method of maximum likelihood. Im-
plementation of their approach would require estimating of two parameters of an
F-distribution. We do not include RVM this method in our comparisons, as we
could not locate publicly available software.

Shrinking Cui and Churchill (2003) and Cui et al. (2005) develop a James-Stein
shrinkage estimate σ̃2

ij . After appropriate transformations this estimator “shrinks”
the T-test estimate σ̂2

ij towards the mean variance
∑

i σ2
ij/I , where the exact

amount of shrinkage differs from gene to gene, and depends on the variability
for that gene. Easy to implement formulas are given in Cui et al. (2005). Note that
the authors of this method recommend a permutation approach (see Section 3.2.3)
to obtaining P-values. We still include this approach without permutations using
a normal reference distribution, as well as using permutation P-values.

Methods combining experiments

Instead of combining different genes within one experiment, we can also combine
expression levels of the same gene between experiments. This would potentially be
useful if we have several smaller experiments, and it is thus reasonable to assume
that for each gene the variance in each experiment is approximately the same.

Pooled-T We define the pooled T-test statistic, combining experiments, as

cij =
μ̂ij

σ̂i

√
1

Lj

,

where σ̂2
i =

∑
j s2

ij/L and L =
∑

j(Lj − 1), provided L > 0. The reference dis-
tribution is the T-distribution with L degrees of freedom, and the main assumption
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is that the xm
ijl are independent for each j and l, having a normal distribution with

mean μij and variance σi.

For most of the other methods that we discussed it is, in principle also possible
to pool different experiments in obtaining a single variance estimates. As all these
methods already regularize the estimates for σ in some way, pooling typically has
no effect, and the corresponding method behaves similar to the “parent” method, as
was confirmed for the Loess approach in Kooperberg et al. (2005) and for Limma in
unpublished results.

Note that methods whose implementation allows for general design matrices (e.g.
Limma) can yield pooled estimates by setting up an appropriate design matrix and
testing appropriate contrasts.

3.2.3 Permutation P-values

Permutation of the arrays in an experiment can be an alternative to using a para-
metric reference distribution for a test statistic. Assume that we have a two-color
experiment with L arrays, and that the test statistic for the ith gene is T i. To compute
the significance of Ti we also compute the test statistics for all genes for each of the
m = 1, . . . , 2L experiments that are obtained by “flipping” the signs of the xm

il for
some of the l. (We omit the index of experiment j.) Note that one of these permuta-
tions will be the original design. Let T m

i be the test statistic for the ith gene for the
mth permutation. We can use

n∑
i∗=1

2L∑
m=1

I(Ti < T m
i∗ )/n2L

as an estimate of the P-value corresponding to T i. If L is larger than, say, 8 we may
want to sample permutations to save computing time; in this paper that is not an
issue.

These estimates will be unbiased if (i) each Ti has the same distribution under the
null-hypothesis, and (ii) no genes are differentially expressed. The first assumption
is not as severe as it appears. When a parametric distribution is used the stronger
assumption, that the distributions of each T i under the null-hypothesis are the same
as a particular parametric distribution, is made. The second assumption is much more
severe, and it will lead to conservative P-values when in fact there are a substantial
number of differentially expressed genes (Storey and Tibshirani, 2003).

For one-color (oligonucleotide) arrays we randomly rearrange the L 1 arrays with the
first experimental condition and the L2 arrays with the second experimental condi-
tion, and proceed in a similar manner.
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Table 3.1: Organization of the two-color (spotted) data for our analysis. Experiments
whose code start with a D are expected to have differences between both groups,
while those starting with an S are repeats, the digit “2” refers to the two-color (spot-
ted) array type. The arrays for experiments D2.3 and D2.4 and those for D2.5 and
D2.6 are different; experiment S2.1 are arrays from a cell-line not used for the other
experiments.

Exp. sample one sample two Lj different

S2.1 KC cell KC cell 4 no
S2.2 SAM SAM 2 no
S2.3 SAM SAM 2 no
S2.4 SAM SAM 4 no
D2.1 SAM D-recomb 304 2 yes
D2.2 SAM D-recomb 220 2 yes
D2.3 SAM D-pure 2 yes
D2.4 SAM D-pure 4 yes
D2.5 SAM E-pure 4 yes
D2.6 SAM E-pure 4 yes
D2.7 SAM F-pure 6 yes

3.3 Data

For our analysis we use two sets of data. One comes from a one-color experiment,
and is part of the data that was also used in Kooperberg et al. (2005) the other comes
from a not yet published study on Drosophila.

The two-color experimental data that we use come from a series of spotted microar-
rays of Drosophila melanogaster that were grown in Suzannah Rutherford’s lab at
the Fred Hutchinson Cancer Research Center. The arrays are part of a larger set
of experiments whose results have not yet been reported. The subset of arrays that
we compare here include some experiments that are self-to-self hybridizations, and
some experiments where both samples are genetically different, see Table 3.1. Thus,
the experiments S2.1, S2.2, S2.3, and S2.4 are intended to establish that the tests
have the right size Type I error, and the experiments D2.1, D2.2, D2.3, D2.4, D2.5,
D2.6, and D2.7 are intended to establish the power of the tests.

For the SAM samples RNA from a large number of flies that were genetical identical,
other than some being male and some being female, was combined and the RNA
for the arrays was taken out of this large pool. For the D-recomb 304, D-recomb-
220, D-pure, E-pure, and F-pure lines for each array samples from 15-30 flies that
were genetical identical, other than some being male and some being female, was
combined. In addition we included four unrelated Drosophila cell line arrays. We
organized the experiments so that all experiments are “dye swapped”: i.e. half of the
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Table 3.2: Organization of the one-color (Affymetrix) data for our analysis. HD:
Huntington’s Disease mouse, WT: wildtype mouse. Experiments whose code start
with a D are expected to have differences between both groups, while those starting
with an S are repeats, the digit “1” refers to the one-color (Affymetrix) array type.

Exp. Tissue Mouse Group 1 Group 2 Lj1 Lj2 different

S1.1 cerebellum DRPLA 26Q HD HD 2 2 no
S1.2 cerebellum DRPLA 26Q WT WT 2 2 no
S1.3 cerebellum YAC HD HD 3 2 no
S1.4 cerebellum YAC WT WT 3 2 no
D1.1 cerebellum DRPLA 65Q HD WT 4 4 yes
D1.2 cerebellum R6/2 12 weeks HD WT 2 2 yes
D1.3 cerebellum N171 HD WT 4 4 yes

arrays have sample one on the red channel, the other half have sample two on the red
channel. There are 13,440 spots (genes) on each array.

One-color experimental data was obtained using Affymetrix Mu 11K-A microar-
rays generated for a series of experiments on Huntington’s Disease mouse models.
The results of these experiments were reported as a series of related papers (Chan
et al., 2002; Luthi-Carter et al., 2002a,b). For this analysis we compare cerebellar
gene expression in similarly aged mice carrying a wildtype or mutant form of the
Huntington’s gene. Every comparison reported in Chan et al. (2002), Luthi-Carter
et al. (2002a) and Luthi-Carter et al. (2002b) showed some differentially expressed
genes, although the amount of differentiation differed considerably between the ex-
periments. For each of the experiments both groups had between 2 and 5 mice. Thus,
all our repeats use different samples (sometimes referred to as “biological repeats”)
and are not repeat arrays using the same samples (sometimes refereed to as “techni-
cal repeats”), that could be expected to vary less. There are 6,595 probe sets (genes)
on each array.

The experiments listed in Table 3.2 are the seven experiments comparing cerebellar
tissue used in Kooperberg et al. (2005); the six experiments using striatum tissue used
in that paper are not used here. As for the two-color experiments, some experiments
are intended to establish that the tests have the right size and others are intended to
establish the power of the tests.

3.4 Results

We analyze the experiments listed in Section 3.3 using the analysis methods de-
scribed in Section 3.2.2. For the experiments where both groups are different (D2.x
and D1.x) we prefer methods with the largest percentage of significant genes (the
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largest power), provided that the method does have the correct percentage of signif-
icant genes in the experiments where both groups are the same (S2.x and S1.x): at
most α% significant genes when tested at significance level α.

Typically we show results for α = 1% and α = 0.01%. For the two-color arrays there
are approximately 11,000 genes after removal of spots (genes) that were too close to
background (see Section 3.6) . Assuming independence of genes a 95% confidence
interval for the percentage of significance genes based upon the binomial distribution
is between 0.8 and 1.2% at α = 1% and between 0 and 0.03% at α = 0.01%. For the
one-color arrays there are 6,595 genes, thus these confidence intervals are slightly
larger (0.75 through 1.25% at α = 1% and 0 and 0.045% at α = 0.01%). When we
average four experiments and (incorrect) assume independence for both array types
we expect between about 0.9 and 1.1% significant genes at α = 1% and between 0
and 0.025% at α = 0.01% for both array types.

3.4.1 Bandwidth selection for smoothers

Three methods (Cyber-T, LPE, and Loess) require the choice of a bandwidth or
smoothing parameter. For LPE and Loess this determines over how many genes the
variance is “averaged”. For Cyber-T the averaged variance is combined with the
variance for the individual genes.

In Table 3.3 we summarize the results for the two-color experiment for the Loess
approach. The parameter span for the loess() function in R is approximately
linear in the bandwidth for a local linear smoother. From this table we note that the
bandwidth has very little influence on the results. The explanation for this is that
even for the smallest bandwidth the variances of several dozen genes are effectively
averaged. Smaller values of span are not useful, as they will increasingly lead to
numerical problems in regions where there is less data.

We note that for all four choices of span and for all S2.x experiments at α = 0.01%
and for two of the four of these experiments at α = 1% the percentage of genes that
are called significant is much too large. The same was concluded in Kooperberg et al.
(2005) for the one-color arrays.

In the remainder of our comparisons we use a span of 0.1, which yielded the lowest
average number of significant results for both α = 1% and α = 0.01% for the four
S2.x experiments. As the influence of the bandwidth appears minimal, we will use
Cyber-T and LPE with their default values.

3.4.2 Comparison of methods

In Tables 3.4 and 3.5 we show the results for seven of the methods described in
Section 3.2.2 when applied to the two-color and one-color data described in Section
3.3, respectively. Results for the LPE method are not available for the two-color
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Table 3.3: Performance of the Loess approach for various values of the bandwidth
(span) parameter for the two-color experiments. We report the percentage of genes
that are called differentially expressed at levels α = 1% and α = 0.01%. Ideally the
four S2.x experiments would have α differentially expressed genes, while the seven
D2.x would have many such genes.

α = 1% α = 0.01%
span 10 1 0.1 0.01 10 1 0.1 0.01

S2.1 1.1 1.1 0.7 0.7 0.340 0.306 0.198 0.159
S2.2 7.8 7.0 5.8 6.6 2.884 2.507 1.528 1.915
S2.3 2.2 2.1 2.0 2.0 0.984 0.922 0.982 0.942
S2.4 0.7 0.6 0.6 0.6 0.262 0.262 0.230 0.212

S2-ave 3.0 2.7 2.3 2.5 1.118 0.999 0.735 0.807

D2.1 25.8 25.9 26.8 27.1 11.941 11.994 12.698 12.827
D2.2 31.7 31.8 32.3 32.9 16.817 17.000 17.682 18.300
D2.3 53.5 53.6 53.8 53.8 38.170 38.354 38.368 38.457
D2.4 54.3 54.4 54.4 54.7 37.709 37.858 37.774 38.043
D2.5 43.3 43.5 43.5 44.2 28.006 28.190 28.225 28.574
D2.6 73.0 73.2 76.5 76.6 62.230 62.431 66.313 66.501
D2.7 62.1 62.3 64.3 64.3 47.863 48.003 50.124 50.471

D2-ave 49.1 49.2 50.2 50.5 34.677 34.833 35.883 36.168

data. Cui et al. 2005 recommends permutations to obtain P-values for the Shrinking
approach, as in Tables 3.6 and 3.7 and Figure 3.3 and 3.4. In Tables 3.4 and 3.5 and
Figure 3.1 and 3.2 we use a normal reference distribution; which distribution is used
has a substantial impact on the results.

In Figure 3.1 we give a graphical display of how well these methods adhere to the
significance levels, and in Figure 3.2 we display power. These figures are probability-
probability plots on a logit-scale. That is, for a particular method and a particular
experiment let pi be the two-sided (sometimes called signed) P-values. That is, if p i is
close to 0 there is evidence of under-expression and if p i is close to 1 there is evidence
of over-expression of group one relative to group two. We now combine all p i for a
group of experiments and sort them. Assume that we have N P-values. We plot the
sorted P-values (horizontal) against (1, . . . , n)/(N + 1). When the experiments that
we consider are self-versus-self comparisons we would like these plots to follow
the identity line, as that implies that the significance levels are “unbiased”. Curves
that flatten out are particularly worrisome, as they suggest significantly differentially
expressed genes that are in fact false positives. Curves that are more vertical than
the identity line suggest statistics that are too conservative: something that is not a
concern when there is in fact no difference, but would likely hurt us when we use the
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same method to analyze data where some genes are differentially expressed. Second,
for groups of experiments where there is a difference between both samples we want
the most horizontal curves, among the methods that did not generate a substantial
number of false positives for the repeat experiments.

From Figure 3.1 we see that the Loess and LPE approach identify substantially more
differentially expressed genes than the nominal levels for the experiments where in
fact the two samples being compared are repeats. The Cyber-T approach shows a
mild number of increases, and none of the other approaches shows serious bias. For
both groups of experiments a normal reference distribution for the Shrinking ap-
proach appears too conservative.

Table 3.4 elaborates on this. At a significance level of α = 1% only the Loess method
shows a substantial bias, and it does that for five out of eight data sets. For microarray
experiments the more stringent level α = 0.01% is very relevant, as multiple com-
parisons corrections often will imply selecting genes at low significance levels. We
note that the Loess again shows substantial bias. The LPE approach also indicates
ten times more significant genes than the nominal value; this bias is present for three
of the four data sets. At this significance level the Cyber-T method shows a modest
bias; in particular we notice that the bias is only substantial for one dataset (two-
color experiment S2.2). The excess percentage of significant genes for the Pooled-T
approach is minimal, and could just be due to chance.

From Figure 3.2 we note that for all methods far more genes are identified as differ-
entially expressed by the two-color experiments than by the one-color experiments,
as the curves for the two-color experiments are much more horizontal than those
for the one color experiments. This is largely an effect of the actual data used, as
the two-color Drosophila experiments involved substantially altered flies, while the
differences between the mice involved in the one-color Huntington’s disease exper-
iments are much more subtle. We do note from this figure though that the ordering
of the methods is largely unchanged, suggesting that since our conclusions remain
the same for two dramatically different experiments (different technologies, different
amounts of differential genes) they are likely fairly robust and may well generalize
to many other situations.

For both the two-color and the one-color experiments the Loess approach is the most
powerful. This is not a surprise, since the method does not maintain significance
levels for the experiments where both samples are repeats. Similarly, we are not
surprised that the LPE method is quite powerful for the one-color experiments. This
method also did not maintain significance levels for the experiments where both sam-
ples are repeats. Among the remaining methods, we note that the Pooled-T approach
performs best for the two-color experiments, followed by the Cyber-T and Limma
approach, while for the one-color experiments the Cyber-T and Limma approach
seem slightly more powerful than the Pooled-T approach.

Table 3.5 confirms all these conclusions. Interestingly for the D2.x (two-color) ex-
periments we notice that for those experiments with two arrays (D2.1, D2.2, and
D2.3) the Pooled-T approach is particularly more powerful. Maybe this is not sur-
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Figure 3.1: Performance of the various approaches to significance testing using an ex-
plicit reference distribution for small microarray experiments for the combined two-
color and one-color self-versus-self experiments. For unbiased methods the curves
should follow the identity line.
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prising: the borrowing of degrees of freedom between experiments, as the Pooled-T
approach is doing, is particularly useful when the number of degrees of freedom is
small.

3.4.3 Permutation P-values

As detailed in Section 3.2.3, an alternative approach to obtaining P-values is a per-
mutation approach in which the test statistics for all genes are combined. In Figure
3.3 we give a graphical display of how well each of the methods adhere to the sig-
nificance levels when P-values are determined using such an approach, and in Fig-
ure 3.4 we display power for these situations. We do not show permutation results
for the Pooled-T approach: since this procedure combines arrays from different ex-
periments a permutation procedure is less standard, besides that the results using a
T-distribution already give satisfactory results.

The displays in Figures 3.3 and 3.4 are organized similar to Figures 3.1 and 3.2. We
notice that the permutation approach for computing P-values yields approximately
unbiased results for all approaches as all curves in Figure 3.3 follow the diagonal.
However, as expected, the permutation approach reduces power for any of the ap-
proaches using randomization. In Figure 3.4 we note that the procedures based on
permutation are considerably less powerful than the procedures that do not use per-
mutation (as shown in Figure 3.2). In particular, we notice that the curves in Figure
3.4 all stay within a “band” of the diagonal. This is in fact a consequence of using
the permutation approach with a small number of repeats: irrespective of the actual
number of differentially expressed genes, there is a maximum number of genes that
can be differentially expressed at any particular significance level thanks to the ex-
perimental design. This is explained in detail below in the discussion of Table 3.7.

Tables 3.6 and 3.7 for the permutation based procedures are organized similar to Ta-
bles 3.4 and 3.5 for the procedures using a reference distribution. From these tables
we draw the same conclusions as from Figures 3.3 and 3.4: while the permutation
approach does control the significance level α appropriately, it limits the power. We
note from these tables that no methods and no data sets are exceptions. The part
of Table 3.7 for the two-color (D2.x) experiments with different samples clearly il-
lustrate an artifact of the permutation approach. As we have seen before, the D2.x
experiments have very many differentially expressed genes (see Table 3.5). But in
Table 3.7 there seems to be a cap: at a significance level of α = 1% for experi-
ments D2.1, D2.2, and D2.3 all methods suggest at most 2% differentially expressed
genes, for experiments D2.4, D2.5, and D2.6 all methods suggest at most 8% differ-
entially expressed genes, and for experiments D2.7 all methods suggest at most 32%
differentially expressed genes. Let’s focuss on experimant D2.4. This is an experi-
ment with 4 arrays. There are thus at most 24 = 16 permutations from “flipping”
the arrays. Since each permutation arises twice (when all arrays are flipped relative
to the first analysis), only 8 of these permutations are unique. Assume that for this
experiment 40% of the genes are differentially expressed (as Table 3.5 suggest), and
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Table 3.4: Percentage of differentially expressed genes using various approaches to
significance testing using an explicit reference distribution for small microarray ex-
periments for the individual two-color and one-color self-versus-self experiments at
significance levels α = 1% and α = 0.01%. For unbiased methods the percentage
of differentially expressed genes should be close to α.

α = 1% T-test Limma Shrinking Cyber-T Loess LPE Pooled-T

S2.1 0.2 0.1 0.0 0.1 0.7 NA 0.3
S2.2 1.1 0.1 0.0 2.3 5.8 NA 0.3
S2.3 0.6 0.2 0.0 0.3 2.0 NA 0.4
S2.4 0.2 0.1 0.0 0.0 0.6 NA 0.1

S2-ave 0.5 0.1 0.0 0.7 2.3 NA 0.3

S1.1 0.4 0.2 0.0 0.4 0.7 0.4 0.0
S1.2 0.6 0.3 0.0 1.4 2.7 1.1 0.2
S1.3 0.8 0.1 0.0 0.3 3.9 0.3 3.2
S1.4 0.3 0.0 0.0 0.1 2.6 0.1 1.3

S1-ave 0.5 0.2 0.0 0.6 2.5 0.5 1.2

α = 0.01% T-test Limma Shrinking Cyber-T Loess LPE Pooled-T

S2.1 0.000 0.000 0.000 0.000 0.198 NA 0.017
S2.2 0.009 0.000 0.000 0.277 1.528 NA 0.061
S2.3 0.018 0.000 0.000 0.000 0.982 NA 0.009
S2.4 0.000 0.000 0.000 0.000 0.230 NA 0.009

S2-ave 0.007 0.000 0.000 0.069 0.735 NA 0.024

S1.1 0.015 0.030 0.000 0.061 0.197 0.106 0.000
S1.2 0.000 0.000 0.000 0.045 0.697 0.243 0.000
S1.3 0.000 0.000 0.000 0.015 0.500 0.061 0.091
S1.4 0.000 0.000 0.000 0.000 0.728 0.000 0.000

S1-ave 0.004 0.008 0.000 0.030 0.531 0.102 0.023
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Table 3.5: Percentage of differentially expressed genes using various approaches to
significance testing using an explicits reference distribution for small microarray ex-
periments for the individual two-color and one-color experiments that involve differ-
ent samples at significance levels α = 1% and α = 0.01%. The larger the percentage
of differentially expressed genes, the more powerful a method is.

α = 1% T-test Limma Shrinking Cyber-T Loess LPE Pooled-T

D2.1 1.9 12.1 0.0 15.8 26.8 NA 30.9
D2.2 2.3 16.0 0.0 21.9 32.3 NA 28.9
D2.3 4.0 34.8 0.0 43.6 53.8 NA 48.2
D2.4 31.0 44.8 22.6 45.5 54.4 NA 62.7
D2.5 20.9 31.6 13.1 35.1 43.5 NA 52.4
D2.6 53.6 66.5 46.3 66.9 76.5 NA 58.6
D2.7 51.8 57.6 46.9 55.9 64.3 NA 56.3

D2-ave 23.7 37.6 18.4 40.7 50.2 NA 48.3

D1.1 2.6 3.4 2.0 4.0 6.4 2.7 3.3
D1.2 1.2 5.3 0.1 5.6 6.7 5.0 1.5
D1.3 1.6 1.6 1.0 1.6 3.0 0.9 0.8

D1-ave 1.8 3.4 1.1 3.7 5.4 2.9 1.9

α = 0.01% T-test Limma Shrinking Cyber-T Loess LPE Pooled-T

D2.1 0.009 0.864 0.000 2.148 12.698 NA 10.835
D2.2 0.026 1.219 0.000 5.051 17.682 NA 11.928
D2.3 0.027 7.699 0.000 19.441 38.368 NA 26.722
D2.4 1.994 15.378 0.296 21.732 37.774 NA 44.632
D2.5 1.083 4.752 0.201 10.856 28.225 NA 31.806
D2.6 7.729 39.769 2.858 47.705 66.313 NA 40.295
D2.7 17.023 29.986 11.971 34.357 50.124 NA 38.347

D2-ave 3.984 14.238 2.189 20.184 35.883 NA 29.224

D1.1 0.121 0.349 0.030 1.046 2.593 0.788 0.516
D1.2 0.000 2.153 0.000 1.668 2.835 2.092 0.243
D1.3 0.106 0.243 0.061 0.379 1.410 0.288 0.182

D1-ave 0.076 0.915 0.030 1.031 2.280 1.056 0.313
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Figure 3.3: Performance of the various approaches to significance testing using a
permutation approach rather than a reference distribution for small microarray ex-
periments for the combined two-color and one-color self-versus-self experiments.
For unbiased methods the curves should follow the identity line.
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permutation approach for small microarray experiments for the combined two-color
and one-color experiments that involve different samples. More horizontal curves
correspond to more powerful methods.
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Table 3.6: Percentage of differentially expressed genes using various approaches to
significance testing using a permutation approach rather than a reference distribution
for small microarray experiments for the individual two-color and one-color self-
versus-self experiments at significance levels α = 1% and α = 0.01%. For unbiased
methods the percentage of differentially expressed genes should be close to α.

α = 1% T-test Limma Shrinking Cyber-T Loess LPE
permuted permuted permuted permuted permuted permuted

S2.1 0.1 0.0 0.0 0.0 0.0 NA
S2.2 1.0 0.0 0.2 0.4 0.6 NA
S2.3 0.6 0.1 0.1 0.0 0.4 NA
S2.4 0.2 0.1 0.1 0.0 0.2 NA

S2-ave 0.5 0.1 0.1 0.1 0.3 NA

S1.1 0.3 0.1 0.1 0.1 0.1 0.1
S1.2 0.6 0.4 0.4 0.3 0.4 0.4
S1.3 1.1 0.5 0.4 0.2 0.5 0.5
S1.4 0.3 0.1 0.1 0.1 0.4 0.2

S1-ave 0.6 0.2 0.2 0.1 0.4 0.3

α = 0.01% T-test Limma Shrinking Cyber-T Loess LPE
permuted permuted permuted permuted permuted permuted

S2.1 0.000 0.000 0.000 0.000 0.000 NA
S2.2 0.000 0.000 0.000 0.000 0.000 NA
S2.3 0.017 0.000 0.000 0.000 0.000 NA
S2.4 0.000 0.000 0.008 0.000 0.000 NA

S2-ave 0.004 0.000 0.002 0.000 0.000 NA

S1.1 0.000 0.000 0.000 0.000 0.000 0.000
S1.2 0.000 0.000 0.000 0.000 0.000 0.000
S1.3 0.000 0.000 0.000 0.015 0.000 0.015
S1.4 0.000 0.000 0.000 0.000 0.000 0.000

S1-ave 0.000 0.000 0.000 0.004 0.000 0.004
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Table 3.7: Percentage of differentially expressed genes using various approaches to
significance testing using a permutation approach rather than a reference distribution
for small microarray experiments for the individual two-color and one-color experi-
ments that involve different samples at significance levels α = 1% and α = 0.01%.
The larger the percentage of differentially expressed genes, the more powerful a
method is.

α = 1% T-test Limma Shrinking Cyber-T Loess LPE
permuted permuted permuted permuted permuted permuted

D2.1 1.6 2.0 1.8 2.0 2.0 NA
D2.2 1.5 2.0 2.0 2.0 2.0 NA
D2.3 1.9 2.0 2.0 2.0 2.0 NA
D2.4 7.7 8.0 8.0 8.0 8.0 NA
D2.5 7.4 8.0 8.0 7.9 7.5 NA
D2.6 8.0 8.0 8.0 8.0 0.0 NA
D2.7 30.5 31.8 30.5 31.8 24.8 NA

D2-ave 8.4 8.8 8.6 8.8 7.8

D1.1 2.8 3.8 3.8 3.6 2.8 2.8
D1.2 1.2 3.0 2.6 2.7 2.7 2.7
D1.3 1.9 1.8 1.8 1.4 1.3 1.0

D1-ave 2.0 2.9 2.7 2.6 2.3 2.1

α = 0.01% T-test Limma Shrinking Cyber-T Loess LPE
permuted permuted permuted permuted permuted permuted

D2.1 0.008 0.008 0.008 0.008 0.017 NA
D2.2 0.017 0.017 0.017 0.017 0.026 NA
D2.3 0.009 0.008 0.000 0.009 0.018 NA
D2.4 0.068 0.076 0.076 0.068 0.079 NA
D2.5 0.075 0.083 0.059 0.084 0.079 NA
D2.6 0.075 0.075 0.075 0.025 0.068 NA
D2.7 0.308 0.315 0.283 0.308 0.314 NA

D2-ave 0.080 0.083 0.074 0.074 0.086 NA

D1.1 0.121 0.258 0.212 0.243 0.106 0.030
D1.2 0.000 0.000 0.015 0.015 0.015 0.015
D1.3 0.136 0.243 0.258 0.212 0.121 0.045

D1-ave 0.086 0.167 0.162 0.157 0.081 0.030
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these 40% of the genes have very large test-statistics. There are about 10,000 genes
on these arrays, thus 4,000 test-statistics are large, say larger than A. Now assume
that among the 7 other permutations none of the test-statistics are larger than A. Then
out of 8 × 10, 000 = 80, 000 test-statistics 4,000 are larger than A. However, at the
α = 1% level at most 0.01 × 80, 000 = 800 can be called significant at α = 1%.
Which is 8%, rather than the 40% that are differentially expressed, of all the genes on
the array. (In fact the percentage is slightly lower as a few rare permuted genes also
have large statistics.) We could choose to ignore the “original” permutation in getting
the percentiles of the permutation distribution, but this would violate the assumptions
of exchangeability under the null-hypothesis of no differential expression. When the
number of arrays increases, or when the number of differentially expressed genes is
much smaller, this artifact clearly disappears.

3.5 Discussion

The choice of significance test in microarray experiments with low replication can
dramatically influence the results. For both one-color and two-color arrays we set
up our experiments so that we could both judge which approaches yield approxi-
mately unbiased P-values when the experimental conditions are identical, and which
approaches are most powerful when both conditions differ. We focused on P-values,
rather than for example the FDR, as we believe that a “good” P-value will yield a
“good” multiple comparisons correction, and a multiple comparisons adjustment by
itself can not save a procedure that yields badly calibrated P-values.

The two groups of experiments that we considered differed in another aspect be-
sides technology: our one-color experiments had a modest number of differentially
expressed genes, while our two-color experiments had many such genes. Given the
difference between the two groups of experiments the similarity in results was strik-
ing.

Our main conclusions are:

• The T-test has almost no power when the sample size is small. When there are
less than, say, six repeat arrays some of the alternative solutions are much more
powerful. Kooperberg et al. (2005) concluded that the lack of power is even more
extreme for the Welch statistic.

• Combining an estimate of the overall variance with an estimate of the individual
variance, such as is done for Limma (Smyth, 2004) and Cyber-T (Baldi and
Long, 2001) appear very effective. Apparently such a regularization reduces the
noise in the variance estimates effectively. Because of the similarity of the results
for these two approach, and the much worse results for the smoothing approaches,
we hypothesize that for the Cyber-T approach the running average estimate of
σ0ij is effectively estimating an overall variance, rather than a local variance. In
our experiments Limma performed slightly better than Cyber-T.

• An approach which borrows degrees of freedom from other experiments Pooled-
T, first proposed in Kooperberg et al. (2005) performs equally well as the Limma



APPENDIX: NORMALIZATION OF ARRAYS 41

and Cyber-T approach. In fact, when the sample size is real small (n = 2) it
seems to perform slightly better. Obviously for this approach the main question
is “what to combine”. In Kooperberg et al. (2005) a small simulation study was
carried out suggesting that there can be a reasonable amount of experiment-to-
experiment variation without seriously inflating the type-1 error. The fact that we
can without much problem combine cell-line experiments with RNA harvested
from fruit-flies (as was done for the two-color experiments in this paper) confirms
that conclusion.

• Methods which solely use a smoothed estimate of the variance, such as the LPE
approach (Jain et al., 2003) and the Loess approach (inspired by Huang and Pan
(2002)) can give severely biased results by inflating the percentage of significant
genes well beyond a pre-specified level α, when in fact there are no differences
between the two samples. For the Loess approach this was evident at α = 1% and
α = 0.01%, for the LPE approach it was only evident at α = 0.01%. However,
since for microarray experiments often multiple comparisons corrections are car-
ried out very small significance levels are in fact used, we would want to avoid
methods that solely use smoothing approaches. A reason for the bias because of
smoothing the variance may be due to the fact that with the normalization meth-
ods developed in recent years (see Section 3.6) the relation between variance and
expression level has been considerably reduced.
In particular, in Figure 3.5 for an individual two-color array and one of the two-
color experiments and in Figure 3.6 for one of the one-color experiments we show
the relation between the difference between the two signals (left side of Figure
3.5) or the variance and the average signal (other panels). As can be seen, the re-
lation between average signal and variance is minimal, and in fact the correlation
between the variance from one experiment to the next experiment for the same
gene is much larger than the correlations in these figures (data not shown). Thus,
locally averaging the variances will sometimes yield variances that are too large
and sometimes yield variances that are too small. When the variance is too small
there is a substantial chance of incorrectly identifying a gene as differentially ex-
pressed.

• A permutation approach to obtaining P-values severely reduces the number of
genes that are identified as differentially expressed for experiments with a lot of
differential expression. This limits our conclusions about the Shrinking approach
(Cui et al., 2005), as for this approach it is the only suggested method to obtain
P-values.

All approaches that we studied are either available in R-packages available from
CRAN or Bioconductor, or are easily implemented in R code.

3.6 Appendix: Normalization of arrays

Two-color arrays For the two-color arrays we first excluded all spots with a log
base 2 expression of less than 5, and spots whose background level was higher than
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Figure 3.5: Relation between log expression ratio and average log expression for one
normalized two-color array, and the standard deviation of log expression ratios with
the average log expression ratio for all arrays from that experiment.
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the foreground level for either channel. This excludes about 11.5% of the spots, pri-
marily spots that do not hybridize well. In particular of the 13,440 spots on our ar-
rays, 1,296 were excluded on all 36 arrays: of the remaining spots only about 2%
were excluded. We then subtracted the background and used a print-tip loess correc-
tion using the Limma function normalizeWithinArrays()with defaults. Any
spot that had at least two estimates for a particular experiment was included in our
analysis. We employed various graphical QC tools, and felt that all arrays were of
good quality.

One-color arrays For all methods we analyzed gene expressions that were normal-
ized by the RMA algorithm of Irizarry et al. (2003b). We also carried out the same
analysis using the log of the MAS5 Average Difference summary and obtained essen-
tially the same results. For RMA we normalized all arrays simultaneously; however
when we analyzed each of the experiments separately, the results were again essen-
tially the same. We employed various graphical QC tools, and felt that all arrays were
of good quality.
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4.1 Abstract

Compared with an individual genome scan study for quantitative trait locus (QTL)
mapping, meta-analysis, which can formally utilize the data from multiple genome
scan studies, generally can provide higher statistical power, more precise estimates
of QTL location and effect, and tighter confidence intervals for QTL location and
effect. Therefore, meta-analysis is very useful for prioritizing regions for subsequent
follow-up studies. In some situations, investigators who already have initialized a
genome scan study would like to evaluate the ”believability” of apparent linkage
signals by examining the results of other genome scan studies of the same trait
and informally update their beliefs about which linkage signals in their own scan
most merit follow-up via a subjective-intuitive integration approach. In this situation,
meta-analysis methods may not be suitable because they treat all genome scan studies
”equally”, which is not subjective to the initial genome scan study conducted by the
investigator. In the contrast, empirical Bayes (EB) based methods that can formally

45



46 EB METHOD FOR MULTIPLE GENOME SCANS

borrow information from other genome scan studies to update the estimates and ad-
just the confidence in finding in an objective fashion could be useful. In empirical
Bayes based methods, the linkage statistics from other genome scan studies are used
as prior information to update the linkage statistics obtained from the genome scan
study conducted by the investigator. The updated linkage statistics can then be used
to estimate the QTL location and effect. In this chapter, we summarize the empirical
Bayes based methods for multiple genome scan studies using sib pairs. We also eval-
uate their performance in terms of their power to and their accuracy to estimate the
QTL location and effect, using extensive simulations based on actual marker spacing
and allele frequencies from available data. Results indicate that the empirical Bayes
based methods are insensitive to between-study heterogeneity. The empirical Bayes
based methods can yield higher statistical power, generate more precise estimates for
the QTL location and effect, and provide narrower confidence intervals than results
from an individual study.

4.2 Introduction

Genome scan studies for linkage analysis have been widely used to search candi-
date regions containing quantitative trait loci (QTLs). However, most genome scan
studies for QTL mapping are analyzed without formal consideration of information
provided by other genome scan studies of the same trait. The resulting candidate
regions often contain a large number of functional genes due to the lower power
of individual genome scan studies. Consequently, the subsequent fine mapping and
positional cloning for these candidate regions may be problematic. When multiple
genome scan studies of the same trait are available, we may increase the power to
detect the linkage between markers and QTLs by using information provided from
all these studies. Methods that can formally integrate data from multiple genome
scan studies have been emerging as useful and powerful tools in the field of linkage
analysis for QTL mapping.

Marked heterogeneity can exist in multiple genome scan studies and pose daunting
challenges in such analysis. Different genome scan studies can use different genetic
marker loci and marker maps, different statistical methods to test for linkage, and
different sampling schemes. Furthermore, the QTL effect can vary across studies
because of disparate environmental effects and population substructures. The com-
bination of raw data from all studies with a well-designed pre-analysis procedure
would be a preferred approach to overcome such difficulties. However, in many sit-
uations this is not feasible because only some statistics, rather than the raw data, are
available. For these reasons, two closely related but distinct groups of methods have
been developed to test and map QTLs by integrating same type of statistics obtained
from multiple genome scan studies: Meta-analysis and Empirical Bayes (EB).

The first group of methods is meta-analyses, which can be viewed as a set of sta-
tistical procedures designed to summarize statistics across independent studies that
address similar scientific questions. Several meta-analysis methods have been devel-
oped to detect linkage between genetic markers and QTLs (Allison and Heo, 1998;
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Etzel and Guerra, 2002; Gu et al., 1998; Guerra, 2002; Guerra et al., 1999; Hedges
and Olkin, 1985; Li and Rao, 1996; Rice, 1997; Wise et al., 1999). For example,
Allison and Heo (1998) used Fisher’s method (Fisher, 1925) to show strong evidence
of linkage in OB regions by combining p-values from five published linkage studies
on these regions. They also illustrated this method’s applicability in the presence of
marked heterogeneity across studies. This technique has also been used by other re-
searchers (e.g., Guerra, 2002; Wise et al., 1999). However, it is difficult to use this
technique to estimate the parameters of interested in, such as the location and effect
of a QTL, because of the method’s nonparametric nature. At the same time, sev-
eral meta-analysis methods that can estimate the parameters of interest across stud-
ies, such as the location and effect of a QTL, by combining estimates of Haseman-
Elston regression slopes and associated variances at marker loci (Haseman and El-
ston, 1972) have been developed too (Etzel and Guerra, 2002; Gu et al., 1998; Li and
Rao, 1996). The weighted least-square estimator (WLSE) developed by Etzel and
Guerra (2002) does not require the same marker map or the same QTL effect across
all studies. For a more detailed review of these meta-analysis methods, please refer
to (Some References; BOOK CHAPTER in the Same Book).

The second group of methods is based on the EB framework (Beasley et al., 2005;
Bonney et al. 1992; Zhang et al., 2005). In EB based methods, the linkage statistics
(e.g., Haseman-Elston regression slopes and their associated variances at marker loci)
are obtained from each individual genome scan study and then the linkage statistics
from an individual study of interest are updated by incorporating the linkage statis-
tics from other studies. The updated linkage statistics can be used for detecting the
linkage between a marker and the QTL and mapping the location of the QTL. It is
worth emphasizing the key difference between the EB based methods and the meta-
analysis methods. In the empirical Bayes analysis, an individual genome scan study
of interest is identified as the primary study and the rest of studies are considered as
the background studies. Theoretically, each individual study can be claimed as the
primary study. However, the study of primary interest to an investigator would be the
study conducted by the investigator; presumably the investigator would be able to
obtain further genotypes from the individuals in the primary study for fine mapping,
while this type of information would not necessarily be available from the back-
ground studies. In the meta-analysis methods, each individual study is equivalent to
the other studies used and investigators are interested in the overall results.

The rest of this paper is organized as follows: the EB based method for the genome
scan studies using sib pairs and the simulation design are described in Methods sec-
tion; the assessment of the performance of the empirical Bayes based methods for de-
tecting linkage between markers and the QTL and mapping the location of the QTL
are presented in Results section; the conclusions, the implications, and the possible
extensions of the empirical Bayes based method are given in Discussion section.
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4.3 Methods

4.3.1 Haseman-Elston Regression Analysis for a Single Genome Scan Study with m
Markers using Sib Pairs

The Haseman-Elston Regression has been widely used to detect the linkage be-
tween genetic markers and QTLs using sib pairs. Suppose that the trait values, the
squared trait difference, and the estimated proportion of alleles shared identical-by-
descent (IBD) at a marker locus for the ith sib pair are denoted as y i = (yi1, yi2),
Y D

i = (yi1 − yi2)2, and πi, respectively. Then the Haseman-Elston method can be
represented by a simple regression of Y D

i on πi :

Y D = β0 + βπ + ε

The regression slope β has the expectation E(β) = −2(1 − 2θ)2σ2
g , where θ is the

recombination fraction between the marker locus and the QTL, and σ 2
g is the phe-

notypic variance explained by the additive effect of this QTL. Thus, the regression
slope β is 0 under the null hypothesis of no linkage, and is negative under the alter-
native hypothesis. Specifically, if there are m markers and the estimates of the slope
and its associated variance at each marker are denoted by β̂j and Ŝ2

j , (j = 1, . . . , m),

then the t statistic tj = −β̂j/
√

Ŝ2
j asymptotically follows a standard normal distri-

bution under the null hypothesis of no linkage. The null hypothesis is rejected with
the 5% nominal level at the j th marker if tj exceeds 1.645. It is also worth noting
that the regression slope and its associated variance are only estimated at the marker
loci with determined genotype in the original Haseman-Elston method. Due to the
coarse marker map in linkage analysis, this method is more suitable for detecting
linkage between markers and the QTLs rather than estimating the QTL location and
effect.

The Haseman-Elston methods assumes the normality of trait values and is robust
even this assumption is violated for a reasonably large sample size (n > 100 sib
pairs) (Allison et al., 2000). However, the original Haseman-Elston regression tends
to have lower power than the variance component method. Other modified Haseman-
Elston regression methods were subsequently developed (Amos 1994; Drigalenko
1998; Elston et al., 2000; Feingold, 2002; Sham et al., 2001; Xu et al., 2000). For
example, additional power can be acquired by regressing the mean corrected squared
sums of trait values Y S

i = (yi1− ȳ+yi2− ȳ) (Drigalenko 1998), the mean corrected
cross product of trait values Y P

i = (yi1 − ȳ)(yi2 − ȳ) = (Y S
i − Y D

i )2 (Drigalenko
1998; Elston et al., 2000), or a weighted combination of Y D

i and Y S
i (Xu et al., 2001)

on πi, where ȳ is the mean trait value over all sib pairs.
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4.3.2 The Interval Mapping (IM) Method to Detect Linkage between Markers and
QTLs and Estimate the QTL Location and Effect Based on m Markers from a
Single Genome Scan Study Using Sib Pair

Fulker at al. (1995) developed an interval mapping (IM) method to detect linkage
between markers and QTLs and to estimate the QTL location and effect. They first
used the estimated proportion of alleles shared IBD at all marker loci on a single
chromosome and the genetic distance between these markers to estimate the propor-
tion of IBD sharing at virtually any location on the chromosome and then perform
the Haseman-Elston regression at this location (Fulker et al., 1995). Suppose that
the estimates of regression slope and its associated variance at each analysis point q
along the chromosome are denoted by β̂q and Ŝ2

q , respectively. At any analysis point
q, the null hypothesis of no linkage is rejected at the nominal 5% level if the value of

test statistic t̂q = −β̂q/
√

Ŝ2
q is greater than 1.645. The analysis point, q̂ , that gives

the maximum value of the test statistic t̂q = −β̂q/
√

Ŝ2
q , is taken as the estimate for

the QTL location. The point estimate of QTL effect, σ 2
g , is given by σ̂2

g = −β̂q̂/2.

4.3.3 Empirical Bayes Model (Bayesian Hierarchical Normal Model)

In Bayesian analysis, the choice of reasonable prior distribution for parameters is
sometimes not obvious. However, if data from several independent studies are avail-
able, the prior information can be extracted from the data. Such approaches are called
empirical Bayes methods (Carlin and Louis, 2000a). These methods can be viewed
as approximations to a complete hierarchical Bayesian analysis; hybrid approaches
between classical frequentist methods and fully Bayesian methods. Both parametric
and non-parametric approaches exist (Carlin and Louis 2000b), but even the paramet-
ric varieties do not depend on strong distributional assumptions (Efron and Morris,
1973).

The empirical Bayes approach as proposed by Efron and Morris (1973; 1975) can
be described by a widely used two-level hierarchical normal model. Suppose β is
the parameter of interest and there are k populations available to estimate β i in each
population, where βi can be different among k populations. At the first level, the
maximum likelihood estimators β̂i(i = 1, . . . , k) for βi can be obtained and we
assume that β̂i|βi asymptotically follows a normal distribution, N(β i, S

2
i ). At the

second level, βi is specified by a normal model with an r -dimensional predictor
xi, a common regression coefficient μ , and an unknown variance A ≥ 0 ; i.e.,
βi|μ ∼ N(x′

iμ, A). Using the Bayesian rule, it is easy to compute the marginal
distribution of β̂i (given μ and A) and conditional distribution of β i (given β̂i, μ, and
A):

β̂i|μ, A ∼ N(x′
iμ, S2

i + A), i = 1, . . . , k (4.1)

and
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βi|β̂i, μ, A ∼ N((1 − Bi)β̂i + Bix
′
iμ, S2

i (1 − Bi)), i = 1, . . . , k (4.2)

where Bi = S2
i /(S2

i + A) is an unknown shrinkage factor. Generally, S 2
i is un-

known and is replaced by Ŝ2
i , the estimates of associated variance of βi. A and μ can

be estimated by the maximum likelihood methods or by more advanced techniques
developed by Tang and Morris (2003). Then we can use β̃i = (1 − Bi)β̂i + Bix

′
iμ

and S̃2
i (1−Bi) as the final estimator for βi and its associated variance, respectively.

4.3.4 Application of the Empirical Bayes Method to Each Marker Based on k
Studies with m markers and Identical Marker Map

Empirical Bayes methods have been used in many contexts, including genetic re-
search (Bonney et al., 1992; Li and Rao, 1996; Lockwood et al., 2001; Witte, 1997).
We tailored the general empirical Bayes procedure for linkage analysis. Assume that
data for the detection of linkage to the same QTL are available from k genome scans
using sib pairs. Within each of the k studies, a set of m markers with the identical map
are used. For each marker locus from each study the regression coefficient, β ij , is the
parameter of interest and describes the effect of the putative QTL on the phenotype.
The expectation of βij equals to −2(1 − 2θij)2σ2

gi at marker locus j(j = 1, . . . , m)
in study i(i = 1, . . . , k), where θij is the recombination fraction between the QTL
and the marker j in study i and σ2

gi is the total genetic variance of the QTL in study i.

From the Haseman-Elston regression analysis, we can obtain the estimator β̂ij for βij

and its estimated sampling varianceŜ2
ij(i = 1, . . . , k; j = 1, . . . , m). For k available

studies, all k studies are first used to estimate parameters μj and Aj (j = 1, . . . , m),
then the empirical Bayes estimators β̃ij and S̃2

ij for βij and associated variance can
be easily obtained using formulas (4.1) and (4.2) for each of k studies.

4.3.5 The IM-EB Method to Detect Linkage between Markers and QTLs and
Estimate the QTL Location and Effect Based on m Markers and k Genome
Scan Studies Using Sib Pairs

In this section, we give the detailed desription for the IM-EB method to detect linkage
between markers and QTLs and estimate the QTL location and effect from multiple
genome scan studies using sib pairs. We assume that data of genome scans using sib
pairs with the same trait are available and consider the first study as the primary study.
Within each of the studies, a set of markers are used within the same chromosomal
region and are denoted as Mij(i = 1, . . . , k; j = 1, . . . , m).

For the IM-EB method, the estimates of the regression slope and its associated vari-
ance, β̂iq and Ŝ2

iq (i = 1, . . . , k ) at each analysis point q on the chromosome, are
obtained using the IM method (Fulker et al., 1995). Then, the empirical Bayes esti-
mates, β̃iq and S̃2

iq (i = 1, . . . , k ), are obtained from each of the k studies by using
GRIMM (Tang and Morris, 2003). GRIMM is independently applied to each analysis
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point along the chromosome. The test statistic for the primary study is then calcu-

lated on the basis of t̂1q = −β̂1q/
√

Ŝ2
1qand t̃1q = −β̃1q/

√
S̃2

1q at the analysis point

q. The analysis point q̂ having a maximum value t̂1q̂ over the entire chromosome is
considered as the IM estimate of QTL location and consequently, the IM estimate of
σ2

1g is given by σ̂2
1g = −β̂iq̂/2. The same procedure can be applied to t̃1q to obtain

q̃ and σ̃2
1g , the IM-EB estimates of QTL location and effect, respectively. At each

analysis point q , the null hypothesis of no linkage is rejected with the 5% nominal

level by the IM estimator if the value of test statistic t̂1q = −β̂1q/
√

Ŝ2
1q is greater

than 1.645. Similarly, the null hypothesis is rejected at the 5% nominal level if the

value of test statistic t̃1q = −β̃1q/
√

S̃2
1q is greater than 1.645.

4.3.6 Simulation Designs

To investigate the performance of the empirical Bayes method to incorporate data
from multiple genome scan studies using sib pairs, we conducted the following sim-
ulations. We assumed that there is only one QTL with no background polygenic
variation and no shared sib environment effect, or equivalently that such effects are
subsumed into the residual variance. There were two alleles at the QTL with the high-
risk allele having a frequency of 0.05. We chose 15 microsatellite markers on chro-
mosome 11 that were used for a recent genome scan of Alzheimer’s disease (Blacker
et al., 2003) because it provides known parameters, including the location and the
allele frequencies at each marker locus, for simulations. The trait value of each indi-
vidual was generated according to the genetic model, y = μ + g + ε, where μ is the
overall trait mean across the population, g is additive effect of the high-risk allele,
and ε is the normally distributed random error. We set E(ε) = 0, cov(g, ε) = 0, and
μ = 70 and set the total variance of g and ε, σ2

g + σ2
ε as 1 for all studies.

For each simulation, 5, 10, or 15 studies were generated corresponding to a single
study of interest with 4, 9, or 14 background studies, respectively. We generated 500
unrelated sib pairs in each study. We used the same marker map for all studies. For
the primary study, the QTL was positioned 65cM from the p-terminus of the chro-
mosome. The heritability of QTL was set either to 0 (without QTL effect) or 15%
(with non-zero QTL effect). For background studies, the location and the heritability
of QTL could be same as, or different from that of the primary study. The location of
QTL in background studies was set either at 35cM or at 65 cM from the p-terminus
of the chromosome. The marker locations along with the QTL location are shown in
Figure 4.1. The heritability of QTL in each background study varied between 0 and
25% in increments of 5%, which represented variation from the primary study. The
number of background studies with non-zero QTL effect varied but all background
studies having a non-zero QTL effect were given the same value of heritability. This
simulation strategy can accommodate different degrees of heterogeneity among the
primary study and the background studies. It can also include a variety of combi-
nations of weak to strong linkage signals among the primary study and background
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studies. For example, we can set the QTL heritability in the primary study to 15%,
the heritability of half of the background studies to 0, and the heritability of the other
half of background studies to 25% to represent the situation that the primary study
has the moderate linkage signal while some background studies show small to no
QTL effect and some of background studies have stronger QTL effect. Other situa-
tions can be easily accommodated by varying the number of background studies with
non-zero QTL effect and their heritability.

Once the genotypic and phenotypic data were generated, the estimates of the Haseman-
Elston regression slopes and their associated variances at each marker or analysis
point in each study were determined by regressing the weighted combination of Y D

and Y S on π (Xu et al., 2001).

4.4 Results

To assess the performance of the empirical Bayes based method, IM-EB, in terms of
its power to detect linkage between markers and QTLs and its accuracy to estimate
the QTL location and effect, we adapted different simulation strategies and recorded
and used different summary statistics.

4.4.1 The Type I Error Rate and Power of the IM-EB method to Detect Linkage
between Markers and QTLs

We first investigate the type I error rate of the IM-EB method. It is important to un-
derstand that a null model in this context refers only to the study of interest, whether
or not the background studies contain a linked QTL. We generated 1,000 data sets
with 5, 10, and 15 studies. In all studies, the QTL was positioned 65cM from the
p-terminus of the chromosome. In the primary study, the heritability of QTL was set
to 0. In the background studies, the heritability was set either to 0 or some value
between 5% and 25% in increments of 5%. The number of background studies with
non-zero QTL effect varied. Under any particular condition, all background studies
with non-zero QTL effect had the same heritability. In the primary study, the null
hypothesis was rejected when the IM-EB statistics at 65cM from the p-terminus of
the chromosome exceeded 1.645. Figure 4.2 shows the type I error rate of the IM-
EB method, which is the proportion of simulations in which the null hypothesis was
rejected.

For 5 studies, the number of background studies with non-zero QTL effect was set
to 1, 2, 3, or 4. It can be seen when three or fewer background studies have non-zero
QTL effect, the type I error rate stays below to the nominal 5% error rate. When
all 4 background studies have a heritability of 10%, the type I error rate can be
greater than the nominal 5% error rate. The highest type I error rate is 8.5% for all
4 background studies having a heritability of 25%. For 10 studies, the number of
background studies with non-zero QTL effect was set to 2, 4, 6, 8, or 9. When there
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are fewer than 4 background studies having non-zero heritability as high as 20%,
the type I error rate is below to the nominal 5% error rate. The type I error rate is
inflated when 8 or more background studies have a heritability greater than 10%. The
highest type I error is 16%. For 15 studies, the number of background studies with
non-zero QTL effect was set to 3, 6, 9, 12, or 14. When fewer than 6 background
studies have a heritability as high as 25%, the type I error rates do not t exceed the
nominal 5% rate. Again, the type I error rate is inflated when 9 or more background
studies have a heritability greater than 10%. The type I error rate is 20% when all 14
background studies have a heritability of 25%. In summary, the type I error rate of
the IM-EB stays below to the nominal 5% rate when most of the background studies
have a heritability less than 10%. At the same time, we did find some inflated type
I error rates of the IM-EB method when most of background studies have a higher
heritability. This is expected because the empirical Bayes based method borrows
the information from the other studies. If there are a large number of studies with
the large QTL effect, the empirical Bayes based method will detect a QTL even
the results from the primary study shows small to no effect. However, from an EB
perspective, it is debatable whether this situation is truly a ”null’ situation.

We then investigate the power of the IM-EB method. We generated 1,000 data sets
with 5, 10, and 15 studies. In the primary study, the heritability of QTL was set
to 15%. In the background studies, the heritability was set either 0 or some value
between 5% and 25% in increments of 5%. The number of background studies with
non-zero QTL effect varied and all background studies with non-zero QTL effect had
the same heritability.

Figure 4.3 shows the power of the IM-EB method, which is the proportion of simu-
lations in which the null hypothesis was rejected. In these simulations, the QTL was
positioned 65cM from the p-terminus of the chromosome. In the previous subsection,
we used 1.645 as the 95% cutoff value to reject the null hypothesis of no linkage be-
tween the marker and the QTL. This value is only valid for one single study. When
the empirical Bayes based method was used, this cutoff value tends to be conser-
vative. We followed the method proposed by Beasley et al. (2005) to determine the
cutoff value. We simulated 1,000 data sets with 5, 10, and 15 studies. All studies had
no QTL effect. For the IM-EB method, the 95% cutoff values were 1.464, 1.406, and
1.224 for 5, 10, and 15 studies. These simulated cutoff values were used as critical
values to reject the null hypothesis at the nominal 5% level.

It can be seen from Figure 4.3, the power of the IM-EB estimator can be substantially
increased when a majority of background studies have the same or higher QTL effect.
When all 4, 9, and 14 background studies have a heritability of 15%, the power of
the IM-EB estimator increases from 0.191 (the power of the IM estimator for an
individual study) to 0.266, 0.343, and 0.466, respectively. When all 4, 9, and 14
background studies have a heritability of 25%, the power of the IM-EB estimator
increases to 0.322, 0.525, and 0.688, respectively. The power of the IM-EB estimator
also increases even when some of the background studies disagree with the primary
study. For example, when about half of the background studies have no QTL effect
and half of the background studies have the same heritability of 15%, the power of
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the IM-EB estimator is 0.224, 0.221, and 0.345 for 4, 9 and 14 background studies,
respectively. As would be expected, the increase in power is slightly less than the
situation when all of the studies agreed.

To see how the existence of other QTLs along the same chromosome affects the
power of the IM-EB method, we simulated data sets in which all background studies
had a heritability of 15% but half of them had the QTL positioned 35cM from the
p-terminus of the chromosome. The power of the IM-EB estimator at each marker
locus is shown in Figure 4.4. We find that the IM-EB estimator increases the power
to detect linkage near the QTL of interest at a very small cost of inflated type I error
rates at 35cM.

4.4.2 The Accuracy of the IM-EB estimates for QTL Location and QTL Effect

To investigate the accuracy of the IM-EB estimates for QTL location, we recorded
their mean value (MEAN), their standard error (STD), and the square root of the
mean squared difference between the estimates and the true value (MSE). The sim-
ulations adapted here were same with those described in the previous subsection.
Specifically, we generated 1,000 data sets with 5, 10, and 15 studies. In the primary
study, the QTL was positioned 65cM from the p-terminus of the chromosome and
the heritability of the QTL was set to 15%. In the background studies, the heritabil-
ity was set either to 0 or some value between 5% and 25% in increments of 5%. The
number of background studies with non-zero QTL effect varied. Under any particular
condition, all background studies with non-zero QTL effect had the same heritability.

The mean and MSE of the IM and IM-EB point estimates for the QTL location and
effect under several different simulation strategies are presented in Table 4.1 and 4.2.
Several general conclusions emerged from these two tables. First, as expected, the
empirical Bayes based method (the IM-EB method) using multiple studies estimate
the QTL location and effect more precisely and supply a smaller MSE than does
the IM method using an individual study in most situations we simulated. This im-
provement becomes more notable with more independent studies having larger QTL
heritability included in the analysis. For 5 studies, the MSE of the estimates for the
QTL location is reduced 5% (from 41.4 to 39.0) when all 4 background studies have
a heritability of 25%. For 10 studies, the MSE of the estimates for the QTL location
is reduced 18% (from 42.4 to 34.9) when all 9 background studies have a heritability
of 25%. Second, the heterogeneity among background studies and the disagreement
between the primary study and background studies only slightly affect the accuracy
of the IM-EB estimates. In addition, we did not observe a large bias for the estimates
of either the QTL location or effect in the presence of other QTLs and different QTL
effects in the background studies, as observed in Zhang et al. (2005).
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4.5 Discussion

With availability of multiple genome scan studies detecting the linkage between the
same QTL and the marker, there is a need to develop novel methods that can borrow
or combine information from all available studies. Historically, there are two kinds
of methods: the meta-analysis methods and the empirical Bayes based methods. In
this paper, we summarized the empirical Bayes based methods (Beasley at el., 2005;
Zhang et al., 2005) and assessed their performance using extensive simulations. We
found that the empirical Bayes based methods have more power to detect the QTL
and provide more precise estimates of QTL location and effect than do methods using
an individual study.

To assess the effect of the heterogeneity among studies, we assumed the background
studies could have no QTL effect, have a non-zero QTL effect different from that
of the primary study, or have the QTLs different from that of the primary study.
Although the influence of these factors varies, the empirical Bayes methods were
generally robust under all simulated situations. That is, they had more power to detect
the QTL and yielded more precise estimates for QTL location and effect, with type
I error increased only under extreme situations. In simulations, we assumed that all
studies had identical marker maps. This is not required by the empirical Bayes based
methods. In addition, varied marker maps across studies had the slight impact on the
empirical Bayes based methods and could be helpful in a few situations (Zhang et
al., 2005).

We did not compare the empirical Bayes based methods with meta-analysis methods
in this paper. Zhang et al. (2005) compared several empirical Bayes based methods
with a weighted least-square methods developed by Etzel and Guerra (2002). Their
results showed that no method was superior to any other under all simulation situ-
ations. Although it is great of interest to conduct such comparison, it is important
to point out that the empirical Bayes based methods introduced here are not meta-
analysis methods. In the meta-analysis methods, results from several studies of the
same relationship are combined to obtain an overall inference or estimate of that re-
lationship. In such an analysis, the results of the studies are combined with equal
regard weighted by their relative precisions. In the empirical Bayes based methods,
there is one study of primary interest, whereas the rest of studies are regarded as
background studies. The results obtained from background studies are incorporated
as prior information to improve the inference or estimate for the primary study.

In summary, we conclude that the empirical Bayes based methods can account for
between-study heterogeneity. They can have more power to detect linkage between
markers and QTL and provide more precise estimates for the QTL location and ef-
fect.
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Figure 4.1: The actual map for 15 micro-satellite markers from the National Institute
of Mental Health Alzheimer’s Diseases Genetics Initiative and the locations of two
hypothetical QTLs used in simulations. The minimum distances between the marker
and two QTLs, 65cM and 35cM from the p-terminus of the chromosome, are 9cM
and 4cM, respectively.
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Figure 4.2: The type I error rates of the IM-EB estimator at the 65cM from the p-
terminus of the chromosome with 5, 10, and 15 studies. The QTL in all studies were
positioned 65cM from the p-terminus of the chromosome. In the primary study, the
heritability of QTL was set to 15% and the number of background study having non-
zero QTL effect varied.
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Figure 4.3: The power of the IM estimator and IM-EB estimator with 5, 10, and 15
studies at 65cM from the p-terminus of the chromosome. The QTL in all studies
was positioned 65cM from the p-terminus of the chromosome. In the primary study,
the heritability of QTL was set to 15% and the number of background study having
non-zero QTL effect varied.
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Figure 4.4: The power of the IM estimator and IM-EB estimator with 5, 10, and
15 studies at the marker loci. In all studies, including the primary study and back-
ground studies, the heritability was set to 15%. In the primary study and half of the
background studies, the QTL was positioned 65cM from the p-terminus of the chro-
mosome. In another half of the background studies, the QTL was positioned 35cM
from the p-terminus of the chromosome.
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Table 4.1: The mean and MSE (in parentheses) for the point estimates of QTL loca-
tion.

Number of
Number of Background

QTLs in Number Studies with The Heritability in
Background of non-zero Background Studies

Studies Studies QTL effect Method 5% 15% 25%

5 2 IM 71.8(43.4) 69.2(43.6) 69.6(43.9)
5 2 IM-EB 72.2(44.2) 70.6(42.1) 68.7(42.5)
5 4 IM 65.4(41.7) 66.8(41.9) 69.5(41.4)
5 4 IM-EB 64.9(40.6) 67.8(40.7) 69.3(39.0)

10 4 IM 71.1(41.8) 68.2(42.2) 69.6(42.4)
One QTL 10 4 IM-EB 72.0(41.4) 68.1(40.2) 70.0(40.1)
at 65cM 10 9 IM 70.8(43.5) 71.0(41.8) 69.9(42.2)

10 9 IM-EB 68.9(41.9) 69.5(37.5) 67.2(34.9)
15 6 IM 72.4(42.6) 70.4(42.6) 70.8(41.9)
15 6 IM-EB 71.9(43.3) 68.4(40.4) 70.8(38.3)
15 14 IM 69.8(41.2) 68.3(42.7) 71.0(43.2)
15 14 IM-EB 69.9(39.3) 69.4(38.5) 68.7(33.2)

5 2 IM 70.8(42.7) 70.8(42.6) 66.0(42.2)
5 2 IM-EB 69.4(42.3) 70.2(42.4) 64.8(41.9)
5 4 IM 67.8(41.5) 70.0(42.9) 70.641.9)
5 4 IM-EB 66.3(41.1) 68.6(41.2) 65.8(40.2)

One QTL 10 4 IM 72.0(42.2) 69.1(42.5) 72.0(43.0)
at 65cM 10 4 IM-EB 71.6(41.7) 68.4(42.9) 67.7(41.2)

One QTL 65cM 10 9 IM 70.2(42.6) 68.7(42.5) 68.2(42.4)
at 35cM 10 9 IM-EB 65.8(42.0) 65.2(38.3) 62.7(36.8)

15 6 IM 69.9(41.3) 69.7(41.9) 69.8(42.5)
15 6 IM-EB 70.6(41.8) 66.0(40.7) 64.8(39.5)
15 14 IM 69.8(43.1) 70.7(42.7) 69.7(41.4)
15 14 IM-EB 67.4(41.5) 63.6(37.9) 60.3(34.2)
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Table 4.2: The mean and MSE (in parentheses) for the point estimates of QTL effect.

Number of
Number of Background
QTLs in Number Studies with The Heritability in

Background of non-zero Background Studies
Studies Studies QTL effect Method 5% 15% 25%

5 2 IM 0.27(0.18) 0.27(0.18) 0.26(0.18)
5 2 IM-EB 0.22(0.14) 0.23(0.14) 0.23(0.14)
5 4 IM 0.27(0.18) 0.27(0.17) 0.26(0.18)
5 4 IM-EB 0.22(0.14) 0.22(0.14) 0.23(0.14)

10 4 IM 0.27(0.19) 0.27(0.18) 0.26(0.18)
One QTL 10 4 IM-EB 0.17(0.10) 0.17(0.10) 0.18(0.10)
at 65cM 10 9 IM 0.27(0.18) 0.27(0.18) 0.27(0.18)

10 9 IM-EB 0.17(0.10) 0.19(0.10) 0.19(0.10)
15 6 IM 0.27(0.18) 0.27(0.18) 0.27(0.18)
15 6 IM-EB 0.14(0.08) 0.15(0.09) 0.16(0.09)
15 14 IM 0.27(0.18) 0.27(0.18) 0.27(0.18)
15 14 IM-EB 0.15(0.08) 0.16(0.09) 0.17(0.08)

5 2 IM 0.26(0.17) 0.26(0.17) 0.27(0.18)
5 2 IM-EB 0.21(0.13) 0.22(0.13) 0.22(0.14)
5 4 IM 0.27(0.18) 0.27(0.18) 0.26(0.17)
5 4 IM-EB 0.22(0.14) 0.22(0.14) 0.23(0.14)

One QTL 10 4 IM 0.27(0.18) 0.27(0.17) 0.27(0.18)
at 65cM 10 4 IM-EB 0.16(0.09) 0.17(0.09) 0.17(0.10)

One QTL 65cM 10 9 IM 0.27(0.18) 0.27(0.18) 0.27(0.18)
at 35cM 10 9 IM-EB 0.17(0.09) 0.18(0.10) 0.19(0.10)

15 6 IM 0.27(0.18) 0.27(0.18) 0.27(0.18)
15 6 IM-EB 0.14(0.08) 0.15(0.08) 0.15(0.08)
15 14 IM 0.27(0.17) 0.27(0.18) 0.28(0.19)
15 14 IM-EB 0.14(0.07) 0.16(0.08) 0.17(0.08)
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5.1 Introduction

Genome-wide linkage studies have been extensively used to identify chromosomal
regions which may harbour susceptibility genes for complex diseases. The early en-
thusiasm for such studies has been replaced by the realisation that most complex
disease genes have only a minor effect on risk, and consequently many linkage stud-
ies have low power to detect such genes (Risch and Merikangas, 1996). This was
well illustrated by a compilation of 101 genome-wide linkage studies in 31 diseases,
which found that few studies achieved significant evidence for linkage, and there was
little replication within each disease (Altmuller et al., 2001). Replication of linkage
is an important concept in genome-wide linkage studies: two studies obtaining high
(if not significant) LOD scores in the same approximate region lends further weight
to these results. This ad hoc method of comparing results across studies is formalised
in meta-analysis, which provides statistical evidence for the co-localisation of link-
age evidence across studies. Meta-analysis can also provide a solution to the lack
of power in individual studies: combining weak evidence of linkage from several
studies may show an overall significant effect.

Several methods for meta-analysis of linkage studies have been proposed. The gold
standard is a complete analysis of genotype data from all contributing studies (of-
ten termed ‘mega-analysis’). However, many study groups are reluctant to share raw
genotype data, particularly if they are restricted by industrial partnerships. There are
also technical problems of pooling different marker maps, and difficulties in finding
an analysis method that is suitable for all studies. Pooling genotypes in short candi-
date regions has worked well in many collaborative studies (Demenais et al., 2003;
Levinson et al., 2002).

63
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5.2 Statistical methods for meta-analysis of linkage studies

The meta-analysis methods used in epidemiological studies are difficult to apply di-
rectly to genetic linkage studies. Methods that pool effect sizes (e.g. odds ratios)
across studies are inappropriate as linkage studies frequently report results as a test
statistic or p-value. In addition, we wish to assess linkage evidence across a region,
not at a single location. Novel meta-analysis methods have therefore been developed
to take account of the unique design and analysis strategies used in genetic studies.

For a meta-analysis of p-values at a single point, Fisher’s method for pooling p-values
can be used, provided LOD score values of zero are treated correctly (Province,
2001). However, unless testing for linkage at a strong candidate gene, specifying
a single location for the analysis may not be optimal. Simulation studies show that
maximum LOD scores have poor localisation, and can arise up to 30cM from a sus-
ceptibility gene (Cordell, 2001). Assessing evidence across a region therefore im-
proves the power to detect linkage in a meta-analysis; this strategy is implemented
in the Multiple Scan Probability (MSP) method (Badner and Gershon, 2002b). This
method extends Fisher’s p-value method, using the minimum p-values attained in a
region, with a correction to the p-value for the total region length included in the anal-
ysis (see below for further details). The meta-analysis of identity-by-descent (IBD)
sharing in affected sib pairs has been proposed for both discrete and quantitative
traits (Gu et al., 2001) (***see also chapters in this book). Performing meta-analysis
on this parameter of effect size is methodologically appealing. However, the IBD
sharing statistic is rarely reported in publications, and some methods rely on identi-
cal markers being genotyped in each study, which severely restricts their application.

5.3 Genome Search Meta-Analysis method

The Genome Search Meta-Analysis (GSMA) method (Wise et al., 1999) was devel-
oped to circumvent some common problems of performing meta-analysis on genome-
wide linkage studies. The GSMA is a non-parametric method, with few restrictions
or assumptions, so that any genome-wide linkage search can be included, regardless
of study design or statistical analysis method.

*** RG: Add intro comment on types of studies leading to the lod scores or p-values
for the GSMA. In general, can one have any test stat?

***phone: find part where she mentions this and move/add to here

*** RG: Add a comment regarding association studies: (a) does GSMA work for
these? (b) can/should assoc. studies be included in a MA with linkage studies? (dis-
cuss)

***CL: mention that this applies to linkage and it’s not obvious how would extend to
assoc (since testing assoc with particular alleles, which might not be common across
studies)

In the GSMA, the entire genome is divided into bins of approximately equal width
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(measured in cM). We conventionally use 120 bins of 30cM length, so that for chro-
mosome 1, the region between 0 and 30cM is assigned to bin 1.1, between 30-60cM
to bin 1.2, etc..

***RG: (a) include sex chromosomes? ***DG fix: (b) redo labeling so that it’s
clearer (c) what to do when the chromosome doesn’t partition into 30 cM regions?
(d) no overlap across chromosomes?

Let the number of bins be n , and the number of studies be m. For each study, the
maximum LOD score (or minimum p-value) within each bin is identified, and the
bins are ranked, with the most significant result achieving a rank of n, the next highest
result a rank of n − 1, etc.. Across studies, the ranks for each bin are summed; the
summed rank forms the test statistic for this bin. A high summed rank implies that the
bin has high LOD scores within individual studies, and may contain a susceptibility
locus. Under the null hypothesis of no linkage, the summed rank for a bin will be the
sum of m ranks, randomly chosen from 1, 2, . . . , n with replacement. Significance
levels for each bin can be determined from the distribution function of summed ranks
(Wise et al., 1999) or by simulation.

***CL: Is there a preference? On what parameters does the sampling distribution
depend?

Under no linkage, the probability of attaining a summed rank r in a specific bin, from
m studies and n bins is:

***DG: check formula

P (
m∑

i=1

Xi = r) =

⎧⎨⎩
0 for r < m
1

nm

∑d
k=0(−1)k

(
m
k

) (
r−kn−1

m−1

)
for m ≤ r ≤ mn

0 for R > m,

where Xi = rank of study i and d = integer part of (r − m)/n (Wise et al., 1999).
Hence the probability of obtaining a summed rank of r or greater (i.e. the p-value) in a
bin can be calculated. This bin-wise p-value, pSR, can also be obtained by simulation,
permuting the bin-location of the assigned ranks.

***DG: ‘bin-location of the assigned ranks’ - not quite right wording permute ranks
across bin location labels

For each study, the ranks within a study are randomly re-assigned to bins, and then
across studies the summed rank calculated for each bin. For d permutation replicates,
dn summed rank values are obtained, and the p-value for an observed summed rank
robs associated with a given bin is calculated from rsim, the number of simulated
bins with summed rank greater than or equal to the observed summed rank . The
p-value is then pSR = (rsim +1)/(dn+1), where n is the number of simulated bins
(North et al., 2003). Calculating critical values by simulation is particularly appro-
priate when the assigned ranks depart from the integer values 1, 2, . . . , n assumed in
the distribution function above, as happens through tied ranks or missing values (see
Table 5.1).
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The GSMA was developed to encompass diverse study designs and analysis meth-
ods. The linkage evidence may be extracted from any analysis method: for exam-
ple, multipoint LOD scores calculated at each 1 cM, LOD scores calculated at each
marker genotyped with the bin, or parametric LOD scores calculated at a series of
recombination fractions for each marker. For parametric LOD scores, linkage is of-
ten tested using a series of models with different modes of inheritance or different
penetrance/frequency parameters. The evidence for linkage can be assessed across
all models analysed, provided the underlying distribution of LOD scores is approx-
imately equal in each model; this can be determined from the distribution of LOD
scores across the genome. Thus, the maximum evidence for linkage within a bin
would be the highest LOD score calculated, regardless of the model under which it
was obtained.

The bin-wise summed rank p-value pSR assesses the information in multiple binsand
should therefore be corrected for multiple testing. With 120 bins, under no linkage,
6 bins would be expected to attain pSR < 0.05, and 1.2 bins to attain pSR < 0.01.
Following Lander and Kruglyak (Lander and Kruglyak, 1995), we define genome-
wide evidence for linkage as that expected to occur by chance once in 20 GSMA
studies, and suggestive evidence for linkage as that expected to occur once in a single
GSMA study (Levinson et al., 2003). Using a Bonferroni correction on 120 bins
gives p = 0.00042 (= 0.05/120) for genome-wide significance within a study, and p =
0.0083 (= 1/120) for suggestive evidence of linkage.

***RG: Doesn’t seem right; genomewide: 1 in 20 studies, suggestive: 1 in a single
study

***DG: tighten up or ask CL

For a genome-wide assessment of linkage, an ordered rank (OR) p-value (p OR) may
be used (Levinson et al., 2003).

***RG: Give some interpretation of ordered p-values? ***DG: tighten up or ask CL

This uses simulations of the complete GSMA to compare the summed rank of the
observed kth highest bin with the simulated distribution of summed ranks of the
kth highest bin, i.e. compares the ‘place’ of the bins in the full listing of results.
Therefore, in a simulation of 5000 complete GSMAs, the bin with the highest ob-
served summed rank is compared to all 5000 bins with highest summed rank, and
the ordered rank p-value pOR calculated. Similarly, the summed rank of the bin in
the kth place is compared to summed ranks of all bins lying in k th place. This test
can identify evidence for many bins with increased evidence for linkage, although
the evidence for linkage within each bin may be modest. In the study of 20 genome
wide searches for schizophrenia, 12 bins in the weighted analysis had significant
summed rank and significant ordered ranks (pSR < 0.05, pOR < 0.05). Our simula-
tions based on these studies showed that this combination of significant results was
not consistent with occurring by chance (not observed in 1000 GSMA simulations
of an unlinked study). The combination of a significant pSR and pOR is therefore
highly predictive of a linkage within a bin, however empiric criteria for linkage for
an arbitrary number of studies have not yet been developed (Levinson et al., 2003).
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***RG: Is there a recommendation for multiple testing correction of ordered p-
values? ***DG: goes along with above

In assessing linkage we recommend the following hierarchy for interpreting results:

***DG: how is this a hierarchy (confusing within/between studies)

1. A genome-wide significant summed rank p-value (pSR < 0.05/#bins),

2. Nominal evidence for linkage in both statistics (pSR < 0.05, pOR < 0.05)

3. Nominal evidence for linkage in the summed rank (pSR < 0.05).

No evidence for linkage should be declared where bins do not have a significant
summed rank p-value. Within bins with a significant summed rank, a significant or-
dered rank p-value can be considered to enhance the evidence for linkage. Clearly, if
the kth bin has nominal evidence for linkage under both statistics, then any bin with
higher summed rank must also be considered significant. By plotting the observed
summed ranks by size, with the distribution of ordered ranks, a ‘scree slope’ may be
seen where the summed ranks decrease rapidly and the ordered ranks become non-
significant (see Figure 2, in the inflammatory bowel disease GSMA (van Heel et al.,
2004)).

***DG: see if can get permission to include this plot

***DG: ask CL if can get example plots of ind. studies and meta-an p-value of
summed ranks, a figure of the method (like fig 1 in vanHeel, not like fig 1 here,
which addresses the robustness of the method)

In regions where the pSR > 0.05 but pOR < 0.05, one interpretation is that the power
to identify linkage in these bins is low, and a larger meta-analysis might increase
significance of pSR, whilst retaining the significance of the ordered rank statistic.

5.4 Collaborative or published information?

Two main approaches are used to carry out a GSMA analysis. Firstly, the GSMA
may be based on published information, for example extracting linkage statistics
(NPL/MLS scores, p-values, etc.) from graphs and tables. In some cases, investiga-
tors may have posted detailed genome-wide results or original genotype data on a
website. In papers, genome-wide studies are frequently displayed as line graphs of
linkage statistics along each chromosome. This may be used in the GSMA by di-
viding each chromosome into the required number of equal length bins, and reading
off the maximum statistic attained in each bin. Inaccuracies in the method arise from
different marker maps used in each study, or different chromosome lengths (so that
bins will not be exactly compatible across studies). If marker names are given, bins
may be designated more accurately by mapping the bin boundary markers relative to
the genotyped markers. In some studies, tables of linkage statistics attained at each
marker genotyped are given. These markers may be placed into relevant bins, and the
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maximum linkage statistic for each bin identified. Common problems arising from
the use of published data are listed in Table 5.1, with possible solutions.

A more satisfactory method of performing a meta-analysis study is to form a collabo-
ration of relevant research groups, and use computer files of LOD scores (e.g. output
files generated from Genehunter, Allegro, etc.). This gives full information on the
location and magnitude of linkage statistic, and should improve the accuracy of the
resulting study. However, if some researchers do not wish to participate, the organis-
ers must then choose between an incomplete meta-analysis of high quality data and
a complete meta-analysis of lower quality data. In practice, meta-analyses of genetic
studies have been widely supported by researchers (e.g. schizophrenia (Lewis et al.,
2003), bipolar disorder (Segurado et al., 2003), and inflammatory bowel disease (van
Heel et al., 2004)).

In any meta-analysis, the investigators rely on the high quality of results generated
by the original studies. Any errors due to genotyping problems, inaccurate phenotype
definition, incorrect pedigree reconstruction, or poor analysis methods will be carried
through to the meta-analysis, and will reduce power to detect evidence for linkage.
Errors seem likely to be random in each study, and should therefore not introduce a
bias to the meta-analysis results.

5.5 Summed ranks or average ranks?

The GSMA was originally formulated using summed ranks, where the highest rank
n is assigned to the bin with the strongest evidence for linkage. This follows the
statistical convention that high test statistics (i.e. summed rank) show more evidence
against the null hypothesis. An alternative, more intuitive, approach is to assign rank
1 to the ‘best’, most significant bin, and then use the average rank as a test statistic
so that low average ranks give stronger evidence for linkage (Levinson et al., 2003).
Statistically these approaches are equivalent, and a summed rank of R from n bins
and m studies can be converted to an average rank as (n + 1) − R/m.

5.6 Bin width

The GSMA is heavily dependent on the chosen bin width. Our original description
of the GSMA listed 120 bins, defined by specific boundary markers (see table at
http://www.kcl.ac.uk/depsta/memoge/gsma/ for full marker-bin in-
formation). The exact bin width depends on both chromosome length (to give equal
width bins on each chromosome) and marker location. Other studies have chosen
different bin widths (see Table 5.2). Although narrow bins may intuitively provide
more information (see Figure 5.1), localisation through linkage information is broad.
Adjacent bins may show evidence for linkage (see, for example, rheumatoid arthri-
tis (Fisher et al., 2003), inflammatory bowel disease (van Heel et al., 2004) GSMA
studies) and simulation studies have shown that the strongest information for linkage
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may arise in the bin flanking the true location (Levinson et al., 2003). In a study of
age-related macular degeneration (Fisher et al., 2005), the original 120 bins (of 30cM
length) were then bisected, and ranks (for 240 bins) re-assigned to determine whether
more bins would improve localisation information or identify novel loci. The results
were disappointing, with similar evidence for linkage spreading across several 15cM-
width bins, and no novel regions were identified. The relative advantages of narrow
or wider bins are listed in Table 5.3.

5.7 Weighted analysis

The original formulation of the GSMA assumed that all studies contributed equally.

However, a study of 500 affected sibling pairs (ASPs) has higher power to detect a
true locus than a study of 100 ASPs. This aspect can be reflected in the meta-analysis
by weighting the studies by sample size. The function sqrt(#genotyped affected in-
dividuals) has been used in many studies (see Table 5.2) and increased the power
to detect linkage by approximately 7% compared to unweighted analyses in a simu-
lation study based broadly on studies in the schizophrenia GSMA (Levinson et al.,
2003). The optimal weighting function is unclear, particularly when some studies
have used extended pedigrees and others have used ASPs. The power to detect link-
age will depend on the locus effects (mutation frequency, penetrance), and for some
loci, extended pedigrees may have higher power to detect linkage while affected sib
pairs may be the optimal sampling unit for other genes. Defining a single weighting
parameter is therefore somewhat unsatisfactory.

The chosen weighting function can be standardised by its average value for all stud-
ies, so that the mean weight is 1. Using a narrow range of weights (e.g. 0.9 – 1.1)
will give an analysis that is very close to the unweighted analysis. However, using
one study with a very high weight (e.g. four studies with weights 3.0, 0.4, 0.3, 0.3)
will give results close to those obtained in this single study. Both these situations
should be avoided, and alternative weighting functions may need to be tested.

5.8 GSMA software

Software to perform GSMA on genome-wide linkage studies is available fromhttp:
//www.kcl.ac.uk/depsta/memoge/gsma/ (Pardi et al., 2005). This pro-
gram is written in C++ and available on Windows, Mac, and Unix/Linux platforms.
The data input is a table of maximum linkage statistics for each bin, for each study.
The program allows for an arbitrary number of bins and studies. Missing values are
permitted, and bins replaced with the median linkage statistic for that study. For
studies reporting p-values, the entry values should be 1 − p-value to ensure correct
ranking of results. The program calculates the summed rank, then determines the
summed rank and ordered rank p-values (p SR, pOR) by simulation. The user may
determine the number of simulations, and the program is rapid, completing 10,000
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Table 5.3: Comparison of properties affecting choice of bin width

Property Narrower bins Wider bins
(e.g. 120 x 30cM bins) (e.g. 60 x 60cM bins)

Bin width Little variability Unequal bin widths for
different length chromosomes

Correlation in ranks Highly correlated, particularly Low correlation
in adjacent bins for multipoint linkage analysis.

May violate distributional
assumptions for test statistic.

Localisation Reasonable, although adjacent Poor
bins may be significant

Power to detect High, except where Lower, except where wider
linkage maximum LOD scores occur in bins substantially increases the

different bins study rank in linked regions

Consistency of bin Poor, especially based on More overlap between bins in
definition across published information adjacent studies, even when
studies poorly defined

simulations in under 3 seconds on a desktop PC. Weighted and unweighted analysis
is performed, using user-defined weights. Three results files are output: (a) results for
the most significant bins only, (b) a full genome listing of bin, summed rank, p SR,
pOR (weighted and unweighted analyses), and (c) ranks assigned to each study, for
data checking.

5.9 Power to detect linkage using the GSMA

***phone: clarify power here, is there some parameter? Define what power means
here. No effect size anywhere in the power discussion. What is the genetic effect you
are trying to detect?

An extensive simulation study of the GSMA was carried out by Levinson et al. (2003)
based on genome scans contributed to the meta-analyses of schizophrenia (Lewis
et al., 2003) and bipolar disorder (Segurado et al., 2003). For the simulation, a num-
ber of sib pairs with broadly equivalent information to the pedigrees from the original
studies were used, with 1625 ASPs for schizophenia, 1017 ASPs for bipolar disor-
der (narrow phenotype definition), and 501 ASPs for bipolar disorder (very narrow
phenotype definition). These three studies therefore give a wide range of study sizes
covering those seen in many GSMA studies (Table 5.2).

The schizophrenia study had high power to detect linkage with a locus conferring a
sibling relative risk (λs) of 1.3 at a significance level of p < 0.01.

***RG: ‘detect linkage’ - bin containing the disease gene?

For a significance level of 0.05, a power of at least 70% was attained in the following
situations:
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• 1625 ASPs (schizophrenia), for a locus with λs = 1.15,

• 1017 ASPs (bipolar disorder, narrow phenotype) for a locus with λ s = 1.3,

• 501 ASPs (bipolar disorder, very narrow phenotype) for a locus with λ s = 1.4.

Full details of other assumptions required in the simulation, including the number
of genotyped parents, marker density, and number of loci simulated are given in the
original paper (Levinson et al., 2003).

***RG: (below): ‘power’ seems ill-defined, or at least something is unclear.

The power of a study to detect linkage depends on the number of studies m and the
number of bins n, in addition to the genetic effect size in each study. The average
rank threshold for declaring genome-wide, suggestive or nominal linkage changes
with the number of studies (m = 4, 7, 10, 15, 20) and the number of bins (n =
60, 120), as shown in Figure 5.1. Note that the thresholds for genome-wide (p GW )
and suggestive (pSUG) linkage depend on the number of bins used: p GW = 0.00042
and pSUG = 0.0083 for 120 bins, and pGW = 0.00056 and pSUG = 0.017 for 60 bins;
nominal evidence for linkage was fixed at p = 0.05 throughout.

***RG: where do the thresholds come from? Fig 1? What reported ranks?

With 120 bins, an average rank threshold for nominal linkage is 32 for 4 studies,
but over 48 for 20 studies – so the average rank is not even within the top third of
reported ranks.

***RG: meaning between 1 and 40?

An average rank of 32 gives nominal evidence for linkage with 4 studies, but pro-
vides genome-wide evidence for linkage with 20 studies. For a given study size,
relative to 120 bins an analysis with 60 bins requires smaller average ranks for link-
age (Figure 5.1). Thus, the evidence must be stronger by pooling smaller correlated
bins into wider ones. Provided the maximum LOD scores for a locus localise to a
narrow region, using narrow bins provides the most evidence for linkage: with 10
studies, an average rank of ≈ 20 gives genome-wide evidence for linkage if this is
obtained using 120 bins, but only nominal significance with 60 bins.

***RG: The setting does not take account of the assumption that the locus is narrowly
defined.

Reducing the number of bins could, however, increase the power to detect linkage
if the LOD scores’ peaks are too widely spread to be contained in a single bin (for
example if the locus lies close to a bin boundary), so that the average ranks decrease
using fewer bins.

***RG: Does the figure correspond to a simulation? (Details of simulation given by
Levinson et al).

One critical issue is the loss of information arising when the GSMA divides the
genome into discrete bins. ***Two simulation studies have compared the power of
the GSMA to the power of ‘mega-analysis’, based on pooling the raw genotype data
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Figure 5.1: Critical values of the average rank required for genome-wide, suggestive,
and nominal evidence for linkage, by number of bins.

from each study. Demple and Loesgren (Dempfle and Loesgen, 2004) showed that
the power of the GSMA was less than the mega-analysis approaches tested, but they
applied the Lander and Kruglyak criteria for genome-wide significance, which is
much more stringent than using a Bonferroni multiple testing correction (0.05/#bins).
Using this appropriate, less stringent, correction, Levinson et al. (2003) showed that
the power of the GSMA to detect linkage was actually higher than for the analysis of
pooled genotypes.

*** RG/DG: !!! This result seems surprising and possibly counter-intuitive and re-
quires additional comment.

*** RG: Also see Guerra and Goldstein papers
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5.10 Extensions of the GSMA

Many different diseases have been studied using the GSMA, but little further method-
ological development has been carried out. Some authors have proposed minor en-
hancements to the method. For example in their study of celiac disease, Babron et al.
(2003) used a summed rank function that was a weighted average of the ranks of a bin
and two flanking bins. This extends the potential area in which evidence for linkage
can be shown, since high linkage statistics in a flanking bin will be included. How-
ever, it will also increase the correlation between summed ranks in adjacent bins. An
alternative approach to the problem of maximum LOD scores being attained in ad-
jacent bins in different studies is ‘pooled bins’ used in the rheumatoid arthritis study
(Fisher et al., 2003). Here, adjacent bins are pooled, and the original analysis of n
bins is reanalysed as two analyses of n/2 bins each, where bins 1+2, 3+4, . . . are
pooled in the first analysis, and 2+3, 4+5 . . . are pooled in the second analysis. This
analysis would be valuable where a true locus lies close to a bin boundary, and the
bin-location of maximum linkage evidence is inconsistent across studies. However,
as Figure 5.1 shows, reducing the total number of bins reduces the power to detect
linkage.

***RG: Has argued both ways: increasing power with increasing number of bins,
increasing power with decreasing number of bins.

In their study of cleft lip/palate, Marazita et al. (2004) use a series of overlapping
bins from 0-30cM, then 10-40cM, 20-50cM, etc. and assess the maximum evidence
for linkage across each possible bin. This should give better localisation information,
and may determine whether two linkage peaks exist in one region. However, there
are unresolved problems of multiple testing.

Recently, Zintzaras and Ioannidis (2005b) provided a major extension to the GSMA
in developing methods to test for heterogeneity of linkage evidence within a bin. Het-
erogeneity testing is a standard component of meta-analysis in epidemiological stud-
ies, where researchers test for evidence of different effect sizes across studies, but has
not previously been implemented in the GSMA. They apply these methods directly
to the rank statistics of each study, introducing three highly correlated heterogene-
ity statistics. The significance of each statistic is assessed by simulation, randomly
reassigning the ranks to bins within each study, and recalculating each heterogene-
ity statistic. The proportion of simulated bins with Q-statistics above the observed
value (for high heterogeneity), or below the observed value (for low heterogeneity)
is then tabulated for a p-value. Zintzaras and Ioannidis (2005b) applied the meth-
ods to published ranks in GSMA studies of rheumatoid arthritis (Fisher et al., 2003)
and schizophrenia (Lewis et al., 2003). They identify several bins in each study that
show evidence for high heterogeneity (different evidence for linkage across studies)
or low heterogeneity (consistent linkage evidence). The authors acknowledge that the
distribution of the heterogeneity statistics may depend on the summed rank statistic
attained within the bin. They therefore test for heterogeneity under two scenarios:
where the observed heterogeneity statistic is compared to all simulated bins, and
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where the observed heterogeneity statistic is only compared to simulated bins with
similar summed rank values (±2).

5.11 Limitations of the GSMA

Three classic sources of error in meta-analysis studies are listed below and discussed
with their relevance to the GSMA.

5.11.1 File drawer problem

This error arises when unpublished studies are not included in the meta-analysis,
as their existence is unknown to the investigators. For linkage studies of candidate
regions, a publication bias exists as negative studies are less likely to be published,
which will bias the results of the meta-analysis. For genome-wide studies this is
not a major concern: these studies are large, expensive to perform, and publishable,
regardless of the significance of LOD scores obtained. No single hypothesis is being
tested, so publication bias is not relevant.

5.11.2 Garbage in, garbage out

Any meta-analysis is reliant on the quality of both the data and the results from the
individual studies. We assume that each study has a high quality of phenotype and
genotype data, and that standard quality control checks have been performed (e.g.
testing for non-paternity, genotyping errors). The most challenging problem in the
GSMA is ensuring a consistent bin definition, particularly where studies have used
marker maps that differ in order or distance.

5.11.3 Apples and Oranges

Pooling data from many different studies is statistically appealing, but it is only of
value if a common effect is occurring across the studies. There are several sources of
heterogeneity that can limit the value of a meta-analysis of genetic linkage studies.
Potential sources of heterogeneity are population, family sampling units (extended
pedigrees or affected sibling pairs), and clinical characteristics (diagnostic criteria,
age of diagnosis, severity of disease). Heterogeneity for evidence of linkage can be
tested using the methods of Zintzaras and Ioannidis (2005b). A subset analysis can
also be performed to analyse a more homogeneous set of studies. We have little un-
derstanding of how the distribution of genetic variants contributing to complex dis-
ease may be affected by these features, although the common disease, common vari-
ant (CDCV) hypothesis for complex diseases implies that a variant would be present
across a wide range of study designs. Some GSMA studies have detected linkage to
several genetic regions (schizophrenia, inflammatory bowel disease), suggesting that
at least some common disease genes can be detected across diverse studies.
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5.12 Disease studies using the GSMA

The GSMA has been applied in 14 studies of complex diseases, summarised in Ta-
ble 5.2 (Demenais et al., 2003; Wise et al., 1999; van Heel et al., 2004; Lewis et al.,
2003; Segurado et al., 2003; Fisher et al., 2003, 2005; Babron et al., 2003; Marazita
et al., 2004; Chiodini and Lewis, 2003; Williams et al., 2002; Koivukoski et al., 2004;
Sagoo et al., 2004; Johnson et al., 2005). Most studies have analysed qualitative dis-
eases, but quantitative traits (hypertension, body mass index) have also been studied.
The average number of linkage studies included per meta-analysis was 7.9 (range
4-20), and the average number of families was 736 (range 257-1992). (These figures
omit the overlapping studies of inflammatory bowel disease, Crohn’s disease and ul-
cerative colitis). Of 14 studies, 8 were full collaborations, while others relied at least
partially on published information. All studies found at least one suggestive result
(approximately p < 0.01), and in 12 studies, at least one result of genome-wide
significance was found.

***CL: This p-value adjusted for multiple testing?

In the auto-immune diseases, genome-wide significance was found in the HLA re-
gion on chromosome 6 (multiple sclerosis (Wise et al., 1999), rheumatoid arthri-
tis (Fisher et al., 2003), psoriasis (Sagoo et al., 2004), inflammatory bowel disease
(van Heel et al., 2004)), confirming findings of the original linkage studies. In other
studies, a region of genome-wide significance was observed on chromosome 2 for
schizophrenia (Lewis et al., 2003), which had not previously been highlighted as a
strong candidate region for schizophrenia (O’Donovan et al., 2003). Similarly, re-
gions of genome-wide significance were detected on chromosome 4 for psoriasis
(Sagoo et al., 2004), on chromosome 3 for coronary heart disease (Chiodini and
Lewis, 2003), on chromosome 2 for cleft lip/palate (Marazita et al., 2004), on chro-
mosome 3 for hypertension (Koivukoski et al., 2004) and on chromosome 10 for
age-related macular degeneration (Fisher et al., 2005). No susceptibility genes have
yet been localised in these regions for these diseases, but they provide strong candi-
date regions for follow-up linkage or association studies. Genome-wide significance
is an extremely stringent criteria (occurring only once in 20 GSMAs by chance), and
this is illustrated by the results for Crohn’s disease in the region of CARD15 on chro-
mosome 16. This region attained a p-value of 0.003 (weighted analysis) (van Heel
et al., 2004), despite the presence of this confirmed susceptibility gene. Across the
diseases, there was no correlation between the number of bins with nominal or sug-
gestive significance and the number of studies included. Only five studies had used
the Ordered Ranks test to assess clustering of linkage results, but the easy availability
of this method in the GSMA software package (Pardi et al., 2005) should make this
analysis more widely used.

These results show that the GSMA can play an important role in synthesizing data
across genome-wide linkage studies and directing follow-up studies. The number of
significant regions arising from GSMA studies has raised enthusiasm for the potential
utility of linkage studies, these studies suggest that susceptibility genes for complex
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diseases are detectable using linkage studies, provided the sample sizes are large
enough.

5.13 The Multiple Scan Probability method (MSP)

Badner and Gershon (2002b) developed a novel method of meta-analysis of linkage
data, based on the maximum evidence for linkage obtained within a genetic region.
This method is ‘region-wide’ rather than genome-wide, as the region for analysis
can be specific by investigators, and is usually triggered by one low p-value within a
study (e.g. p < 0.01). For each study, the strongest evidence for linkage within 30cM
of the triggering-locus is noted, and the p-values combined, accounting for the length
of the region of the final analysis and the genotyping density of original studies (see
Badner and Gershon (2002b) for full details). A replication analysis excluding the
original linkage finding is also recommended.

This method has been applied to autism (Badner and Gershon, 2002b), schizophre-
nia and bipolar disorder (Badner and Gershon, 2002a). In schizophrenia, significant
evidence for linkage was detected on chromosome 8p, 13q and 22q. These regions
on chromosome 8p and 22q were also detected in the GSMA study of schizophrenia
(Lewis et al., 2003), but the 13q region was absent. Linkage to 13q and 22q were also
found in bipolar disorder, neither of which was detected in the GSMA study (Segu-
rado et al., 2003), however for both schizophrenia and bipolar disorder, the studies
included in the GSMA and the MSP differed substantially.

The major contrast between the GSMA and the MSP methods is in the test statistic.
The MSP uses a p-value, and therefore retains the magnitude of the significance of
the original study. In contrast, the GSMA is a non-parametric rank method, and the
maximum contribution from any study is the maximum number of bins (i.e. rank 120
in a study of 120 bins). The MSP should therefore have higher power to detect regions
which have strong evidence for linkage in some studies, but with genetic heterogene-
ity present. Interestingly, the analysis of heterogeneity in the schizophrenia GSMA
showed significant genetic heterogeneity on chromosome 13q, which may contribute
to the different GSMA and MSP meta-analysis results in this region (Zintzaras and
Ioannidis, 2005b). The MSP would have lower power to detect regions where link-
age evidence is moderate in all studies, as this would not trigger the investigation of
a region.

5.14 Conclusions

Millions of dollars have been spent on linkage studies of complex genetic disor-
ders, but the results have been overwhelmingly disappointing. In hindsight, many of
these studies are under-powered to detect linkage to genes that confer only a modest
increase in risk for a complex disease. However, the utility of linkage studies has
been demonstrated by the localisation of a few genes (e.g. CARD15 in inflamma-
tory bowel disease, NRG1 in schizophrenia, CAPN10 in type 2 diabetes) following



ACKNOWLEDGEMENTS 79

fine-mapping of regions detected in linkage analysis. Linkage studies still have an
important role in localising disease genes: genotyping of many large cohorts is in
progress, and linkage studies are still widely published. Meta-analysis of linkage
studies is therefore a timely approach. It provides a rapid and cost-effective method
to ensure that maximum information is extracted from the many linkage studies al-
ready performed. The regions highlighted in meta-analysis of linkage can be used
to prioritise future gene localisation studies, whether these are based on fine-scale
linkage, on association studies of candidate genes, or on follow-up of whole genome
association studies.
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CHAPTER 6

Heterogeneity in Meta-Analysis of
Quantitative Trait Linkage Studies

Hans C. van Houwelingen and Jérémie J. P. Lebrec
Leiden University Medical Center, The Netherlands

6.1 Introduction

In complex diseases where many genes might be involved in the genetic causation of
the disease, individual loci influencing a quantitative trait are most likely to explain
only a small proportion of its total variance. Consequently, there is a huge problem
of lack of statistical power. Most linkage studies published to date only consist of
a few hundred pedigrees with a limited number of individuals and, therefore, have
little power to detect linkage of any but the ”largest” quantitative trait loci (QTL). In
order to enhance power, it is now common practice to retrospectively pool evidence
for linkage from several different studies. However, in pooling data from different
studies, one should be aware of the possible heterogeneity between studies. The aim
of this chapter is to present statistical models for describing this heterogeneity and
approaches to analyze heterogeneous data

We distinguish two types of heterogeneity: locus and size heterogeneity. The popula-
tions used in each of the studies often have different genetic backgrounds and a locus
affecting the trait of interest in one population might have no effect in another one;
we will refer to this type of heterogeneity as locus heterogeneity. In other instances,
the same locus may influence the trait in all populations, but there are many reasons
to believe that the size of the effect will vary. For instance, the frequency of the causal
allele may be much smaller in some populations or it may interact with other loci, or
with environments and risk factors. We will refer to this type of heterogeneity as size
heterogeneity.

Besides those biological sources of heterogeneity, some common logistic sources
of variation often arise: typically, genotyping will have been carried out on differ-
ent marker maps (and even when identical markers are used, their allele frequencies
may vary across populations) and families may have been sampled according to dif-
ferent schemes. More simply, the phenotypes measured may vary in their method of
collection from study to study.

81
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When the raw data are available, one obvious way to gather evidence from several
studies is to pool the data into a meta-file and proceed with an overall analysis. In
the case of linkage studies with different marker maps, the data manipulations in-
volved are very tedious. Moreover, the data sets become unnecessarily large because
of the artificially created missing data on markers that are used in other studies.
Furthermore, running standard methods of analysis on such large data files usually
requires uncommon computing capacities. Therefore, we advocate the meta-analytic
approach that collect all relevant summary information for each study and uses that
as starting point for further analysis. Of course another simple reason for favoring
meta-analysis is that researchers usually simply cannot access the raw data for each
study and have to be content with individual test statistics along with (at best) pa-
rameter estimates.

We refer the reader to Dempfle and Loesguen (2003) and Rao and Province (2001)
for recent overviews of meta-analytic methods for linkage studies. Most methods
are in the spirit of the classical meta-analysis. An interesting, widely applicable, al-
ternative are the rank-based methods such as the GSMA (Wise et al., 1999). They
might be sub-optimal compared to approaches based on the pooling of estimates of
a common linkage parameter, but much more robust because of the built-in genomic
control. Note that associated methods that assess heterogeneity have recently been
developed (Zintzaras and Ioannidis, 2005). The idea of pooling different estimates of
a common linkage effect across studies is not new although it has only been described
for sib pair designs to date. Gu et al.(1998) use the excess identical-by-descent (IBD)
sharing as a common effect, but their approach appears to be limited to studies with
the same marker maps. Li and Rao (1996) and Etzel and Guerra (2002) both use
the slope in a classical Haseman-Elston regression as a common effect, the former
suffering the same restriction as Gu et al.(1998) regarding location of markers. Inter-
estingly in the latter, the authors explicitly adjust for the (study-specific) marker to
locus distance and allow for heterogeneity across studies by means of a random ef-
fect. Unfortunately, they do not seem to efficiently take into account the within-study
dependence structure between markers.

Classical methods of meta-analysis originally introduced in the field of clinical tri-
als (DerSimonian and Laird, 1986) can be adapted to linkage studies. The sufficient
statistics used to perform such approaches are some measure of effect on a common
grid of putative locations and its associated standard error. In the case of quantitative
traits, a natural estimate of common linkage effect is the proportion of total variance
explained by a putative location. We first describe the meta-analytic tools, assum-
ing that QTL effect estimates and standard errors are available for all studies on a
common grid of locations. In Section 7.2 the traditional meta-analytic approach in
the context of linkage is reviewed, including how to test and allow for size hetero-
geneity, while in Section 6.2.4 we introduce a simple finite mixture model to account
for potential locus heterogeneity. A complication that arises in both approaches for
heterogeneous data is that variance components are nonnegative by definition. We
will discuss the consequences of that for estimation and testing. In Section 6.3, we
quickly review the methods which should be used for the analysis of individual stud-
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ies in order to yield the relevant statistics required for meta-analysis as advocated
in Sections 7.2. All methods are illustrated by means of four data sets used for a
genome-wide scans for lipid levels in Section 6.4.

6.2 The classical meta-analytic method

Introductions to classical meta-analysis can be found in two Tutorials in Biostatistics
in Statistics in Medicine, namely Normand (1999) and van Houwelingen et al.(2002).
In this section, we recall briefly how meta-analysis is classically carried out and in-
troduce some refinement that is specific to the variance component model used in
linkage studies. We assume that at a given common putative position, each study (in-
dexed by i = 1, . . . , K) provides a consistent estimate γ̂i of the true QTL effect γi of
that locus and an associated standard error s i. The link with the traditional lodscore
is given by LODi = (γ̂i

2/s2i )/(2 × ln(10)). Details of the definition of the variance
component and its estimation are given in Section 6.3.

6.2.1 Analysis under homogeneity

The simplest approach to meta-analysis assumes that the effects γ i’s are all equal
to a common value γ so that γ̂i ∼ N(γ, s2

i ). This is known as the homogeneity
assumption In this situation the corresponding maximum likelihood estimator of γ is
given by the weighted average

γ̂hom =
∑

i γ̂i/s2
i∑

i 1/s2
i

with standard error SEhom = 1/

√∑
i

1/s2
i . (6.1)

The null hypothesis of no effect, that is γ = 0 versus the alternative γ > 0, can be
tested by means of the one-sided statistic(

z+
hom

)2 =
{

(γ̂hom/SEhom)2 , if γ̂hom > 0
0 if γ̂hom ≤ 0

which follows the mixture distribution 1
2χ2

0 + 1
2χ2

1 under the null hypothesis, where
χ2

0 denotes the degenerate density with all mass in 0. The corresponding LODhom

score can be calculated as
(
z+
hom

)2
/ (2 × ln(10)). Observe that we do not truncate

the estimated γ̂i at zero, if negative, because that would complicate the pooling con-
siderably. However, truncation is no problem in the final stage.

6.2.2 Test for heterogeneity

Even when the same locus is affecting a trait in different populations, it seems diffi-
cult to believe, for reasons given in Section 7.1, that the QTL effects are all equal. In
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the setting introduced earlier, this situation of size heterogeneity can be tested:

H0 : γ1 = γ2 = · · · = γK ≡ γhom

H1 : at least one γi is different ,

the hypothesis of homogeneity H0 can be tested using the following statistic

X2 =
K∑

i=1

(γ̂i − γ̂hom)2

s2
i

whose approximate null distribution is χ2
K−1. In practice, any test for heterogeneity

is likely to have little power because individual studies tend to have low precision.
Nonetheless, the test can formally suggest heterogeneity in some instances, as will be
seen in Section 6.4. Note that the X 2 statistic has an appealing interpretation (at least
for researchers with experience in parametric linkage). Indeed, it can be re-written as

X2 =
K∑

i=1

γ̂2
i

s2
i

− γ̂2
hom

(
∑

i 1/s2
i )−1

= 2 × ln10 × (
∑

i=1,...,K

LODi − LODhom) .

In other words, the individual LODs add up only when the effect is perfectly homo-
geneous.

6.2.3 Modeling size heterogeneity

The classical way to allow for heterogeneity between studies is to introduce an addi-
tional layer in the earlier homogeneous model by assuming that the true study specific
effects γi’s themselves arise from some distribution. The usual model is a normal dis-
tribution with common mean γ and a between study variance σ 2. This is referred to
as a normal mixture model (or random effect model) and results in marginal distribu-
tions for the observations given by γ̂ i ∼ N(γ, s2

i +σ2). If the between study variance
σ2 were known, the estimate of γ would be

γ̂het(σ2) =
∑

i wiγ̂i∑
i wi

with wi =
1

σ2 + s2
i

and with standard error SEhet = 1/

√∑
i

wi ,

So, one way to carry out estimation is by maximization of the profile log-likelihood
pl(σ2) = l(γ̂het(σ2), σ2).

In the context of linkage where the actual effects γ i’s are standardized variance com-
ponents themselves, this model only makes sense if the probability Φ(−γ/σ) of neg-
ative γ’s is negligibly small. In practice that is achieved if the coefficient of variation
σ/γ < 1/2. For the same reasons, the null hypothesis of no locus effect requires
that all γi’s should be equal to 0 with probability 1. Hence, the null hypothesis spec-
ifies both γ = 0 and σ2 = 0, which is different from the usual situation in meta-
analyzes of clinical trials. The test for linkage is then given by the corresponding
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log-likelihood difference

2 ×
[
pl(σ̂2) − l

(
γ = 0, σ2 = 0

)]
so that evidence for heterogeneity potentially contributes to the rejection of the null
hypothesis of no linkage. The use of the usual mixture 1

2χ2
0 + 1

2χ2
1 for the null dis-

tribution of this non-standard likelihood is anti-conservative, the correct asymptotic
distribution is given by a mixture ( 1

2−p)χ2
0+

1
2χ2

1+pχ2
2 (Self and Liang, 1987). How-

ever, asymptotic results are unlikely to be useful since we typically have very few
observations (i.e. studies) to pool together. In practice, we use the anti-conservative
limits dictated by the 1

2χ2
0 + 1

2χ2
1 mixture as a screening tool and resort to parametric

bootstrapping for refinement of the level of significance once interesting positions
have been identified.

6.2.4 A two-point mixture model for locus heterogeneity

In some cases, the previous model will not be adequate to model differences between
studies because heterogeneity is qualitative rather than quantitative, in other words
the locus influences the trait in some studies/populations and not at all in others.
There is an indication of such qualitative heterogeneity when the normal mixture
model yields a large coefficient of variation σ/γ allowing negative γ ’s under the
normal mixture . In analogy to what is done routinely at the family level in parametric
linkage (e.g. Ott (1999), see also Holliday et al.(2005) for a recent application) and
can be done in the variance components setting (Ekstrom and Dalgaard, 2003), one
can fit a two-point mixture model at the study level as follows: γ̂ i|γi ∼ N(γi, s

2
i )

with

γi =
{

γ, with probability α;
0, with probability 1 − α

so that, marginally,

γ̂i ∼ αN(γ, s2
i ) + (1 − α)N(0, s2

i ) .

The basic idea is that only a proportion α of the studies show linkage to the puta-
tive locus and γ is the QTL effect among those studies only. (Hence, γ is not longer
the mean value of the γi’s as in the normal mixture model. Care is needed when
comparing the models) . For estimation purposes, this mixture of normal distribu-
tions naturally lends itself to the EM algorithm (Dempster et al., 1977). Denoting by
φ(x; μ, σ2) the normal density function with mean μ and variance σ 2, the E (estima-
tion) step at stage k+1 of the iterative procedure consists in calculating the posterior
probabilities τ

(k+1)
i ’s that the γ̂i’s have arisen from a normal distribution with mean

γ(k) given the prior mixing proportion α (k) i.e.

τ
(k+1)
i =

α(k)φ(γ̂i, γ
(k), s2

i )
α(k)φ(γ̂i, γ(k), s2

i ) + (1 − α(k))φ(γ̂i, 0, s2
i )

,
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whereas the M (maximization) step gives the updated parameters α (k+1) and γ(k+1)

as

α(k+1) =
K∑

i=1

τ
(k+1)
i /K

γ(k+1) =
∑K

i=1 γ̂iτ
(k+1)
i /s2

i∑K
i=1 τ

(k+1)
i /s2

i

.

The model parameters α and γ are constrained in [0, 1] and [0, +∞[ respectively and
although the EM estimation procedure described above ensures that α ∈ [0, 1], the
estimate of γ will sometimes be negative in which case we set γ̂ = 0 and α̂ = 0
too. Under usual regularity conditions, the corresponding likelihood ratio test would
be asymptotically distributed as a 1

2χ2
0 + 1

2χ2
1 under the null hypothesis. However,

here the situation is further complicated by the fact that the model parameters are
not identifiable under the null hypothesis (indeed if γ = 0, any choice of α will give
the same likelihood). One way to tackle this problem is to slightly modify the like-
lihood as done by Chen et al.(2001) and derive corresponding simple asymptotics,
but for the same reason alluded to in Section 7.2, we prefer to resort to parametric
bootstrapping techniques in order to assess significance of the likelihood ratio test.

The model for size heterogeneity and locus heterogeneity could be combined into a
model where either γ = 0 with probability 1 − α or γ follows a normal distribution
with probability α .

6.3 Extracting the relevant information from the individual studies

As we described in Section 7.2 the basic ingredients of a classical meta-analysis are
study specific QTL effects’ estimates γ̂i’s in the i = 1, . . . , K studies available and
their associated standard errors si’s on a common fine grid of genome locations. In
this section, we explain how to obtain these estimates in practice and how to adjust
for varying information across studies.

6.3.1 General approach

For random samples of the trait values, the variance components method (Almasy
and Blangero, 1998; Amos, 1994) is the standard way of testing for linkage to a quan-
titative trait. Unfortunately, the emphasis of most computer programs implementing
the variance components method has been placed on testing rather than estimating
and they rarely provide both QTL effect estimates and associated standard errors.
In the context of linkage, two exceptions that we know of are the MENDEL (Lange,
2001) and Mx softwares (Neale et al., 1999). However, in principle, this is not so
much of a problem because asymptotic standard errors s can be obtained provided the
QTL effect estimate γ̂ is present (and differs from 0) in addition to its statistical sig-
nificance, using the approximate relation (γ̂/s)2 � χ2 with χ2 = LOD×2× ln(10).



EXTRACTING THE RELEVANT INFORMATION FROM THE INDIVIDUAL STUDIES 87

At positions where the QTL estimate is 0, one could interpolate values of s at neigh-
boring positions where γ̂ �= 0. One problem with the variance components method,
as far as pooling of estimates is concerned, is that γ̂ is constrained to remain nonnega-
tive and pooling of several imprecise estimates γ̂i’s could result in a positively biased
estimate of the true QTL effect γ. Whenever possible, we would personally favor ad-
equate regression or score test approaches (Lebrec et al., 2004) to linkage whose
slope is equal to γ̂ and is allowed to be negative. As shown by Putter et al.(2002),
such approaches are equivalent to the variance components method.

Often, data are selected based on phenotype values (selected sample such as affected
sibpairs, extremely discordant pairs, etc . . . ), the variance components method is no
longer valid and appropriate methods that take into account the sampling scheme
need to be employed. These so-called inverse regression methods first introduced by
Sham and Purcell (2001) have been implemented in MERLIN-regress (Sham et al.,
2002). A typical output from the software will provide a signed estimate of the QTL
effect γ̂ and associated standard error s at an arbitrary grid of positions. The soft-
ware can also be used in case of random samples as an alternative for the variance
components modules. Because of its very convenient output we advocate the use
of MERLIN-regress when analyzing linkage data whenever suitable. One out-
standing problem with MERLIN-regress is the use of an imputed covariance for
IBD sharing which can lead to bias in estimation especially in genome areas where
markers information is very low. In practice, one clear indication that the imputed
covariance is not a good approximation is when the software either gives out QTL
estimates larger than 1 with huge associated LOD scores or no estimates at all (NA).
In practice, marker maps and densities vary widely and one often ends up with areas
of the genome with scarce information. In this case, we advocate the use of a more
reliable IBD covariance matrix which we calculate by Monte Carlo simulations. In
Section 6.3.2, we provide more details on how we do this in practice.

6.3.2 Special case: sib pair designs

In order to show how we adjust for differing marker maps (or different allele fre-
quencies on the same map), we now outline the inverse regression approach in the
simplest and most widespread case of sib pair studies. The trait values x = (x1, x2)′

are assumed to have been standardized and to follow the usual additive variance com-
ponents model i.e. the vector x is assumed to follow a bivariate normal distribution
with mean 0 and covariance matrix Σ

Σ =
[

1 ρ + γ(π − 1
2 )

ρ + γ(π − 1
2 ) 1

]
.

Here π is the proportion of alleles shared IBD measured exactly at the QTL position
and γ therefore represents the proportion of total variance explained by the QTL, ρ
is the marginal sib-sib correlation for the trait of interest. An extension of a relation
shown in Putter et al.(2003) under complete information gives an approximate re-
gression (valid for small values of γ) between excess IBD sharing and a function of
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the phenotype trait values which is the basis of the inverse regression approach:

E(π̂ − 1
2
|x, γ) � γ var0(π̂) C(x, ρ)

where

π̂ =
1
2
× P0(π =

1
2
|M) + 1 × P0(π = 1|M)

is the usual estimate of IBD sharing given marker data M available while

C(x, ρ) =
[
(1 + ρ2)x1x2 − ρ(x2

1 + x2
2) + ρ(1 − ρ2)

]
/(1 − ρ2)2

and is sometimes referred to as the optimal Haseman-Elston function. For a sample
of j = 1, . . . , N sib pairs, the method of least squares provides an approximately
consistent estimate of γ given by

γ̂ =

∑N
j=1(π̂j − 1

2 )C(xj , ρ)

var0(π̂) ×
∑N

j=1 C2(xj , ρ)
, (6.2)

with standard error s =

⎛⎝var0(π̂) ×
N∑

j=1

C2(xj , ρ)

⎞⎠−1/2

. (6.3)

Here var0(π̂) represents the variance of π̂ under the null hypothesis and would equal
1
8 under complete information and although an exact calculation is extremely tedious
it can be closely approximated by simple Monte Carlo simulations. For example, one
can use the options --simulate and --save in Merlin (Abecasis et al., 2002)
to generate a large number of pedigrees with a given structure (sib pairs here), mark-
ers’ characteristics (i.e. allele frequencies and inter-marker distances) and possibly
missing pattern for genotypes, the true var0(π̂) can then be accurately approximated
by the sample variance of π̂. We show in Figure 6.1 how widely this measure of
marker information may vary within and between studies. It is therefore crucial to
appropriately account for this variation when estimating γ, failure to do so may in-
troduce bias in the QTL estimates. If no such information is available, it is possible in
principle to calibrate scan by comparing mean or median QTL variance components
over the whole genome between studies, but in small studies such methods might be
prone to error.

6.3.3 Retrieving information on the common grid from an individual study

For the meta-analysis we need to define a common grid of locations and obtain QTL
estimates on that grid for each study. However, it can happen that in the individual
studies, the only data at hand are QTL estimates (γ̂’s) and their standard errors (s’s)
on an original grid of locations which is not the common one we wish to use. Typ-
ically this original grid would be a set of say t = 1, . . . , M markers’ positions. We
show how to obtain QTL estimates and associated standard errors on this new com-
mon grid of locations, if the characteristics of the original map are available and from
the IBD distribution for that map under the null hypothesis.
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Figure 6.1: Marker information (var0(π̂)) in the Australian (continuous line) and
Dutch (broken line) data sets Vs. position (Haldane’s cM) - Chromosome 6

For the sake of simplicity, we stick to sib-pair designs as in the previous section.
Given the M ×1 vector of original QTL effect estimates γ̂ = (γ̂t)t=1,...,M and asso-
ciated standard errors (st)t=1,...,M , the best linear approximation of the QTL effect
γ̂q at an arbitrary position denoted q is given by a weighted least squares estimate

γ̂q =
ω′

qV
−1γ̂

ω′
qV

−1ωq
,

with standard error sq =
(
ω′

qV
−1ωq

)−1/2
.

Here ′ denotes the transpose of a vector. The matrix V is proportional to the variance-
covariance matrix of the vector γ̂ under the null hypothesis of no linkage and is given
by

Vkl =
{

var0(π̂k)−1 if k = l

Cov0(π̂k, π̂l) (var0(π̂k) var0(π̂l))
−1 if k �= l

,

Furthermore, ωq is the M × 1 vector whose kth element is given by

ωq,k =
Cov0(π̂k, π̂q)

var0(π̂k)
.

All the var0 and Cov0 terms can in principle be calculated by Monte Carlo simula-
tions provided the map characteristics and pedigree structure are known.

In the idealized case of a saturated map which would supply perfect IBD knowledge
at any location on a chromosome, all var0 terms are equal to 1

8 and Cov0(π̂t1 , π̂t2) =
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1
8 (1 − 2θt1,t2)

2, where θt1,t2 is the recombination fraction between loci at t1 and
t2 (Risch, 1990). Taking the off-diagonal terms in V to be equal to 0 (i.e. assuming
that markers are not linked), one obtains the estimate of QTL effect advocated by
Etzel and Guerra (2002) (in the special case that between-study variance σ 2 = 0).
In the context of meta-analysis, it is important to properly account for differences in
marker information between studies, unless the marker maps are close to saturated in
all studies. Remarkably, the elements needed to calculate γ̂q and sq at any arbitrary
location are just the corresponding estimates at M marker locations and map charac-
teristics, none of the subject-specific data (traits values, individual IBD estimates π̂ i)
are needed.

6.4 Example

We applied the methods previously described to four data sets on lipid levels orig-
inating from Australia (aus), The Netherlands (nlj and nlo) and Sweden (swe). The
full results are reported in Heijmans et al.(2005) and we have selected only one end-
point (LDL cholesterol levels) for illustration purposes. The data available for linkage
analysis consisted almost entirely of sib pairs (371, 83, 110 and 36 pairs in the aus,
nlj, nlo and swe data sets, respectively) with the exception of the Australian data set
which also had 1 family with three siblings and 3 families with four siblings. Geno-
typing has been carried out using a common marker map for the nlj, nlo and swe data
sets but with a different denser map for the aus data set. We actually had access to the
raw data sets and could therefore easily obtain QTL estimates and standard errors on
a common grid of positions.

Prior to linkage analysis (using MERLIN-regress), raw phenotypic data were ad-
justed for sex and age, within country. The analysis of the actual data revealed little
differences between the three methods described in Section 7.2, this is partly due
to the small sample sizes in the individual data sets which does not allow to clearly
establish heterogeneity between studies. We present graphically the original results
for two interesting chromosomes: chromosome 2 (Figure 6.2) and chromosome 13
(Figure 6.3). Note that the QTL variance estimates and LOD scores of the Pooled
analyses have been multiplied by 0.95 and 1.05 for the random effect model (la-
belled ’het’) and the two-point mixture model (labelled ’2-p mixt’) respectively, this
was necessary to make all curves visible.
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Figure 6.2: Original data - Chromosome 2 - LDL cholesterol level

In chromosome 2, the three pooled estimates of QTL variance coincide everywhere
apart from the 20-60cM region where the two-point mixture model gives a higher
estimate with corresponding estimate of proportion of study linked α̂ = 0.75 (i.e. the
’nlo’ data set is not linked) at 32cM where the maximum LOD score is attained. The
corresponding pooled LOD score is roughly the same as the maximum LOD score
obtained in the ’aus’ data set and therefore there seems to be no gain in pooling the
three linked data sets in this case. On chromosome 13, the pooling results in a very
slight increase in LOD score in the region around 20cM compared to the maximum



92 HETEROGENEITY IN META-ANALYSIS OF QTL STUDIES

0 20 40 60 80 100 120

−
0
.5

0
.5

Position (Haldane’s cM)

Q
T

L
 V

a
ri
a
n
c
e

Individual study results

0 20 40 60 80 100 120

0
.0

0
.4

0
.8

Position (Haldane’s cM)

L
O

D

0 20 40 60 80 100 120

0
2

4
6

8

Position (Haldane’s cM)

X
2

Test for heterogeneity

χ 32
(0

.9
5

)

aus
nlj

nlo
swe

hom het 2−p mixt

0 20 40 60 80 100 120

0
.0

0
.4

0
.8

Position (Haldane’s cM)

P
o
o
le

d
 Q

T
L
 V

a
ri
a
n
c
e

Pooled analysis

0 20 40 60 80 100 120

0
.0

0
.3

0
.6

Position (Haldane’s cM)

P
o
o
le

d
 L

O
D

Figure 6.3: Original data - Chromosome 13 - LDL cholesterol level

of the individual LOD scores and the three methods give the same score. Note the
sudden rise and fall in the estimate of QTL variance γ̂ for the two-point mixture at
52cM which corresponds to a decrease in α̂ from 1.0 to 0.36. The fitting algorithm
of the two-point mixture actually gave negative values for γ̂ right of 54cM so the
estimates were truncated to 0. Given those unconvincing real-life examples, one can
legitimately asks the next two questions:
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1. In practice, is there any gain in pooling data sets at all? I.e. can we obtain higher
LOD scores than the maximum of the individual LOD scores?

2. Does allowance for heterogeneity help in enhancing statistical significance? I.e.
are the LOD scores for the random effect model and/or the two-point mixture
model ever higher than the LOD score of the homogeneity model?

The answer to question 1. is ’Yes’ even when individual studies are small provided
the QTL effects are more or less the same in all studies i.e. the assumption of ho-
mogeneity is verified. The answer to question 2. is also ’Yes’ but only when the
sample size in the individual studies are large enough as we show by means of a
simulated example inspired from the original lipid levels data. We artificially in-
creased the sample size of each of the four data sets by a factor 4 (i.e. the standard
errors were divided by 2). The corresponding results are displayed graphically in
Figure 6.4 for chromosome 2 and in Figure 6.5 for chromosome 13. In the 20-70cM
region of chromosome 2, studies ’aus’ and ’swe’ both show clear linkage signals,
QTL estimates vary quite widely across studies which is now unambiguously shown
by the heterogeneity test. We are probably in presence of both quantitative and qual-
itative heterogeneity here since study ’nlo’ shows no QTL effect at all. As a result,
the significant signals observed in the ’aus’ and ’swe’ studies (maximum LOD score
� 8) weaken in the homogeneous model (maximum LOD score � 7) while both the
heterogeneity model and the two-point mixture enhance it further (maximum LOD
score � 10). Heterogeneity therefore contributes to the proof that a linkage effect
is present. Similar outputs are displayed for chromosome 13 in Figure 6.5. In the
40-70cM region, heterogeneity of QTL effects is now clearly qualitative (both ’nlj’
and ’swe’ have similar QTL effects with corresponding suggestion for linkage) and
the pooled homogeneous analysis is dominated by the large ’aus’ study with QTL
variance estimates close to 0 which entirely obliterates the individual linkage signals
of ’nlj’ and ’swe’. The two-point mixture works best here in pooling evidence from
the two positive studies and enhancing the LOD score beyond 4 in a much narrower
region (maximum LOD score � 3.5 in individual studies).
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Figure 6.4: Artificial data - Chromosome 2 - LDL cholesterol level
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Figure 6.5: Artificial data - Chromosome 13 - LDL cholesterol level

6.5 Discussion

We have detailed how classical meta-analytic methods can be adapted to linkage pro-
vided consistent estimates of QTL effects along with standard errors are available for
each study on a common grid of positions. The methods required to obtain such sum-
mary statistics are now well developed and their software implementation has been
publicly available for a number of years. We realize, however, that most published
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studies to date will not have sufficient information in order to carry out the method
advocated here. Indeed, it is still common practice nowadays in the literature, even
for QTL mapping where the effect to be estimated is fairly uncontroversial, to pub-
lish statistics conveying statistical significance only (i.e. LOD scores) without any
idea of the actual effect estimate. This heavily hinders powerful pooling of the many
small linkage studies available in the community. Gu et al.(1998) presented guide-
lines on how to report linkage studies that would enable future meta-analysis using
IBD sharing as a common linkage parameter. Since the analysis tools are available
(e.g. MERLIN-regress), it should be expected by journals that researchers pub-
lish QTL effects and associated standard errors (at least as add-on information) on a
grid of locations.

Given the small individual study sizes one typically encounters, any test for hetero-
geneity of QTL effects across studies is bound to suffer from a lack of power. This
was reflected in the test for heterogeneity of the real lipid levels data as well as in
the estimate of the between study variance component σ 2 which very rarely differs
from 0 (Heijmans et al., 2005). Another way to test for heterogeneity in the random
effect model setting is to test whether σ2 = 0 and this is known to be asymptotically
equivalent to the X 2 test that we have presented (Andersen et al., 1999). Note that
the classical random effects model is probably not the most appropriate in the case
of linkage, indeed the fact that the QTL effect is a variance component precludes it
from being negative (which is not impossible under the normal mixture model) and
suggests that the random effects γi’s could be more appropriately modelled as arising
from a Γ distribution but estimation then becomes less straightforward.

The idea of applying the concept of finite mixture models to meta-analysis is also not
new (Böhning et al., 1998) although it is new for meta-analysis of linkage studies as
far as we are aware. It is based on the simple idea that only studies with a positive
effect should be pooled together to provide evidence for linkage. Instead of doing this
by hand, we let the data decide which study exhibits positive linkage. Note that one
can also formally test for locus heterogeneity by assessing whether α differs from
1. Ultimately, given a sufficiently large number of studies with decent precision, it
would be possible to fit a model that adapts to both locus and size heterogeneity by
combining the random effect and the two-point mixture models.
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CHAPTER 7

Combining Information Across
Genome-wide Scans

Carol J. Etzel and Tracy J. Costello
University of Texas M. D. Anderson Cancer Center, Houston, Texas

7.1 Introduction

With the formation of international consortia to investigate complex disorders and
a variety of cancers, meta-analysis is quickly becoming a valuable tool to combine
linkage results and narrow chromosomal regions of interest. The presumed etiology
of a complex disease is a combination of effects from multiple genes and the en-
vironment. The possibility of identifying some of these genes, which most likely
have small effects, from a single study using traditional linkage analysis methods, is
small. Instead, pooling raw data across independent studies (i.e. a mega-analysis) or
pooling linkage results across independent studies (i.e. a meta-analysis) may be the
best means to identify these numerous genes with typically small effects. Among-
study heterogeneity, which may include differing marker maps, marker informativ-
ity, sample sizes, phenotype definition, ascertainment schemes, and linkage tests, can
be problematic for a meta-analysis. Methods proposed to handle such problems are
discussed here.

The basis of meta-analytic methods in genetic linkage is derived from pooling meth-
ods that have been available in the field of statistics for over 75 years. Such distin-
guished statisticians as Fisher (1925), Tippett (1931), and Pearson (1933) provide
the earliest references to meta-analysis. These methods were based on testing a con-
sensus or omnibus null hypothesis (i.e., all null hypotheses from the individual stud-
ies are true) by combining the p-values from each of the individual studies. These
methods are nonparametric in the sense that they do not rely on any distributional
assumptions regarding the data in the individual studies; however, it is assumed that
each study tests a common (and combinable) null hypothesis. Folks (1984) provides
an excellent and detailed review of these early meta-analytic methods.

Meta-analysis for genome-wide scans has roots in methods developed for individual
marker meta-analysis. These methods involved either pooling p-values (using the
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method of Fisher (1925)) or pooling estimates of genetic effects or of proportion
of alleles shared identical by descent (ibd) among relative pairs (Li and Rao, 1996;
Gu et al., 1998). However, current technology has evolved to allow investigators to
perform full genome scans and therefore, linkage testing is not done for a single
marker anymore. In this chapter, we review recent applications and extensions of
meta-analytic methods for combining information across independent genome scans.
We also provide strategies to choose a method suited to the scientific goals.

7.2 Meta-Analytic Methods for Genome Scans

In this section, we review meta-analytic methods that have been proposed and applied
to genome-wide scan studies. Our coverage of such methods may not be exhaustive
as we have tried to focus on such methods where power and type I error have been
evaluated or methods (due to their ease of application) that have been widely used.

7.2.1 Meta-analytic methods based on p-values and tests of significance

As mentioned in the Introduction, general applications of meta-analysis have been
developed from methods based on combining p-values. The method proposed by
Fisher (1925) has been widely used in genetic linkage and many extensions have
been developed for meta-analyses involving genome-wide scans. Suppose that we
wish to complete a meta-analysis on k studies. Each study k has m markers. Let M st

denote the tth marker, t = 1, . . . , m, from study s, for s = 1, . . . , k. Further define
pst as the p-value that provides evidence for linkage at the marker M st. We are not
assuming that each study used the same sampling scheme or linkage test; however
the studies must be testing the same null hypothesis of no linkage. Using Fisher’s
method, we can define

X2
t = −2

k∑
s=1

ln(pst) (7.1)

as the combined evidence for linkage at marker M ·t across all studies. We can further
define the p-value associated with X 2

t as

Pt = P(χ2
2k > X2

t ), (7.2)

where χ2
2k is distributed as a chi-square variate with 2k degrees of freedom. The

power and type I error of this method was evaluated by Guerra et al. (1999) where a
per marker alpha level of 0.1% was used to account for genome-wide testing. They
concluded that although Fisher’s method is applicable for genome scans, the power
to detect linkage using this method is not equivalent to that achieved by pooling raw
data.

One of the caveats to using this method to carry out a genome-wide meta-analysis
is that an investigator is not guaranteed that all of the studies included in a meta-
analysis will have used the exact same marker map. Or if the investigator is relying on
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published data, it is not guaranteed that results of all linkage studies are published, or
of those that have been published, that results for all markers involved in a particular
study will be readily available. Instead only information on local minimum p-values
may reach publication. Therefore, the straightforward application of Fisher’s method
may not be feasible. Alternatives to Fisher’s method have been proposed (informally
and formally) in order to apply this meta-analytic method across whole regions of the
human genome instead of single loci. One such informal application was proposed
by Allison and Heo (1998) to combine data from several studies that used different
tests for linkage and different markers to detect linkage within the Human OB region.
Their technique involved obtaining a single p-value within the OB region from each
of five published studies that investigated linkage to body mass index using different
testing procedures for different sets of markers. Fisher’s method was then used to
combine the p-values across the five studies. They concluded that meta-analysis is
a vital statistical tool that highlights the importance of published literature in the
absence of available raw data and increases the power to detect genes influencing
complex traits. They note that their approach illustrates that one can conduct a meta-
analysis over multiple linkage studies investigating a single phenotype despite what
they describe as “worst case conditions.” However, we argue that the situations that
Allison and Heo describe are realistic of early linkage publications and worst case
conditions are those in which no meta-analysis can be performed.

Badner and Gershon (2002b) formally considered a similar modification of Fisher’s
method so that meta-analysis can be performed for regions across the human genome
instead of one marker at a time. In their paper, they defined equation (7.2) as the
Multiple Scan Probability (MSP) with p∗

st substituting for pst, where p∗
st is defined as

the minimum observed p-value for study s over a specified linkage region t corrected
for the size of the linkage region. Their correction factor was based on the Feingold
et al. (1993) estimate of the probability of a p-value being observed in a specified
region size, namely

p∗st = Cpst + 2λGZ(pst)φ(Φ−1(pst))V [Φ−1(pst)
√

4λΔ] (7.3)

where pst is the observed p-value from study s over region t, C is the number of
chromosomes, λ is the rate of crossovers per Morgan (which varies based on the
linkage method employed and family structure), G is the size of region t in Mor-
gans, Φ−1(·) is the standard normal inverse function, φ(·) is the normal density
function, Δ is the average distance in Morgans between adjacent markers and the
function V is a discreteness correction factor for Δ. Feingold et al. (1993) show that
V (x) ≈ exp(−0.583x), for x < 2. Under certain conditions, they also show that
equation (7.3) is equivalent to the Lander and Kruglyak (1995) p-value correction
factor. Badner and Gershon (2002b) show via simulation that the type I error rate for
this modification is at least as low as for any single genome scan study and that power
to detect linkage using this method is equivalent to that of pooling raw data. This
method has been applied to studies involving autism (Badner and Gershon, 2002b)
and bipolar disorder and schizophrenia (Badner and Gershon, 2002a).

Another caveat to applying Fisher’s method to genome-wide scans is that many
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widely used linkage tests are one-sided (i.e., LOD scores have a lower bound of 0)
whereas the distributional assumptions for Fisher’s original method assume that the
p-values were derived from two-sided tests. Province (2001) suggested an extension
of Fisher’s general method to adjust for the potential bias of combining linkage re-
sults from such one-sided tests. Citing the one-to-one correspondence between LOD
scores and p-values (Ott, 1999)

pst = 1 − Φ[sign(LODst)
√

2ln(10)|LOD|], (7.4)

where Φ(·) is the standard normal distribution function, Province recommended that
LOD scores equal to zero should be assigned a p-value equal to 1

2ln(2)
≈ 0.72 in-

stead of equal to 0.50 as given by equation (7.4) or equal to 1.0 as suggested by
maximum-likelihood theory. By doing so, the resulting test statistic obtained from
Fisher’s method using p-values extracted from published or derived LOD scores
would roughly follow the assumed chi-square distribution with the appropriate num-
ber of degrees of freedom (2 times the number of studies) under the null of no link-
age. This extension of Fisher’s method has been applied to genome scan studies
involved in the National Heart, Lung and Blood Institute Family Blood Pressure Pro-
gram looking for obesity- related genes (Wu et al., 2002), hypertension-related genes
(Province et al., 2003) and diabetes (An et al., 2005).

The Fisher p-value method and its subsequent extensions do not necessarily account
for among-study heterogeneity with one of the most obvious differences being sam-
ple size and hence admittedly are subject to potential biases from not accounting for
such differences among studies. Although decision criteria could be developed such
that only studies that are most homogeneous (with respect to sample size or pedigree
selection) be included in a meta-analysis, this may exclude too many studies with
viable linkage information and hence limit the sample size for the meta-analysis (see
discussion below). Rice (1990) suggested a reparameterization of Fisher’s method
such that the evidence for linkage from each study can be weighted by the corre-
sponding study’s sample size. In doing so, he suggested that the p-value, p st, be
transformed into a standard normal variate, zst = Φ−1(pst) where Φ−1(·) is the
standard normal inverse function. A weighted average of the z-values at marker t (or
region t if applying this reparameterization to the Badner and Gershon extension) can
be calculated

z·t =
∑k

s=1 Nszst∑k
s=1 Ns

where Ns is the sample size (number of pedigrees, number of sib-pairs, etc.) for
study s. Under the omnibus null hypothesis of no linkage, z ·t/

√
V ar(z·t) follows a

standard normal distribution where

V ar(z·t) =
∑k

s=1 N2
s

(
∑k

s=1 Ns)2
.

Other novel meta-analytic methods for genome scans that use p-values or other out-
comes of significance tests involving linkage which are not extensions of Fisher’s
method have been proposed specifically for genome-scan meta-analysis. One such
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widely used method, the Genome Search Meta-analysis Method (GSMA), devel-
oped by Wise et al. (1999) is based on a nonparametric ranking of p-values or LOD
scores within specified genetic regions (or bins). Suppose that we have split the chro-
mosomes into m bins. For each genome-scan study s (s = 1, . . . , k =number of total
studies) the most significant linkage result (whether it be p-value, LOD score or an-
other linkage test statistic) within each bin t (t = 1, . . . , m) is identified. The bins
are then ranked within each study where the most significant bin receives the highest
rank. The ranks for each bin are then summed across the studies, such that

Vt =
m∑

s=1

R(Xst) (7.5)

where Xst is the most significant linkage result for bin t of study s, and R(·) is the
ranking function. As with Fisher’s method, there are no assumptions that each study
used the same sampling scheme or linkage test, or that each genome scan used the
same set of markers. Additionally, however, they showed through simulation that the
GSMA is useful when studies use different ascertainment schemes, marker maps,
or statistical methods to detect linkage. citetWise1999 derived the null distribution
of Vt given in (7.5) and Koziol and Feng (2004) refined the derivation of the null
distribution using probability generating functions and provided approximations to
the GSMA null distribution.

Wise (2001) further proposed an extension of the GSMA method such that candidate
region studies can be included in the meta-analysis with genome-wide studies. In
this extension, a simulation procedure is developed to assign ranks to the candidate
regions where the ranks reflect the expected ranks under the null hypothesis of no
linkage for a genome-wide study. By assigning the ranks to the candidate regions
in this manner, Wise concludes that the false positive rate is not inflated due to the
higher marker density of candidate region studies.

Babron et al. (2003) updated the GMSA method by first replacing the rank V t in
equation (7.5) with the average rank of bin t and the ranks of its two flanking bins,
defined as V−t and V+t in order to adjust for arbitrary bin construction. Second,
they defined a weighting scheme for the ranks such that the rank of study s in bin
t, namely Xst in (7.5), is weighted by the number of pedigrees in study s in order
to account for differing information content across studies. Although Babron et al.
(2003) suggested weights to account for differing information content, a formal test
for heterogeneity among the studies for the GSMA method was not introduced until
2005. Zintzaras and Ioannidis (2005b) propose three weighted metrics to measure
among-study heterogeneity for the GSMA method: 1. sum of the weighted squared
mean rank deviations, 2. sum of the weighted absolute mean rank deviations and 3.
weighted sum of the distinct absolute rank differences. Furthermore, Zintzaras and
Ioannidis (2005a) have developed a software program HEGESMA to perform the
GSMA meta-analysis (unweighted or weighted as specified by the user) as well as
provide the user with heterogeneity results.

In their original paper, Wise (2001) suggested a bin width of 30 cM, but recently,
Marazita et al. (2004) proposed repeating the GSMA with variable bin-length starting
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points in order to determine minimum regions of maximum significance (MRMS).
The resulting bin-shifting method identifies narrower regions of positive findings
compared to the original GSMA which then leads to narrower regions to be followed-
up with fine-scale mapping.

Since its original publication, the GSMA has been the most widely used meta-analytic
method for genome scans, specifically due to its ease of use and invariance to whether
the studies are from one-sided or two-sided tests or if only the most significant results
have been reported. A number of investigators have applied the GSMA method to a
variety of complex diseases: multiple sclerosis and other autoimmune diseases (Wise
et al., 1999; Fisher et al., 2003; Sagoo et al., 2004), inflammatory bowel disease
(Williams et al., 2002; van Heel et al., 2004), asthma (Wise, 2001), celiac disease
(Babron et al., 2003), schizophrenia and bipolar disorders (Levinson et al., 2003;
Lewis et al., 2003; Segurado et al., 2003), obesity (Johnson et al., 2005), diabetes
(Demenais et al., 2003), coronary heart disease (Chiodini and Lewis, 2003) and hy-
pertension (Liu et al., 2004; Koivukoski et al., 2004) to name a few.

7.2.2 Meta-analytic methods based on effect sizes

A meta-analysis based on combining the results from significance tests can be limited
or misleading, especially in cases where the concordance or discordance of signifi-
cant linkage between two studies may not reflect the existence of true linkage, but
rather may be based on the amount of heterogeneity between the studies. Although
adjustments for heterogeneity have been proposed for these methods, combining ef-
fect sizes may be a better approach as many of these methods are based on random
effects models that naturally allow the user to adjust for among-study heterogeneity.

Loesgen et al. (2001) developed a meta-analytic test that computes a weighted aver-
age estimate of score statistics

ZMAt
=
∑k

s=1 wstZst√∑k
s=1 w2

st

(7.6)

where Zst is the NPL score statistic and wst is the assigned weight from study s at po-
sition t. They proposed several weighting schemes such as sample size, information
content and an exponential function based on marker distance. Dempfle and Loes-
gen (2004) compared the power of the method proposed by Loesgen et al. (2001) to
Fisher’s method, the GSMA and other p-value based meta-analytic methods. They
showed that meta-analysis performed using weighted effect sizes had more power
to detect linkage than the p-value methods with nominal increases in false positive
rates. Further, they found that their method based on effect sizes was more robust and
consistent across simulation aspects compared to the p-value based methods.

Etzel and Guerra (2002) developed a meta-analysis technique to combine Haseman-
Elston test statistics across studies that have distinct marker maps. For this method
they suppose that β̂st, the Haseman-Elston slope estimate (Haseman and Elston,
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1972), and S2
st, the corresponding variance estimate of β̂st for the marker t of study

s are available for each of k studies. They further define {L q, q = 1, . . . , v} as the
set of analysis points such that L1 and Lt are at each endpoint of a chromosome seg-
ment, respectively, and the distance between any two adjacent points L i and Li+1 is
constant and equal to L/t where L is the length of the chromosome segment. For each
analysis point, they calculate the statistics β̂stq and S2

stw utilizing markers within D
cM of Lq , where

β̂stq =
β̂st

[1 − 2θstq]2
and Sstq =

S2
st

[1 − 2θstq]4
.

The value θstq is the recombination fraction between marker t of study s and analysis
point Lq as estimated using a general mapping function, for example, Kosambi. Next,
they calculate the weighted least-squares estimate β̃q at Lq,

β̃q =
∑k

s=1

∑nsq

t=1 wstβ̂stq∑k
s=1

∑nsq

t=1 wst

and wst =
1

σ2
B + S2

stq

where k is the number of studies and nsq is the number of markers within D cM of
Lq for study s and σ2

B is between-study variance. The estimator σ̂2
Bq

for σ2
B at Lq is

σ̂2
Bq

=
1∑k

s=1 nsq − 1

k∑
s=1

nsq∑
t=1

[β̂stq − β̄··q]2 −
1∑k

s=1 nsq

k∑
s=1

nsq∑
t=1

S2
stq,

where β̄··q is the average of the β̂stq that are within D cM of Lq. The variance of β̃q

is 1/
∑k

s=1

∑nsq

t=1 wst. The analysis point Lq′ such that tq′ = β̃q′/
√

V ar[β̃q′] is min-
imum and significant at a specified level is the point estimate of location of the QTL.

Likewise, the estimate of genetic variance is given by σ̂ 2
g = β̃q′

−2 . Etzel and Guerra
(2002) further describe a bootstrapping procedure to construct confidence intervals
for location of the putative QTL and genetic variance. Through simulation, they show
that the empirical power using this procedure remained high even when power at the
individual study level was low. This procedure was used to assess linkage of im-
munoglobulin E (IgE), an asthma related quantitative trait, using the nine data sets
provided by the Genetic Analysis Workshop 12 and found suggestive linkage for two
regions on chromosome 4 and one region on chromosome 11.

The method proposed by Loesgen et al. (2001) assumes that all studies use the same
marker map but different linkage tests and the method proposed by Etzel and Guerra
allows for differing marker maps among the studies involved; however, the Etzel
and Guerra method is limited by the fact all studies must use the same linkage test.
Etzel et al. (2005) (***GAW14) proposed a meta-analytic procedure that combines
the methods of Loesgen et al. (2001) and Etzel and Guerra (2002) and results in a
more flexible procedure to combine effect sizes across linkage studies that perform
different linkage tests on different marker maps. The resulting Meta-Analysis for
Genome Studies (MAGS) method is based on a weighted average of effect sizes that
are obtained through the reported linkage summary statistics. Suppose that we wish
to complete a meta-analysis on k studies. Each study k has mk number of markers.
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It is not assumed that the studies have the same number of markers, m i �= mk, i �=
j, nor it is assumed that the studies have the same marker maps. For a specified
chromosome, let Mst denote the tth marker from study s, for s = 1, . . . , k and t =
1, . . . , mk. Define {Lq, q = 1, . . . , l} as the set of analysis points such that the Lq

are equally spaced across the chromosome. For each set of M st on a chromosome, let
Zst be the associated score statistic. As noted by Dempfle and Loesgen (2004), Z st

can be the NPL score statistic as most standard multipoint linkage analysis software
packages includes the calculation of such statistics. However, Zst can also be derived
from other linkage related statistics, such as an HLOD score or even a p-value with
the correct transformation (see Appendix A). For each analysis point L q, calculate
the weighted normal variate:

ZMAq
=
∑k

s=1

∑mk

t=1 Iq{Mst}wstqZst√∑k
s=1

∑mk

t=1 Iq{Mst}w
2
stq

,

where wstq is the weight given to marker Mst. The indicator function Iq{Mst} is
defined as 1 if marker is within a set distance D cM from analysis point L q and 0
otherwise. The weight wstq for marker Mst can be a function of study sample size,
information content at that marker, and/or distance (recombination fraction, θ stq)
between marker Mst and analysis point Lq, say wstq = f(ns)g(ICq{Mst})h(θstq).

The p-value for each analysis location then be compared to a set level to determine
areas with combined evidence for linkage. NOTE: If all studies use the same marker
map, then the combined set of markers can replace the analysis points L q and the
expression for ZMAt

simplifies to the statistic proposed by Dempfle and Loesgen
(2004). Etzel et al. (2005) applied this procedure to the simulated data from the Ge-
netic Analysis Workshop 14 and correctly identified the disease loci on chromosomes
1, 3 and 5; however, found low evidence of linkage to the disease modifier genes on
chromosomes 2 and 10.

7.3 Choosing a method to best suit your analytic needs

Data can be obtained from published sources, open-source websites or through con-
sortia group agreements. At times, the researcher may be limited in choosing a pre-
ferred meta-analytic method due to the type of data available for a meta-analysis:
complete data on all studies through a consortium; data obtained by contacting cor-
responding authors from published articles; data from published reports; or some
combination of these three. However, the researcher who is able to obtain the data
of his/her choosing should then select the meta-analysis method based on the most
robust methodology for identifying linkage within each individual study. Below, we
propose some scenarios that reflect reasonable situations in which a meta-analysis
would be performed and provide advice regarding the type of meta-analytic method
to use.
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7.3.1 Scenario 1: Raw data available on all studies

This scenario could arise when the researcher is a member of a data consortium
whereby members of the consortium freely share all data from their individual stud-
ies. For a meta-analysis, this is the most ideal situation since the researcher is rela-
tively free to reanalyze the data (separately from each study) using a preferred linkage
method and then combine the resulting linkage outcome using any one of the above
mentioned meta-analysis methods. In order fully account for between-study hetero-
geneity, the researcher should choose one of the meta-analysis methods that allows
for such an adjustment (Dempfle and Loesgen (2004), Etzel et al. (2005) or Zintzaras
and Ioannidis (2005b)). Even if the marker maps are different among the studies in
the consortium, the researcher could develop a simple scheme to align the marker
maps in order to perform the meta-analysis. The researcher even has the option to
not perform a meta-analysis, but to complete a mega-analysis instead, such that the
raw data from each of the studies are combined into one common database. Some
notable examples of this approach were applied to multiple sclerosis (Cooperative”,
2001; GAMES and Cooperative”, 2003), celiac disease (Babron et al., 2003), asthma
(Iyengar et al., 2001), diabetes (Demenais et al., 2003) and obesity related pheno-
types (Heo et al., 2002). A master marker map can be established by using a marker
location database. If there are any missing values, one could consider imputation as
in Heo et al. (2002). The combined data is then analyzed using a standard linkage
method. It has been shown (Guerra et al., 1999), that a mega-analysis may have more
power to detect linkage than a meta-analysis; however, one should consider the dif-
ferent types of heterogeneity that may be inherent in each of the different studies.
This heterogeneity may adversely confound or overshadow the results from a mega-
analysis and may arise from differing study designs (linkage results on extended
pedigrees may not combine well with linkage results from sib-pairs, discordant pairs
or parent-offspring triads), varying ethnic/racial groups across study populations (dif-
ferent genes acting in different populations) and varying sample sizes.

7.3.2 Scenario 2: All studies use similar linkage tests and similar marker maps

This scenario could also arise when the researcher is a member of a data consor-
tium whereby the members individually analyze their own data using a common
linkage method and freely share linkage results instead of raw data. Likewise, this
scenario could occur when the researcher personally contacts corresponding authors
from published studies and requested complete linkage analysis results from their
data. If these data are obtained from corresponding authors, or extracted from the
literature, the researcher should collect the most detailed information possible: i.e.,
score statistics instead of p-values, marker information content, recruitment criteria
and sample schemes. For this scenario, we once again recommend that the researcher
choose a meta-analysis method that is flexible enough to account for between-study
heterogeneity: (Dempfle and Loesgen (2004) or Etzel et al. (2005) if score statistics
are available or Zintzaras and Ioannidis (2005b) if only p-values are provided.
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7.3.3 Scenario 3: All studies used similar linkage tests but with different marker
maps

This scenario is similar to scenario 2 except for the commonality of the marker maps
between the studies and likewise, this scenario could occur for the same reasons as
scenario 2. The added complexity of differing marker maps will not hinder a meta-
analysis over the individual studies, as long as the researcher uses a method that is
flexible in this respect. Once again, we advise that the researcher request as detailed
linkage information as possible and apply a meta-analysis based on the effect size
method proposed by Etzel et al. (2005) if score statistics are available or the GSMA
modification proposed by Zintzaras and Ioannidis (2005b) if only p-values are pro-
vided.

7.3.4 Scenario 4: p-values or LOD scores from different linkage tests and different
marker maps from published data are available from all studies

In this scenario, it is assumed that the researcher is basing the meta-analysis on sum-
mary linkage results (p-values or LOD scores) that are available from published ar-
ticles with no follow-up information obtained from the corresponding authors. Al-
though the availability of data in this scenario may seem limited and can vary greatly
depending on the disease of interest, manuscript type and journal of publication,
many meta-analyses are based on such data (Allison and Heo (1998) for instance).
For this case, the GSMA method (Wise et al., 1999) would be the best method to em-
ploy as long as the available data allow. If possible, the researcher could also employ
any of the modifications to the GSMA method if s/he has ample auxiliary information
to do so. In cases where application of the GSMA method is not possible (such as
the scenario posed by Allison and Heo (1998)), then application of Fisher’s method
is still viable.

7.4 Discussion

Herein, we review current meta-analytic techniques for the combination of linkage
data across studies in order to arrive at a consensus for linkage to a complex disease.
We also propose several scenarios to help guide the researcher in their choice of
which meta-analytic technique to employ. However, we caution that meta-analysis is
more than just a method one can use to combine data together. Although the choice
of method is important, the researcher must also keep in mind that the application
of a method is just a small part of a complete meta-analysis. Just as study design
and participant recruitment is important at the beginning of any linkage study, a re-
searcher who is about to embark on a meta-analysis should also develop a study
design and participant study plan which includes a literature review plan, as well as
study inclusion/exclusion criteria. The researcher must also gather as much infor-
mation on original studies as possible, which may include contacting corresponding
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authors. If raw data are provided, the researcher needs to decide how to treat miss-
ing data. The researcher may have ample data to complete a meta-analysis; however,
roadblocks to complete the meta-analysis may exist. Most of these roadblocks in-
clude differences among the studies with respect to: marker maps or denseness of
maps, family structure, environmental factors, population substructure, distinct ge-
netic etiology/different pathways within the disease of interest, marker informativity,
sample sizes, ascertainment schemes, phenotype definitions and/or linkage tests. Ad-
ditional challenges include publication bias and time-lag bias. Although we presented
meta-analytic methods that can handle some of these problems, no one single meta-
analysis method exists that can handle all such problems. Therefore, a researcher
must be willing to accept the limitations of his/her own meta-analysis.

Two topics that we have not discussed in detail within this chapter involve determin-
ing an appropriate significance level for a meta-analysis performed on genome scans
and the effect of publication bias (only positive linkage results published). The topic
of genome-wide significance levels for individual studies remains in controversy and
to fully detail the debate with respect to a meta-analysis would be a lengthy chap-
ter in itself. Instead, we leave it to the researcher to consider an appropriate signifi-
cance level, but advise the researcher to look to Morton (1955), Lander and Kruglyak
(1995), Feingold et al. (1993), Sawcer et al. (1990), Rao (1998), Rao and Gu (2001),
and Levinson et al. (2003) to gain more insights into the determination of an appro-
priate significance level.

Publication bias in a meta-analysis may become a factor when the results of the
study impact the probability that it will be published in the literature. In this event,
if the published literature was biased in favor of statistically significant results, you
would find a relative lack of studies reporting negative evidence for linkage and you
could incorrectly conclude a region to be more significantly involved in the disease
in question than it really is. Iyengar and Greenhouse (1988) present two procedures
to handle this potential bias by estimating what they term the ’fail safe sample size.’
They first describe the procedure presented by Rosenthal (1979) which determines
the minimum number of unpublished studies with null results required to reverse the
conclusion of the meta-analysis over the published studies and note that Rosenthal
(1984) provides some ad hoc guidelines for interpretation. Iyengar and Greenhouse
(1988) extend the approach described by Rosenthal (1979) and present a second
procedure based on selection models that uses a maximum likelihood approach to
model the reporting process by weighting the results in the meta-analysis. They note
that by using the MLE approach, you can examine how changing your assumptions
about the selection model change the parameter estimates and inference of the meta-
analysis.

7.5 Acknowledgements

This work was partially funded by National Cancer Institute K07 CA093592 and
R03 CA110936 (CJE) and R25 CA57730 (TJC).



110 COMBINING INFORMATION ACROSS GENOME-WIDE SCANS

[This research was supported by a cancer prevention fellowship funded by the Na-
tional Cancer Institute grant R25 CA 577730 and K07 CA 093592-02 and R03
CA110936]

7.6 Appendix A

Example transformation of a linkage summary to a score statistic

1. Transform an HLOD to Chi-square variate: Xst = 4.6 ∗ HLODst

2. Obtain p-value for each chi-square variate (Faraway, 1993): p st = 0.5 ∗ [1 −
P2(χ2

1 < Xst)]

3. Transform the resulting p-value to a normal variate by the inverse of the normal
distribution: Zst = Φ−1(pst)
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Combining Different Data Types





CHAPTER 8

A Misclassification Model for Inferring
Transcriptional Regulatory Networks

Ning Sun, Hongyu Zhao
Yale University

8.1 Introduction

Understanding gene regulations through the underlying transcriptional regulatory
networks (referred as TRNs in the following) is a central topic in biology. A TRN
can be thought of as consisting of a set of proteins (transcription factors), genes,
small modules, and their mutual regulatory interactions. The potentially large num-
ber of components, the high connectivity among various components, and the tran-
sient stimulation in the network result in great complexity of TRNs. With the rapid
advances of molecular technologies and enormous amounts of data being collected,
intensive efforts have been made to dissect TRNs using data generated from the state-
of-the-art technologies, including gene expression data and other data types (e.g. Chu
et al., 1998; Ren et al., 2000; Davison et al., 2002; Lee et al., 2002; Bar-Joseph
et al., 2003; Zhang and Gerstein, 2003). The computational methods include gene

clustering (e.g. Eisen et al., 1998; Roberts et al., 2000), Boolean network model-
ing (e.g. Liang et al., 1998; Akutsu et al., 1999, 2000; Shmulevich et al., 2002),
Bayesian network modeling (e.g. Friedman et al., 2000, Hartemink et al., 2001,
2002), differential equation systems (e.g. Gardner et al., 2003; Tegnr et al., 2003),
information integration methods (e.g. Gao et al., 2004), and other approaches. For
recent reviews, see de Jong et al.(2002) and Sun and Zhao (2004). As discussed in
our review (Sun and Zhao, 2004), although a large number of studies are devoted
to infer TRNs from gene expression data alone, such data only provide very limited
amount of information. On the other hand, other data types, such as protein-DNA
interaction data (which measure the binding targets of each transcription factor, de-
noted by TF in our following discussion, through direct biological experiments), may
be much more informative and should be combined together for network inference.

In this article, we describe a Bayesian framework for TRN inference based on the
combined analysis of gene expression data and protein-DNA interaction data. The

113
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statistical properties of our approach are investigated through extensive simulations,
and our method is then applied to study TRNs in the yeast cell cycle.

8.2 METHODS

In this article, we model a TRN as a bipartite graph: a one-layer network where a set
of genes are regulated by a set of TFs. The TFs bind to the regulatory regions of their
target genes to regulate (activate or inhibit) the transcription initiation of these genes.
Transcription initiation is a principal mode of regulating the expression levels of
many, if not most, genes (Carey and Smale, 1999). Because the number of the genes
largely exceeds the number of TFs in any organism (e.g. there are 374 TF entries in
the updated Transfac database (http://www.gene-regulation.com/pub/databases.html)
and more than 6000 genes in yeast), there is combinatorial control of the TFs on
genes. That is, for a given gene, its expression level is controlled by the joint actions
of its regulators. Two well-known facts on the joint actions of TFs include cooper-
ativity, which in the context of protein-DNA interaction refers to two or more TFs
engaging in protein-protein interaction stabilize each other’s binding to DNA se-
quences, and transcriptional synergy, which refers to the interacting effects among
the Polymerase II general transcriptional machinery and the multiple TFs on control-
ling transcription levels. In our previous work (Zhao et al., 2003), we assumed that
the expression level of a specific gene is controlled through the additive effects of its
regulators. Liao et al. (2003) applied Hill’s equation for the cooperative TF bindings
on the regulatory regions of their target genes and the first order kinetics for the rate
of gene transcription. Under a quasi-steady state assumption, they proved that the
relative gene expression level has a linear relationship with the relative activities of
the TFs that bind on the gene’s regulatory region. In order to obtain a unique solution
of the regulation matrix, they required the full column-rank of the regulation and its
reduced matrices. In this article, we extend our previous work (Zhao et al., 2003) to
fully incorporate gene expression data and protein-DNA binding data to infer TRNs.
Before the discussion of our model, we first give a brief overview of the protein-DNA
binding data used in our method.

As the primary goal of TRN inference is to identify the regulation targets of each
TF, the most direct biological approach for this goal is to experimentally identify
the targets of various TFs. Many different biological methodologies are available to
serve this purpose. The large-scale chromatin immunoprecipitation microarray data
(ChIP-chip data) provide the in vivo measurements on TFs and DNA binding in yeast
(Ren et al., 2000; Lee et al., 2002). In our study, the protein-DNA binding data thus
collected are viewed as one measurement of the TRN with certain level of mea-
surement errors due to biological and experimental variations, e.g. physical binding
is not equivalent to regulation. We use the ChIP-chip data collected by Lee et al.
(2002) as the data source for protein-DNA binding. These data represent a continu-
ous measurement of the binding strength between each TF and its potential targets,
and a p-value is derived based on replicated experiments to assess the statistical sig-
nificance of binding. In our following work, the inferred binding p-values between
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a TF and its potential target genes are transformed into binary observations using a
significance level cut off of 0.05. That is, for all TF-gene pairs whose p-value is be-
low 0.05, we denote the observation as 1, representing evidence for binding, and for
those pairs whose p-value is larger than 0.05, we denote the observation as 0, repre-
senting not sufficient evidence for binding. The reason that we utilize protein-DNA
binding data is because we believe that the information from such data serves as a
close measurement for the true underlying TRN.

In our previous work (Zhao et al., 2003), we treated protein-DNA binding data as
representing the true underlying network, and used a simple linear model to describe
the relationship between the transcript amounts of the genes considered and their
regulators’ activities. In our current work, we extend this linear model to incorporate
potential errors associated with protein-DNA binding data to integrate three compo-
nents that are biologically important in transcription regulation, namely, the TRN as
characterized by the covariate (or design) matrix in the linear model, protein regula-
tion activities as defined by the predictors in the model, and gene expression levels
as defined by the response variables. We propose a misclassification model to simul-
taneously extract information from protein-DNA binding data and gene expression
data to reconstruct TRNs.

8.2.1 Model Specification

Our model relating gene expression levels, TRNs, and TF activities can be described
through three sub-models:

• A linear regression model relating gene expression levels with the true underlying
TRNs and regulators’ activities;

• A misclassification model relating the true underlying networks and the observed
protein-DNA binding data;

• Prior distribution on the TRNs.

The information on the measurement error can be built in a flexible way into a graph-
ical model (Richardson and Gilks, 1993; Richardson, 1999). The hierarchical struc-
ture of our graphical model is summarized in Figure 8.1 and we describe each com-
ponent in detail in the following.

The first sub-model: the linear regression model

Let N denote the number of genes and M denote the number of TFs related to the
regulation of these genes. We consider a total number T of gene expression exper-
iments, where these experiments may represent a time-course study, e.g. yeast cell
cycle studies, or different knock out experiments. We focus on time-course experi-
ments in our following discussion. In this case, we use t represents a specific time
point. The observed gene expression levels at time t, Y t, are the vector of N expres-
sion levels normalized over all time points for each gene i and serve as the response



Figure 8.1: The hierarchical structure of the misclassification model discussed in this
paper. The unknown parameters are in the ovals, and the known parameters are in the
rectangles.

in the linear model (8.1) with the following form:

Yt = Xβt + εt (8.1)

εit ∼ N(0, σ2
t ) (8.2)

where X represents the true TRN, β represents the time dependent regulator activities
of the M TFs, and εt represents the errors that are associated with gene expression
measurements. In matrix X, each row corresponds to a gene and each column cor-
responds to a TF. Therefore, the (i,j)th entry in this matrix represents the regulation
pattern of the jth TF to the ith gene. The value of this entry is 1 if the jth TF affects
the transcription level of the ith gene, and the value is 0 otherwise. Therefore, if our
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primary interest is to infer the TRN, the overall objective is to infer the values in this
matrix, either 0 or 1.

This model states that (1) the expression level of a gene is largely controlled by
the additive regulation activities of its regulators, (2) the same regulator has the same
relative effect on all its targets, (3) the TRN is identical across all time points, and (4)
the errors associated with gene expression measurements have the same distribution
across all the genes. We note that these assumptions are simplistic and may only
provide a first order approximation to reality. This model has nevertheless (implicitly
or explicitly) been used in the analysis of TRNs by many research groups and found
good success. The limitations and modifications of these assumptions are further
discussed in the Summary section.

Because protein-DNA binding data are often obtained from a mixture of biological
samples across all the time points, e.g. the asynchronized cells, they measure an av-
eraged protein-DNA binding over the whole cell cycle. Although we may use the
time-course gene expression data to investigate the fluctuation of the network over
time, the information at one time point may not be sufficient for statistical inference
(see results in the simulation study in the following). Therefore, we make the assump-
tion that the network is time independent and combine the information across time
points. Consequently, the variation of the response variable, gene expression, across
time points is accredited to the change in activities of the TFs, β t. With the given
activities of the predictors, the TRN of gene i (Xi) is independent of the network of
any other gene Xi′ , where i′ = 1, 2, ..., (i − 1), (i + 1), ..., N .

The second sub-model: the misclassification model

In our model set-up, both the true and observed covariates are binary, where 0 cor-
responds to no regulation and 1 corresponds to regulation. We assume the following
model (8.3-8.6):

P (Wij = 1|Xij = 1) = 1 − p (8.3)

P (Wij = 0|Xij = 1) = p (8.4)

P (Wij = 0|Xij = 0) = 1 − q (8.5)

P (Wij = 0|Xij = 1) = q (8.6)

where the values of p and q are the false-negative and false-positive rates of the
protein-DNA data. In practice, these values may be directly estimated from some
control experiments, thus we treat these parameters as known or prior information
in the misclassification model and specify their values. In the case these values may
not be precisely known, we also study the robustness of their misspecifications on
statistical inference. Note that the false-positive and false-negative rates may be gene-
TF specific, therefore, our assumption here represents a first-order approximation to
reality that may need further extension in future studies. The binary binding matrix
W serves as the measurement for the true TRN X.



118 GENERAL MODEL FRAMEWORK

The third sub-model: the exposure model

For this submodel, we need to specify the prior distribution of the regulatory matrix
X. The prior distribution of X (πX ) describes the probability of Xij being 1, where
Xij represents the regulation between TF j and gene i. We assume that the X ij are
independent and have an identical distribution πX . For a given true network X, the
value of πX can be calculated from the data. When X is unknown and W serves as
the surrogate of X, πX is a model parameter to be specified.

8.2.2 MCMC algorithm for statistical inference

In our model set-up, a large number of unknown parameters {X, β t, σ
2
t } need to be

inferred based on the observations Yt, t=1, , T , and W. We propose to use the Gibbs
sampler for statistical inference. The Gibbs sampler is alternated between two steps:
(1) sample {βt, σ

2
t } conditional on X; and (2) sample X conditional on {β t, σ

2
t }.

These two steps are described in detail in the following.

Given current estimate of X, the model reduces to a standard linear regression model.
The parameters {βt, σ

2
t } are sampled through (8.7 and 8.8)

σ2
t ∼ Inv − χ2(df, s2

t ) (8.7)

βt ∼ N(β̂t, Vβσ2
t ) (8.8)

where df = N − M , Vβ = (X̂
T

X̂)−1, β̂t = VβX̂
T
Yt, and st is the sample standard

deviation. The matrix is the current estimate for the TRN.

Given current estimates of {βt, σ
2
t }, we individually update the TRN for each gene.

If there are M TFs, there are a total of K = 2M possible combined patterns among
the TFs to jointly regulate a specific gene. The likelihood L ik for each pattern k can
be evaluated as

Lik = LX
ik + LY

ik (8.9)

where

LX
ik = n1 log πX+n11 log (1 − p)+n10 log p+n0 log (1 − πX)+n01 log q+n00 log (1 − q)

(8.10)

LY
ik = −

T∑
t=1

(Yit − Ŷikt)2

2σ2
t

(8.11)

In the above expression, LX
ik and LY

ik represent the likelihood contributions from the
protein-DNA binding data and the expression data, respectively. In the expression
for LX

ik, nso represents the number of TF-gene pairs whose true regulation is s and
the observed binding is o, where the values of s and o are 0 or 1. For example, n 11

corresponds to the number of pairs whose true regulation and observed binding are
both 1, n1 = n10 + n11, and n0 = n00 + n01. The expression for LY

ik represents
the likelihood component derived from gene expression data across all time points.
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After evaluating the log-likelihood for all the patterns, we sample one pattern based
on the following multinomial distribution:

LY
ik ∼ multinomial(1,

exp(Lik)∑K
k=1 exp(Lik)

) (8.12)

Therefore, in the updating of the TRN, our algorithm does an exhaustive search over
all possible network patterns for each gene, and sample a specific network based the
relative likelihood of all possible networks. We repeat this for each of the N genes
to obtain the updated X̂ for the next iteration.

Based on the sampled parameter values, we can derive the posterior distributions for
all the unknown parameters. For example, we can obtain the inferred TRN describ-
ing the binding between the jth TF and the ith gene through the marginal posterior
distribution, i.e. the proportion of samples that the value of X ij is 1. These posterior
probabilities can then be used to infer the presence or absence of regulation through
specifying a cut-off value, e.g. 0.5, such that all the entries below this cut-off are in-
ferred not to have regulation effect, whereas all the entries having values above this
cutoff are inferred to have regulation.

8.2.3 Data analysis and simulation set-up

As our simulation model is based on the real data to be analyzed, we describe the
data sources first. According to the literature, we select eight important cell cycle
TFs, namely Fkh1, Fkh2, Ndd1, Mcm1, Ace2, Swi5, Mbp1, and Swi4, and based
on protein-DNA interaction data reported in Lee et al. (2002), we obtain a binary
binding matrix for these regulators and all yeast genes. The binary observation is
obtained by applying a 0.05 p-value cut-off to the p-values reported by Lee and
colleagues. We then remove those genes with no in vivo binding evidence with any
of the eight TFs from the binding matrix, and further focus only on yeast cell cycle
genes defined by Spellman et al. (1998). These steps result in a total of 295 genes to
be analyzed, and the observed protein-DNA binding matrix has a dimension of 295
(genes) by 8 (TFs). For gene expression data, we use the α arrest cell cycle data with
18 time points collected by Spellman et al. (1998).

Now we describe our set-up used to conduct simulation experiments to evaluate the
performance of our proposed procedure. In our simulation model, we need to specify
(1) the true TRN, (2) true protein regulation activities, (3) false-positive and false-
negative rates in the observed binding matrix, and (4) measurement errors associated
with microarray data. We consider all 295 genes used in the real data analysis, and
select five TFs (Fkh2, Mcm1, Ace2, Mbp1, and Swi4, which are reported to control
the gene expression at the four cell cycle stages) out of the total eight in our simula-
tions to simplify the analysis and summary. For the specification of the “true” TRN
in our simulations, we use the observed binding data to represent the true TRN. As
for TF activity specifications, we estimate the activities of the chosen five TFs from
the linear regression model using the above “true” TRN and the expression levels
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of all 295 genes at each time point. The activity levels of the five TFs over 18 time
points are shown in Figure 8.2. As for false-positive and false-negative rates, we vary
their levels from 0.1 to 0.9 to examine their effects on statistical inference. Finally,
we assess the effect of the measurement variation associated with microarray data on
statistical inference. For the majority of simulations, we assume that the microarray
data are collected from 18 time points as in Spellman et al. (2002). In one case, we
vary the number of time points available to investigate the effect of the number of
time points on statistical inference.

5 10 15

−
0.

5
0.

0
0.

5
1.

0

Time Points

R
el

at
iv

e 
T

F
 A

ct
iv

iti
es

TF1

TF2

TF3

TF4

TF5

Figure 8.2: The activities of five transcription factors vary over 18 time points. Two
of the five transcription factors share similar variation, which may lead to identifiable
problem of the model. However, our results show that the slight difference between
the TF activities prevents the problem.
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8.3 Simulation Results

8.3.1 Convergence diagnosis of the MCMC procedure

Based on our simulation runs, we generally find good mixing of the proposed MCMC
procedure. Both the traces of the parameter values and the autocorrelation of the pa-
rameter curves indicate that a burn-in run of 1,000 iterations out of 10,000 iterations
is stable enough to obtain reliable posterior distributions. The posterior distributions
of the five TF activities (βt) and measure variations from microarrays σ 2

t at a time
point from a randomly chosen simulated data set are shown in Figure 8.3. We also
investigate the effect of the initial network (covariate matrix) on MCMC results.
When the measurement errors in gene expression data are low, the MCMC proce-
dure has good convergence regardless of the initial network. In general, the observed
protein-DNA binding data provide a good starting point for statistical inference.
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Figure 8.3: The posterior distributions for the model parameters β t and σ2
t at t =

4. The standard deviations of these posterior distributions are 0.075, 0.078, 0.092,
0.077, 0.091, and 0.027, respectively.

In our model specification, there are two types of errors: the errors associated with
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the measured gene expression levels (responses, denoted by σ) and those associated
with the observed protein-DNA binding data (denoted by p and q). In order to sys-
tematically investigate the effect of both types of errors, we consider seven pairs of
p and q as (0.1,0.1), (0.2,0.2), (0.2,0.4), (0.4,0.2), (0.3,0.3), (0.4,0.4), and (0.5,0.5).
For each pair of p and q values, we simulate the observed protein-DNA binding data
as well as gene expression data under 22 different σ values, ranging from 0.001 to
1.5. For each specification of the 22×7 = 154 sets of parameter values, we simulate
data sets consisting of protein-DNA interaction data and gene expression data. Each
data set is analyzed through our proposed MCMC approach with a burn-in of 1,000
iterations and a further run of 5,000 iterations. The posterior distribution for each un-
known parameter is summarized and compared to the true underlying network. We
use a cut-off of 0.5 to infer the presence or absence of interactions between TFs and
genes. The inferred network is then compared to the true network to calculate the
proportion of false-positive and false-negative inferences for each TF-gene pair. The
overall false-positive and false-negative rates are then estimated through the average
of all TF-gene pairs across all the simulated data sets. The results are summarized in
Figure 8.4. In Figure 8.4(a), we plot the false-positive rates for the inferred network.
As can be seen from this figure, the false-positive rates for the inferred network in-
crease as σ, p, and q increase. The false-negative rates for the inferred networks show
a similar pattern. The major feature is that the information from gene expression data
may significantly improve the estimation on X. When s is small and p and q are not
too high, there is a very good chance that the true network can be recovered from the
joint analysis of gene expression data and protein-DNA binding data. For example,
with a 30% false-positive and 30% false-negative rates, when σ is less than 0.2, the
whole network may be fully recovered. Even when σ is large, the false-positive rates
in the inferred network using both binding data and gene expression data still outper-
form the false-positive rates in the observed protein-DNA expression data, i.e. gene
expression data are not considered in the inference. The results for the false-negative
rates as shown in Figure 8.4(b) show similar patterns.

8.3.2 Misspecification of the model parameters p, q, and πX

In the results summarized above, we assume that the true values of p and q are pre-
cisely known to us. However, their exact values may not be accurately inferred.
Therefore, we conduct simulation experiments to examine the performance of the
proposed procedure when the values of p and q are misspecified. In this set of sim-
ulations, we simulate data from three sets of p and q values: (0.1,0.1), (0.3,0.3),
and (0.2,0.4). For each simulated data set under a given set of parameter values, we
perform statistical analysis under different sets of specifications for p and q, includ-
ing (0.9,0.9), (0.8,0.8), (0.7,0.7), (0.6,0.6), (0.5,0.5), (0.4,0.4), (0.3,0.3), (0.2,0.2),
(0.1,0.1), (0.05, 0.05), (0.01,0.01), and (0.05, 0.4). Throughout these simulations, we
assume σ = 0.2. The performance of our procedure in terms of false-positive and
false-negative rates is summarized in Figures 8.5(a) to 8.5(c). These results suggest
that the statistical inference is robust to the misspecification of the parameters p and
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Figure 8.4: The false positive and false negative rates of the inferred network. The
X-axis is the standard deviation in the gene expression data, while the Y-axis is either
the false positive rate or false negative of the posterior network with respect to the
true regulatory network in the cell cycle. Different lines correspond to different levels
of quality of the protein-DNA binding data.

q when the specified values are not too distinct from the true parameter values. We
observe similar patterns for other values of σ.

As another parameter that needs to be specified in our approach is the prior probabil-
ity, πX , that there is an interaction between a TF and a gene, we further investigate
the performance of our approach when πX is misspecified. The true value of πX is
about 0.46 (683/(295×5)), where there are 683 regulation pairs in the protein-DNA
binding data) in the given true network X, but we consider 0.1, 0.2, 0.3, 0.4, 0.46,
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0.5, 0.6, 0.7, 0.8, and 0.9 in the specification of πX in our analysis. The results are
summarized in Figure 8.5(d). Compared to the results for p and q, the statistical
inference is more sensitive to the value of πX . However, when the specified param-
eter value is reasonably close to the true value, our approach yields generally robust
estimates.
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Figure 8.5: The effects of the misspecification of the model parameters p, q, and π X

on the inferred network. The standard deviation of the simulated gene expression data
is 0.2. The real values of parameters (p,q) or πX are indicated in the title of each plot.
In the first three plots, the true value of πX is 0.46, but (p,q) are specified as (0.9,0.9),
(0.8,0.8), (0.7,0.7), (0.6,0.6), (0.5,0.5), (0.4,0.4), (0.3,0.3), (0.2,0.2), (0.1,0.1), (0.05,
0.05), (0.01,0.01), and (0.05, 0.4). For the last plot, the values of (p, q) are (0.1,0.1),
but πX is specified at various levels: 0.1, 0.2, 0.3, 0.4, 0.46, 0.5, 0.6, 0.7, 0.8, and
0.9.
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Overall, our simulation studies suggest that misspecifications of model parameters
p, q, and πX within a reasonable range will not substantially affect the statistical
inference of the true network.

8.3.3 Effect of the number of experiments used in the inference

In the above simulations, we simulate data from 18 time points and use all of them in
the inference of the underlying network. In this subsection, we consider the effect of
the number of time points on the inference. For this set of simulations, we simulate
the protein-DNA binding data by fixing the values of p and q at 0.1, select the value of
σ at 0.001, 0.2, and 0.5, and vary the number of time points used in the analysis from
1 to 18. When there is little error associated with gene expression data, i.e. σ = 0.001,
the data at one time point can carry enough information to fully recover the true
network. With increasing σ values, the number of time points affects the results on
the inferred network (Figure 8.6). When σ is 0.2, our previous results show that there
is a significant improvement of the inferred network from the binding data. As more
time points are included in the analysis, we observe a more accurate inference of the
underlying network. When σ is 0.5, the improvement of the inferred network from
the binding data is still obvious but limited by too much noise in gene expression
data.

8.4 Application to Yeast Cell Cycle Data

In this section, we apply our method to jointly analyze gene expression data from
295 genes over 18 time points (Spellman et al. 2002) and protein-DNA binding data
of Fkh1, Fkh2, Ndd1, Mcm1, Swi5, Ace2, Mbp1, and Swi4 (Lee et al. 2002). We
consider eight sets of model parameters for {p, q, πX}: {0.1, 0.1, 0.5}, {0.2, 0.2,
0.5}, {0.2, 0.1, 0.5}, {0.1, 0.2, 0.5}, {0.2, 0.2, 0.4}, {0.2, 0.2, 0.6}, {0.1, 0.1, 0.4},
and {0.1, 0.1, 0.6}. For each set of parameter specifications, we run MCMC with
a burn-in of 1,000 runs and an additional 5,000 runs to obtain the posterior distri-
butions for the parameters of interest. The overall inference is based on the average
posterior probabilities over the eight model parameter settings, which yield similar
results among different settings.

The posterior distributions of the protein activities for the eight TFs and the σ at every
time point are summarized in Table 8.1. The average value of σ across 18 time points
is about 0.55. Based on our simulation studies, at this level of expression errors, the
incorporation of gene expression data should improve the inference of TRNs.

8.5 Summary

In this article, we have developed a misclassification model to integrate gene expres-
sion data and protein-DNA binding data to infer TRNs. Compared to other mod-
els, our model (1) integrates gene expression data and protein-DNA binding data
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Table 8.1: The estimates of the regulation activities of the transcription factors and σ
based on our model.

Time Point Fkh1 Fkh2 Ndd1 Mcm1 Ace2 Swi5 Mbp1 Swi4 σ
1 0.09 -0.81 -0.55 0.54 1.84 -0.29 -0.79 -0.27 0.88

±0.13 ±0.12 ±0.13 ±0.13 ±0.14 ±0.13 ±0.12 ±0.12
2 -0.36 -1.00 0.24 0.28 1.18 -0.46 -0.18 -0.01 0.75

±0.11 ±0.11 ±0.11 ±0.11 ±0.13 ±0.12 ±0.10 ±0.11
3 -0.53 -0.63 0.14 0.09 0.98 -0.35 1.43 0.06 0.66

±0.10 ±0.10 ±0.10 ±0.10 ±0.14 ±0.11 ±0.09 ±0.10
4 -0.34 -0.31 -0.25 -0.29 0.17 -0.42 1.86 0.27 0.58

±0.08 ±0.09 ±0.09 ±0.08 ±0.13 ±0.10 ±0.07 ±0.08
5 0.73 0.12 -0.62 -0.63 0.26 -0.67 0.79 0.13 0.54

±0.07 ±0.08 ±0.08 ±0.07 ±0.09 ±0.08 ±0.07 ±0.08
6 0.72 0.20 -0.42 -0.49 -0.17 -0.49 0.28 -0.04 0.6

±0.08 ±0.08 ±0.09 ±0.08 ±0.10 ±0.09 ±0.08 ±0.08
7 1.31 0.16 0.41 -0.61 -0.07 -0.55 -0.28 -0.28 0.53

±0.08 ±0.09 ±0.08 ±0.08 ±0.10 ±0.09 ±0.08 ±0.08
8 0.44 0.18 0.61 0.01 -0.47 -0.31 -0.43 -0.57 0.44

±0.06 ±0.06 ±0.06 ±0.06 ±0.08 ±0.07 ±0.06 ±0.06
9 0.17 0.09 1.03 0.58 -0.46 -0.00 -0.57 -0.74 0.5

±0.07 ±0.07 ±0.07 ±0.07 ±0.09 ±0.08 ±0.07 ±0.07
10 -0.27 -0.48 0.81 0.47 -0.54 1.11 -0.39 -0.42 0.57

±0.07 ±0.08 ±0.07 ±0.07 ±0.10 ±0.08 ±0.07 ±0.07
11 -0.90 0.02 -0.01 0.79 -0.32 1.23 0.13 0.08 0.75

±0.10 ±0.11 ±0.11 ±0.10 ±0.13 ±0.12 ±0.10 ±0.11
12 -1.07 0.22 -0.29 0.14 -0.45 0.93 0.56 0.65 0.44

±0.07 ±0.06 ±0.07 ±0.06 ±0.08 ±0.07 ±0.07 ±0.06
13 -0.20 0.44 -0.82 -0.28 -0.15 0.35 0.16 0.63 0.45

±0.07 ±0.07 ±0.07 ±0.06 ±0.08 ±0.07 ±0.06 ±0.06
14 -0.35 0.42 -0.68 -0.37 -0.31 -0.08 -0.31 0.52 0.45

±0.06 ±0.07 ±0.07 ±0.07 ±0.08 ±0.07 ±0.06 ±0.06
15 0.44 0.68 -0.61 -0.51 -0.08 -0.32 -0.44 0.38 0.44

±0.06 ±0.07 ±0.07 ±0.06 ±0.08 ±0.07 ±0.06 ±0.07
16 0.09 0.59 -0.10 -0.16 -0.58 -0.04 -0.45 0.13 0.6

±0.08 ±0.08 ±0.08 ±0.08 ±0.10 ±0.09 ±0.07 ±0.08
17 0.26 0.26 0.46 -0.02 -0.27 -0.08 -0.71 -0.26 0.62

±0.08 ±0.09 ±0.09 ±0.08 ±0.10 ±0.09 ±0.07 ±0.08
18 -0.20 -0.15 0.66 0.48 -0.57 0.44 -0.63 -0.26 0.57

±0.08 ±0.09 ±0.09 ±0.08 ±0.10 ±0.10 ±0.07 ±0.08
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Figure 8.6: The effect of sample size on the inferred network. The number besides
each symbol indicates the number of the time points used in the simulated gene
expression data. The value of πX is 0.46, and the values of other parameters are
indicated in the title of each plot.

through a consistent framework, (2) considers the misclassification associated with
protein-DNA binding data explicitly, and (3) consists of a flexible model structure.
The systematic simulation results indicate that this model performs well in the re-
construction of the underlying networks when the misclassification associated with
gene expression data and (more importantly) protein-DNA binding data are within
reasonable ranges. For example, in the case of less than 30% to 40% false-positive
and false-negative rates in the observed binding data, our method may significantly
reduce both types of error rates in the inferred network when the standard deviation
in gene expression measurements is around 0.5 or less. In all the cases, the inclusion
of gene expression data leads to improved inference of the underlying network com-
pared to that solely based on the binding data even when the measurement error in
gene expression data is very high.

In this article, we have considered five TFs in simulation studies and eight TFs in the
application to the yeast cell cycle data. Because there are 133 TFs in yeast protein-
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DNA binding data, the inclusion of all TFs in the same model will create both statisti-
cal and computation challenges. In the context of yeast cell cycle data, protein-DNA
binding data suggest that close to 20 TFs may be involved in the regulation of cell
cycle genes (data not shown). The results of the application of our method to a more
complete TF set and biological interpretations of the results will be reported in a
separate article. From this study, we have found that (1) protein-DNA binding data
can serve as a good starting point in the proposed MCMC procedure, and (2) the
larger the number of gene expression data sets used, the more accurate we expect
our procedure performs, especially when the gene expression data have low to mod-
erate measurement errors. Therefore, in general, when the number of TFs increases,
we hope to collect more samples on relevant gene expressions. More samples can be
achieved by increasing the number of experimental conditions or the number of repli-
cates per experimental condition or both. The advantage of increasing the number of
experimental conditions is to introduce more variations of TF activity profiles so as to
better infer the underlying network. However, more parameters are needed to specify
the model for the additional conditions. We also need to be cautious on how to pool
the experiments to infer the TRN. In this work, we have assumed a time independent
TRN throughout the yeast cell cycle. This assumption may be true in this context and
it allows us to pool information from across all time points. However, the TRN may
differ under different conditions, and the transient behavior of the TRN needs to be
taken into account when using all the microarray data. The advantage of increasing
the number of replicates per condition is to reduce errors associated with measured
gene expression levels at each point without introducing more model parameters. In
this study, the replicates were not included in the model set-up, however, the flexi-
ble structure of our model allows an easy incorporation of such information into the
model.

In our simulation studies, we have investigated the sensitivity of our method when
some of the model parameters are misspecified, including the prior distribution on
the network connections and our belief (measured by p and q) on the quality of
protein-DNA binding data. We found that the method is not sensitive to the misspec-
ifications of these model parameters unless the specified model parameters are dras-
tically different from the true model parameters. In the analysis of yeast cell cycle
data, we considered eight sets of model parameters and observed general agreements
among results from different parameter specifications. In practice, we may take a
full Bayesian approach to inferring the network through averaging inferred networks
under certain prior distributions for the model parameters.

As discussed above, although we have treated the observed protein-DNA binding
data as a 0-1 variable, the observed data are, in fact, continuous. In this case, our
model can be modified within the measurement model framework so that the mea-
sured and true covariate values are continuous. To specify the prior distribution for
the covariate values, we may use normal mixtures or more sophisticated models for
the binding intensity. However, the interpretation of the model parameters will be
somewhat different if the intensity levels are used because the parameter β t cannot
be simply interpreted as TF activities.
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In our model set-up, we assume that all the TFs act additively to affect the transcrip-
tion levels of their target genes and this linear relationship between TF activities and
the normalized expression levels is a key assumption for this model. Because of the
complexity in transcription regulation, such as synergistic effects among TFs, a lin-
ear model can serve as an approximation at best. Nevertheless, linear models have
been used in this context by various authors (Bussemaker et al., 2001; Liu et al.,
2002; Wang et al., 2002; Liao et al., 2003; Gao et al., 2004). The potential depar-
ture from linearity may result from synergistic regulation effects of TFs bound to the
upstream region of the same gene, and we are in the process of developing statistical
approaches for analyzing nonlinear models.

To conclude, we note that our model can be extended in different ways to be more
comprehensive and better represent the underlying biological mechanisms. For ex-
ample, the linear form of the model can be extended to incorporate nonlinear inter-
actions among different TFs as discussed above; the replicates per experiment can
be considered into the model to improve the data quality; more prior information or
more sophisticated statistical models can be used to construct the prior distribution
of the network (πX ). In addition, our general framework has the potential to inte-
grate more data types into the model, such as sequence data and mRNA decay data
to further infer the transcriptional regulatory networks.
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CHAPTER 9

An Overview of Statistical Approaches
for Expression Trait Loci Mapping

Christina Kendziorski and Meng Chen
***

9.1 Introduction

Karl Sax was a pioneer in the field of quantitative trait loci (QTL) mapping. In his
ground breaking 1923 paper, Sax identified a quantitative trait locus (QTL) for seed
weight by associating the trait with seed color (a “marker” for which genotype infor-
mation could be inferred). The next 60 years saw only a handful of similar studies,
largely due to limitations imposed by the difficulty in arranging crosses with a rea-
sonably large number of genetic markers. This changed in the 1980s following the
discovery that abundant, highly polymorphic variation could be used to derive molec-
ular markers densely spaced throughout the genome (Botstein et al. 1980). This ad-
vance, combined with statistical methods for QTL mapping (Lander and Botstein
1989), led to hundreds of QTL mapping studies.

A recent advance of comparable significance has been made in the area of pheno-
typing. With high throughput technologies now widely available, investigators today
can easily measure thousands of traits for QTL mapping. Gene expression abun-
dances measured via microarrays are particularly amenable to QTL mapping, and
most scientists agree that the mapping of gene expression has the potential to impact
a broad range of biological endeavors (Cox 2004; Broman 2005).

The optimism is based largely on the first expression trait loci (ETL) studies which
have demonstrated utility in identifying candidate genes (Schadt et al. 2003; Bystrykh
et al. 2005 Hubner et al. 2005), in inferring not only correlative but also causal rela-
tionships between modulator and modulated genes (Brem et al. 2002; Schadt et al.
2003; Yvert et al. 2003), in elucidating subclasses of clinical phenotypes (Schadt et
al. 2003; Bystrykh et al. 2005; Chesler et al. 2005; Hubner et al. 2005), and perhaps
most importantly, in identifying “hot spot” regions, genomic regions where multiple
transcripts map (Schadt et al. 2003; Brem et al. 2002; Morley et al. 2004; Bystrykh et
al. 2005; Chesler et al. 2005; Hubner et al. 2005). Hot spot regions are attractive for
follow up studies as they putatively contain master regulators that affect transcripts
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of common function. The identification of master regulators could give critical infor-
mation on mechanisms of regulation that remain poorly characterized and ultimately
lead to targets of gene therapies (Cox 2004; Schadt et al. 2003). As a result of these
successes, a number of efforts are now underway to localize the genetic basis of gene
expression.

It is clear that the experimental set up in an ETL mapping study is structurally simi-
lar to a traditional QTL mapping study, but with thousands of phenotypes; and, as a
result, most published studies to date have used methods developed for the QTL map-
ping problem in the ETL mapping setting. Lan et al. (2003) reduced the expression
measurements to a few summary scores using a principal components analysis and
then used single-trait QTL mapping methods to map the summary phenotypes. Do-
ing so proved useful; however, transcript specific information could not be recovered.
Others have used a “transcript-based” approach. In a transcript-based approach, each
transcript is treated separately as a one-dimensional phenotype for QTL mapping.
Single trait QTL analysis is then carried out thousands of times (once for each tran-
script). Notably, although adjustments are made for multiple tests across the genome,
no adjustments are made for multiple tests across transcripts. This leads to a poten-
tially serious multiple testing problem and an inflated false discovery rate (FDR).

An alternative approach recognizes the similarities between ETL mapping and the
problem of identifying differentially expressed (DE) transcripts in a standard mi-
croarray experiment. By grouping animals with similar marker genotypes, the ETL
mapping problem at a particular marker reduces to identifying DE transcripts across
the genotype groups. Any method developed for identifying DE transcripts could be
applied. Similar to the transcript-based approach, this “marker-based” approach is
also subject to inflated FDR as here multiplicities across markers are not accounted
for. For some labs, an inflated FDR is tolerable as many genes can be tested quickly
for certain properties and discarded if found to be false positives. However, for many
labs, validation tests are prohibitively expensive and statistical methods that control
error rates across both markers and transcripts are needed. Kendziorski et al. (2004)
proposed such an approach, the mixture over markers (MOM) model.

In this chapter, we will review transcript-based approaches, marker-based approaches,
and the MOM model approach to ETL mapping. The advantages and disadvantages
of these approaches are discussed in Sections 9.2 and 9.4. Utility is evaluated using
simulated data and data from two case studies (Section 9.3).

9.2 ETL Mapping Data and Methods

9.2.1 Data

The general data collected in an ETL mapping experiment consists minimally of a
genetic map, marker genotypes, and microarray data (phenotypes) collected on a set
of individuals. A genetic marker is a region of the genome of known, or estimated,
location. These locations make up the genetic map. At each marker, genotypes are
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obtained. ETL mapping studies take place in both human and experimental popu-
lations. We focus here on the latter. For these populations, the number of possible
marker genotypes is relatively small.

Studies with experimental populations most often involve arranging a cross between
two inbred strains differing substantially in some trait of interest to produce F1 off-
spring. Segregating progeny are then typically derived from a B1 backcross (F1 x
Parent) or an F2 intercross (F1 x F1). Repeated intercrossing (FnxFn) can also be
done to generate so-called recombinant inbred (RI) lines. For simplicity of notation,
we focus on a backcross population. This is not required and is relaxed in the sim-
ulation and case studies sections. Consider two inbred parental populations P 1 and
P2, genotyped as AA and aa, respectively, at M markers. The offspring of the first
generation (F1) have genotype Aa at each marker (allele A from parent P 1 and a
from parent P2). In a backcross, the F1 offspring are crossed back to a parental line,
say P1 resulting in a population with genotypes AA or Aa at a given marker. We
denote AA by 0 and Aa by 1.

For each member of the backcross population, phenotypes are collected via microar-
rays. For the kth animal, let yt,k denote the expression level for transcript t and gm,k

denote the genotype at marker m; t = 1, 2, . . . , T and k = 1, 2, . . . , n. To avoid
confusion when referring to genes on a genetic map and gene expression levels mea-
sured on a microarray (where the physical location of the gene is often not known),
when referring to the former, we use the term gene; when referring to the latter, we
use transcript or trait.

Most questions addressed in an ETL mapping study rely on the ability to identify a
list of significant linkages between transcripts and markers. To be precise, a transcript
t is linked to marker m if μt,0 �= μt,1, where μt,0(1) denotes the latent mean level of
expression of transcript t for the population of animals with genotype 0(1) at marker
m. Suppose observations yt,k have density fobs(yt,k|μt,gm,k

, θ) where θ denotes
any remaining unknown parameters. Assuming independence across animals, un-
der the null hypothesis of no linkage, the data is governed by

∏n
k=1 fobs(yt,k|μt,0 =

μt,1, θ); and under the alternative,
∏n

k=1 [fobs(yt,k|μt,0, θ)]
1−gm,k [fobs(yt,k|μt,1, θ)]

gm,k .
As discussed below, a main difference between the transcript-based (TB) and marker-
based (MB) approaches arises from different assumptions regarding the latent means.

9.2.2 Transcript Based Approach

A TB approach refers generally to the repeated application of any single phenotype
QTL mapping method to each mRNA transcript, with locations identified as impor-
tant if the test statistic of interest exceeds some critical value. The LOD score

log10

(∏n
k=1 fobs(yt,k|μ̂t,0, μ̂t,1, θ̂)∏n

k=1 fobs(yt,k|μ̂, θ̂)

)
is often used as the statistic measuring evidence in favor of linkage, where ( ·̂) denotes
the maximum likelihood estimate of the associated parameter(s) and μ denotes the



134 EXPRESSION TRAIT LOCI MAPPING

mean common across genotype groups (Lander and Botstein 1989). Critical values
that adjust for multiplicities across genome locations can be obtained theoretically
(Dupuis and Siegmund 1999) or via permutations (Churchill and Doerge 1994).

The specific TB approach considered here assumes a Gaussian density for f obs with
critical values determined by the formulas given in Dupuis and Siegmund (1999). We
consider the output from this approach at markers and refer to this as a TB marker
regression (TB-MR) approach. The restriction to consider output only at markers
is done to facilitate comparisons with MB methods, discussed below. For TB-MR,
the genome wide type I error rate per transcript is controlled at 5% (Dupuis and
Siegmund 1999).
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9.2.3 Marker Based Approaches

To identify transcripts significantly linked to genomic locations, instead of testing
each transcript for significant linkage across markers, one could test at each marker
for significant linkage across transcripts. This amounts to identifying DE transcripts
at each marker, with groups determined by marker genotypes. The MB approach
refers generally to the repeated application, at each marker, of any method for identi-
fying DE transcripts. In this setting, a number of approaches could be used. We here
consider four.

The first is an empirical Bayes approach, EBarrays, with the log-Normal Normal
model (LNN) described in detail in Kendziorski et al. (2003; 2004). This approach
calculates the posterior probability of differential expression for every transcript.
Thresholds can be chosen to control the expected posterior FDR across transcripts.
For example, by specifying the threshold to be the smallest posterior probability
such that the average posterior probability of all transcripts exceeding the threshold
is larger than 1 − α, the posterior expected FDR is controlled at α · 100% (New-
ton et al. 2004). This marker-based empirical Bayes approach will be referred to as
MB-EB. As in TB-MR, the LNN model assumes a Gaussian density for fobs .

The second marker-based approach consists of obtaining p-values from a Student t-
test followed by p-value adjustment; and the last two approaches consider moderated
t-statistics followed by p-value adjustment. The details of the moderated statistic
construction are given in Smyth et al. (2004) and Tusher et al. (2003), respectively.
Adjustment for these last three methods is done using q-values to control the overall
false discovery rate (FDR). In particular, to control the FDR at α, transcripts with
q-values <= α are considered significant (Storey and Tibshirani 2003). MB-Q, MB-
LIMMA, and MB-SAM will denote the three marker-based approaches, respectively.

9.2.4 Other Approaches

Although the TB and MB approaches are in many ways fundamentally different,
they share an important flaw. Separate tests are conducted for each transcript-marker
pair, and each measures evidence that the transcript maps to that marker relative to
evidence that it maps nowhere. Since a transcript can map to any of many marker
locations, the evidence that a transcript maps to a particular marker should not be
judged relative only to the possibility that it maps nowhere, but rather relative to
the possibility that it maps nowhere or to some other marker. This idea motivates
the mixture over markers (MOM) model (Kendziorski et al. 2004). Briefly, MOM
assumes a transcript t maps nowhere with probability p0 or to marker m with prob-
ability pm where p0 +

∑M
m=1 pm = 1 and M denotes the total number of markers.

The marginal distribution of the data y t is then given by

p0f0(yt) +
M∑

m=1

pmfm(yt) (9.1)
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where fm describes the distribution of data if transcript t maps to marker m (f 0

describes the data for non-mapping transcripts). The component densities are pre-
dictive distributions that can be derived under different parametric assumptions. For
comparison, we take Gaussian observation components for the log measurements
with Normal priors on the latent expression levels.

9.3 Evaluation of ETL Mapping Methods

The methods discussed above were evaluated using simulated data and data from two
case studies. The simulations are in no way designed to capture the many complexi-
ties of ETL mapping data. Nevertheless, they do provide some insight into operating
characteristics of each of the approaches. The first case study concerns an experiment
in yeast and the second a study of diabetes in mouse.

9.3.1 Simulation

Recall that for a backcross population, a subject has one of two genotypes (AA or
Aa) at each marker locus. For an F2, three genotypes are possible (AA, Aa, or aa)
and, as a result, a given transcript may be equivalently expressed (EE) or may be
in any one of 4 DE patterns (AA|Aa, aa ; AA, Aa|aa; AA, aa|Aa; AA|Aa|aa ).
Here | denotes inequality among the latent genotype group means. We performed
a simulation of an F2 population in which pattern membership was determined by
a multinomial where the expected proportion of transcripts in each DE pattern was
specified at 3%, 3%, 1% and 3%, respectively (1% is used for the pattern that is least
biologically plausible).

Care was taken to protect against biasing the results in favor of any of the meth-
ods considered. The details are given in Kendziorski et al. (2004). In short, a major
difference among methods lies in the estimation of transcript variance σ t

2. To set
the variance for a simulated transcript t, we used the posterior mean of σ t

2, given

by
�n

k=1(yt,k−ȳt,·)
2+ν0σ0

2

ν0+n−2 (derived assuming the transcript specific variance is dis-

tributed as scaled inverse chi-square: σt
2 ∼ Invχ2

(
ν0, σ0

2
)
). As ν0 → 0, the poste-

rior mean approaches (n−1)s2

n−2 ≈ s2, the transcript specific sample variance, which is
the naive estimate of σt

2 for an EE transcript under TB-MR assumptions. Data sim-
ulated with small ν0 is therefore consistent with assumptions made in TB-MR. As
ν0 → ∞, the posterior mean approaches a constant value σ0

2, which is assumed in
MB-EB (note that this assumption implies a constant coefficient of variation on the
raw gene expression scale). By varying ν0, operating characteristics could be evalu-
ated without biasing the results in favor of one method. Data simulated by this em-
pirical method had marginal distributions that were virtually indistinguishable from
the observed data.

We consider a single ETL simulation with 100 animals and 2 chromosomes. Marker
genotype data was obtained from chromosomes 2 and 3 of the F 2 data described



EVALUATION OF ETL MAPPING METHODS 137

in the next section. Chromosome 2 (3) contained 17 (6) markers with an average
intermarker distance of 7.6 (17.7) cM. An ETL at marker 5 on chromosome 2 was
simulated; no ETL was simulated on chromosome 3. Seven sets of simulations were
obtained for ν0 between 5−5 and 55 (ν0 for the actual F2 data was estimated near 5).
For each value of ν0, 20 simulated data sets were generated. At each fixed ν0, the
profile marginal MLE was obtained for σ0

2.

FDR gives the proportion of transcripts identified incorrectly as mapping to chromo-
some 2; i.e. they were EE or they were DE but mapped outside the region flanking the
true ETL. Table 1 reports the operating characteristics. FDR is well above the target
level of 0.05 for most methods and most values of ν0. MOM is the only approaches
capable of FDR control in this simple simulation setting. Power measures the ability
to identify the DE transcripts exactly at marker 5 or either of the flanking markers
which are 16.5 and 5.8 cM away, respectively. There is little variation in power across
ν0. MB-Q is the most powerful method, followed by TB-MR, MB-EB, and MOM.
The difference in power between MOM and the others is statistically significant, but
perhaps not practically significant as power is still near 80%.

As shown in Table 1, the results from MB-Q, MB-LIMMA and MB-SAM were very
similar, most likely because the relatively large sample size (100 animals) yields
statistics in MB-LIMMA and MB-SAM that have been “moderated” only slightly.
A similar result was reported in Smyth et al. (2004), where an experiment with 16
animals was considered. For this reason, only results for MB-Q will be discussed
hereinafter.

9.3.2 Case Studies

To further compare these approaches, we consider ETL mapping data from the yeast
experiment described in Brem et al. (2002). It is structured as a backcross between a
standard laboratory strain (BY) and a wild isolate from a California vineyard (RM).
There are 6215 transcripts and 3312 markers. With only 40 segregants in the cross,
recombinants are limited. We removed pairs of markers with fewer than 10 recombi-
nants in between leaving 88 markers.

Brem et al. (2002) identified 8 regions enriched for linkage across the genome. Many
transcripts in these hot spot regions have been at least partly validated using indepen-
dent experiments. As noted in the Introduction, these regions are of much interest as
they may contain a master regulator responsible for the control of transcripts sharing
common biological function. A statistical test for enrichment of common function
can done via GOHyperG in Bioconductor (Bioconductor Core Team 2004)). GO-
HyperG uses data from Gene Ontology (GO), where transcripts are categorized at
varying levels of biological detail (the three broadest levels are molecular function,
cellular component, and biological process - there are many subcategories within
each). For a given set of mapping transcripts and a given function, a hypergeometric
calculation is performed to test for enrichment of that function across the transcripts.
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Interpretation of resulting p-values is not straightforward due to the many depen-
dent hypotheses tested. Furthermore, the hypergeometric calculation tends to result
in small p-values when GO nodes with few transcripts are considered. For these rea-
sons, it has been suggested that one only consider interesting small p-values obtained
from a relatively large set of transcripts (> 10) (Gentleman, 2005). Applying this cri-
terion to the results from Brem et al. (2002) gives 5 regions, shown in Table 2.

Table 3 shows information similar to Table 2, for the top 5 regions (5 regions with
the largest number of mapping transcripts) identified by MOM, TB-MR, and MB-Q.
We see that TB-MR identifies 3 of the 5 regions identified by Brem et al. (2002) on
chromosomes 3, 12, and 14. The location identified by Brem et al. (2002) on chromo-
some 2 is missed by TB-MR; and the location identified by TB-MR on chromosome
9 is not found using any other method and shows little evidence for enrichment of
common function. This is likely a false positive. Similar results are obtained from
MB-Q, with 3 of the 5 regions identified, and one potentially spurious identification
on chromosome 8.

The MOM model performs better: 4 of the 5 regions identified by Brem et al. (2002)
(on chromosomes 2, 3, 12, and 14) are also identified by MOM. The one region
identified by Brem et al. (2002) but not MOM is a second location on chromosome
3. There are not enough markers considered (using the selected 88) to distinguish
between these two regions using MOM. In addition to improved hot spot localiza-
tion, MOM is generally more sensitive than the other methods. We suspect that the
increased number of identifications made by MOM are not false discoveries as the
additional transcripts maintain evidence for enrichment of the common function.

It is insightful to check the results from these approaches when control of particular
error rates is not used for hot spot identification. For example, instead of defining hot
spots in terms of the number of mapping transcripts (which depends on particular
thresholds to generate binary calls), one could consider average evidence (across
transcripts) of mapping at each location (average LOD, average posterior probability,
or the average of 1 - q-value). Given hot spots identified in this way, one can simply
rank transcripts at each hot spot by LOD score, posterior probability, or 1-q-value and
then consider the top N transcripts for some N . In terms of regions identified and
tests for enrichment of common function, we found results similar to those shown in
Table 3 for N of 50 and 100.

The ETL mapping approaches were also evaluated using data from a study of dia-
betes in mouse. For details on the experiment, see Kendziorski et al. (2004). Briefly,
it is well known that the ob mutation in the C57BL/6J mouse background (B6-ob/ob)
causes obesity, but only mild and transient diabetes (Coleman and Hummel, 1973),
while the same mutation in the BTBR genetic background (BTBR-ob/ob) causes se-
vere type 2 diabetes (Stoehr et al. 2000). To gain insight into the genetic basis of these
differences, a (B6 x BTBR)F2-cross was generated yielding 110 animals. Selective
phenotyping (Jin et al. 2004) was employed to identify 60 F 2 ob/ob mice. For each of
the 60 mice, liver tissue was isolated and 45,265 mRNA abundance traits were col-
lected at 10 weeks of age using Affymetrix Gene Chips (MOE430A,B). The probe
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level data was processed using Robust Multi-array Average (RMA) to give a single,
normalized, background corrected summary score of expression for each transcript
(Irizarry et al. 2003). Low abundance transcripts, defined as transcripts with aver-
age expression level below the tenth percentile, were removed leaving 40,738 traits.
Genotypes for 145 markers were also obtained (over 90% of the animals provided
genotype data at any given marker).

Each method was applied to identify ETL. Hot spot regions are shown in the left
panel of Figure 2. The first marker, D2Mit241, is adjacent to D2Mit9, which has
recently been identified as an obesity modifier locus (Stoehr et al. 2004). Two addi-
tional regions identified by 4 of the 5 methods (on chromosomes 4 and 10) are not
yet known to be involved in diabetes although we note that the region identified on
chromosome 4 has been implicated in other analyses done in the Attie lab. The two
regions identified by MOM alone on chromosomes 5 and 8 have been identified by
other groups in earlier studies: D5Mit1 is a location known to affect triglyceride lev-
els (Colinayo et al. 2003) and D8Mit249 is the marker on our map closest to the “fat”
gene which is known to affect both diabetes and obesity (Naggert et al. 1995). This
provides some evidence for the MOM approach, but much more biological validation
is required.

It is interesting to note that the agreement between FDR controlled and rank based
inferences observed for the yeast study was not observed here. Figure 2 (right panel)
gives results from the diabetes case study using the binary scores. As shown, there
is much less agreement across methods when the binary scores are used. We expect
there are conditions under which averaging evidence across transcripts is more ad-
vantageous than reducing to a binary score (and vice versa). This is currently an area
under investigation.

9.4 Discussion

The field of QTL mapping was reignited in the 1980’s by advances that allowed
for the relatively easy identification of genetic markers and their genotypes. Today,
with major developments in high throughput technologies, a similar advance has
taken place that allows for measurement of thousands of phenotypes. The number
and nature of these phenotypes are what distinguish QTL from ETL mapping. In fact,
ETL mapping is exactly traditional QTL mapping, but with thousands of expression
traits considered as phenotypes. The simplicity with which this difference can be
stated perhaps obscures the resulting challenges posed for the statistical analysis of
ETL data.

When faced with just about any statistical problem, it is often best to first consider
methods that are currently available. This was done for ETL mapping. The earliest
ETL papers applied traditional QTL mapping methods to each transcript in isolation.
Doing so does not account for multiple tests across transcripts; and we found this
to have a real impact on increased FDR even in very simplified simulation settings.
For some labs, an inflated FDR is tolerable as many genes can be tested quickly for
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certain properties and discarded if found to be false positives. However, for many
labs, such tests are prohibitively expensive and more appropriate statistical methods
are needed.

The most recent ETL studies have made attempts at adjusting for multiplicities across
both markers and transcripts using a two stage approach (Chesler et al. 2005; Hubner
et al. 2005). The first stage obtains a single p-value for each transcript that is adjusted
for multiple tests across markers; stage two controls the FDR across transcripts by
calculating q-values from these p-values. With this approach, mapping transcripts
are identified, along with the single most likely location to which these transcripts
map. Preliminary simulation results (not shown) show very low power if attempts
are made to control the FDR at 5%. This is consistent with the results reported in
Chesler et al. (2005), where an FDR cutoff of 25% is used so that 101 transcripts can
be identified (out of 12, 422 total transcripts).

Our general conclusion is that a clever application of statistical methods developed
in the context of QTL mapping and/or multiple testing is not sufficient to address the
complexities of the ETL mapping problem. As a result, we continue to investigate
MOM. The MOM approach was designed explicitly to address the ETL mapping
question. Operating characteristics evaluated via simulations as well as results from
case studies are encouraging. Another nice feature of the MOM framework is that
it can be extended to account for interval and multiple ETL mapping. This work is
underway.

In summary, much more work is required before the analysis of ETL data becomes
routine. In practice, we suggest an investigator apply a number of tools and focus
initially on genomic locations at which most methods agree (such as the 4 regions
shown in the left panel of Figure 2), keeping in mind that assumptions across dif-
ferent methods are often very similar and therefore by no means are the results of
different methods independent confirmations. Statisticians can contribute to the ETL
mapping effort by method development, evaluation, and validation; and by carefully
considering those genomic regions that do not agree across methods. Such regions
can provide valuable insights so that specific conditions under which different meth-
ods work best can be identified. Advances in each area and communication between
the two are required to maximize the amount of information that can be derived from
ETL mapping studies.
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9.5 Figures and Tables

Figure 2: Evidence of linkage for each approach (LOD for TB-MR, posterior prob-
ability for MB-EB and MOM, and 1 - q-value for MB-Q). TB-MR, MB-EB, MOM,
and MB-Q are colored by blue, red, purple and green, respectively. The left panel av-
erages evidence of mapping over transcripts; the right panel gives normalized totals
of mapping transcripts based on thresholding to control FDR. The 5 markers with the
strongest evidence of mapping transcripts are indicated by triangles for each method.
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2*OC 2*Method ν0

5−5 5−3 5−1 50 51 53 55

4*FDR TB-MR 0.286 0.286 0.293 0.285 0.286 0.28 0.301
MB-EB 0.282 0.281 0.285 0.279 0.269 0.117 0.034
MB-Q 0.24 0.246 0.246 0.24 0.245 0.23 0.226
MB-LIMMA 0.238 0.236 0.232 0.237 0.235 0.237 0.229
MB-SAM 0.233 0.238 0.235 0.232 0.238 0.236 0.221
MOM 0.038 0.041 0.046 0.037 0.036 0.005 0.002

4*Power TB-MR 0.884 0.886 0.887 0.886 0.889 0.919 0.868
MB-EB 0.820 0.817 0.815 0.823 0.833 0.895 0.837
MB-Q 0.911 0.912 0.913 0.912 0.917 0.949 0.918
MB-LIMMA 0.900 0.910 0.909 0.900 0.914 0.935 0.899
MB-SAM 0.897 0.908 0.906 0.898 0.913 0.933 0.899
MOM 0.848 0.851 0.853 0.850 0.856 0.860 0.811

Table 1: Average operating characteristics (OCs) for TB-MR, MB-EB, MB-Q, MB-
LIMMA, MB-SAM, and MOM. Averages are calculated over 20 data sets; standard
errors were less than 0.005. OC definitions and details of the simulation are given in
the text (see Section 9.3.1).
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Chromosome Number of Common Function p-value
(BP) Mapping Transcripts

2(550) 18 Cell Separation ∼ 10−7

3(90) 21 Leucine Biosynthesis ∼ 10−7

3(190) 28 Mating ∼ 10−10

12(670) 28 Fatty Acid Metabolism ∼ 10−7

14(490) 94 Mitochondrial Induction ∼ 10−6

Table 2: Results reproduced from Brem et al. (2002). Chromosomal locations, num-
ber of transcripts mapping to each region, biological function common to these tran-
scripts, and p-values from GoHyperG are shown. BP gives the number of bases
(/1000) from the 5’ end of the chromosome.
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Method Chromosome Number of Common Function p-value
(BP) Mapping Transcripts

TB-MR 3(75) 29 Leucine Biosynthesis ∼ 10−6

TB-MR 12(607) 21 Fatty Acid Metabolism ∼ 10−7

TB-MR 14(502) 644 Mitochondrial Induction ∼ 10−6

TB-MR 15(1) 27 Glucan Metabolism > 0.2
TB-MR 9(99) 19 Iron Transport 0.03
MOM 2(602) 56 Cell Separation ∼ 10−5

MOM 3(75) 56 Leucine Biosynthesis ∼ 10−6

MOM 12(872) 55 Fatty Acid Metabolism ∼ 10−8

MOM 14(502) 94 Mitochondrial Induction ∼ 10−6

MOM 15(1) 288 Glucan Metabolism ∼ 10−3

MB-Q 3(75) 31 Leucine Biosynthesis ∼ 10−5

MB-Q 12(607) 36 Fatty Acid Metabolism ∼ 10−7

MB-Q 14(502) 78 Mitochondrial Induction ∼ 10−5

MB-Q 15(1) 29 Glucan Metabolism 10−1

MB-Q 8(80) 81 Response to Pheromone 0.001

Table 3: Top 5 regions identified by TB-MR, TB-Q, and MOM. For each method
and region, chromosomal locations, number of transcripts mapping to each region,
biological function common to these transcripts, and p-values from GoHyperG are
shown. BP gives the number of bases (/1000) from the 5’ end of the chromosome.
Note that the region identified by all methods on chromosome 15 is one of the 8
originally identified by Brem et al. (2002). It was excluded when constructing the
list of 5 due to a relatively large p-value (0.02). It is difficult to judge whether or not
this region is a false positive. Considering all methods point to this region, perhaps it
is not.



CHAPTER 10

Combining genomic data in human
studies

Debashis Ghosh, Daniel Rhodes and Arul Chinnaiyan
University of Michigan

10.1 Introduction

With the development of technology that has allowed for the high-throughput minia-
turization of standard biochemical assays, it has become possible to globally moni-
tor the biochemical activity of populations of cells. This has led to the emergence of
cDNA microarrays in medical and scientific research and has allowed for large-scale
transcriptional characterization. It should also be noted that the microarray technol-
ogy would have limited ability without the existence of large-scale genome sequenc-
ing projects, such as the Human Genome Project (International Human Genome Se-
quencing Consortium, 2001; Venter et al., 2001). Having such sequence data avail-
able allows for the characterization of the probes on the microarray. In this chapter,
we will be using the term “genomic data” to generically refer to any genetic data that
is generated using large scale technologies.

While transcript mRNA microarrays have received much attention in the literature,
there has been work on other types of microarrays. Examples include chromatin-
immunoprecipitation (ChIP) microarrays, which measure transcription factor-DNA
binding expression (Lee et al., 2002) and methylation microarrays (Yan et al., 2001),
which assess DNA methylation on a global scale. In addition, there has also been
much attention on high-throughput assays that measure protein-protein interactions,
such as yeast two-hybrid systems (?). Because of all the large-scale data that is being
generated, there is much interest in attempting to integrate the data to provide a more
complete understanding of the biological mechanisms that are at play. This type of
analysis has been given the name “systems biology” in the bioinformatics literature
(Ideker et al., 2001).

For the statistician, this area brings many interesting and challenging problems. While
the term “meta-analysis” is familiar among most statisticians (Normand, 1999), the
term here takes a very different meaning. The situation statisticians are familiar with
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involves attempting to combine information from relatively homogeneous data struc-
tures from multiple similar experiments. However, in much of the genomic area, the
issue is one of trying to combine relatively inhomogeneous data structures from mul-
tiple experiments that may or may not be similar.

Another complication is that data availability depends on the type of organism stud-
ied. In this chapter, we focus on data from human studies. Thus, protein-protein in-
teraction data from two-hybrid experiments are not currently available for humans.
We will talk about approaches for combining genomic data in human studies, pri-
marily focusing on methods developed in the cancer setting. Some familiarity with
microarray technologies is assumed; the reader is referred to the first and second vol-
umes of The Chipping Forecast, a supplement to the journal Nature Genetics that
has been made publicly available online (Chipping Forecast, 1999, 2002). Our goal
here is to seek to outline the major issues involved in such analyses and describe
some solutions that have been proposed. It is not our intent to provide an up-to-the
date listing of all methodologies that have been used, as the literature is constantly
changing. Given the dynamic nature of the field, an important component will be
benchmarking of methods to see which should be used in practice.

10.2 Genomic data integration in cancer

10.2.1 Goals

Our group has focused primarily on the analysis of genomic data in cancer studies.
There are two broad goals of this research. One is the discovery of new biomarkers
that might be used potentially as screening tests or to better predict patient prognosis.
Examples of potential promising biomarkers found using gene expression technology
include enhancer of zeste homolog 2 (EZH2) in prostate cancer (Varambally et al.,
2002). In this study, the transcript mRNA expression EZH2 gene transcript was found
to be highly expressed in metastatic prostate cancer. A key point to make at this stage,
which we will address later, is that mRNA expression does not necessarily perfectly
correlate with protein expression. In terms of diseases, the action is happening at
the protein level. In protein validation studies done by Varambally et al. (2002)), the
EZH2 protein was also found to be highly expressed in metastatic prostate cancer.
Another example of a potential biomarker found using genomic data technologies is
prostasin in ovarian cancer (Mok et al., 2001). In that study, the authors reported a
sensitivity of 92% and a specificity of 94% for discriminating ovarian cancer cases
from controls using validation by ELISA of serum. Thus, prostasin might serve as a
potential biomarker for early detection of ovarian cancer.

The second is to better understand the biology of the disease. In the past, cancer was
thought of as a heterogeneous collection of diseases. However, a more integrative
view of the disease is currently being put forward by many researchers; this view
was summarized eloquently in a review article by Hanahan and Weinberg (2000).
According to their paradigm, there are six principles that underlie tumorigenesis (the
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initiation and development of a tumor); equivalently, for a cancer to develop, it must
acquire six “hallmark capabilities”:

• Self-sufficiency in growth signals;

• Insensitivity to anti-growth signals;

• Evading apoptosis (cell death);

• Limitless replicative potential;

• Sustained angiogenesis;

• Tissue invasion and metastasis.

With the current availability of large-scale genomic data, we can address the Hanahan
and Weinberg model in two ways. First, we can analyze the data to see the relative
contributions of the six “hallmark capabilities.” Second, we can use genomic data to
further refine and identify the pathways that comprise each of the individual hallmark
capabilities described above.

10.3 Combining data from related technologies: cDNA microarrays

The statistical problem closest in spirit to classical meta-analysis involves trying to
combine multiple datasets in which the same type of cellular activity was assessed.
As an example here, we consider multiple microarray studies in which the same
comparison was considered, namely cancer versus normal.

There are several issues that must be considered when attempting such an analysis.
First, one must consider the problem of study-specific artifacts, such as sampling
bias, variations in experimental protocols and differences in laser scanners. However,
there are two bigger issues in the analysis of such data. The first is that of matching
genes from two studies. This is where the availability of large-scale genomic data
figures in hugely. Each spot on a microarray corresponds to a DNA sequence. What
one can do is to match up each spot to a putative gene in the Unigene Database,
which is a collection of clusters of orthologous genes. The Unigene link can then
be used to identify common genes across multiple datasets. Such a task can be done
for Affymetrix chips from their website (http://www.netaffx.com/) or for two-color
cDNA microarrays using the SOURCE tool at Stanford (Diehn et al., 2003).

While such a mapping is useful, there still might be errors that remain. A more chal-
lenging issue involves the fact that the numbers from different microarray platforms
represent different things. That is, an expression value of 20 from a cDNA two-
color microarray is much different from an expression value of 20 measured on an
Affymetrix array. Another technique that has proven to be useful as a filtering device
to enhance comparability across arrays of different platforms is known as the integra-
tive correlation coefficient or correlation of correlation coefficients (Lee et al., 2002;
Parmigiani et al., 2004). The idea underlying this method is that while raw expres-
sion values vary from study to study, the intergene correlations do not vary as much.
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Thus, one would consider combining genes that have similar intergene correlations
across the studies.

In terms of meta-analysis methods put forward, many have been based on the fact
that the standardized effect size is combinable across studies. This is the approach
advocated by Parmigiani et al. (2004) after filtering based on the integrative corre-
lation coefficient. In Rhodes et al. (2002), the t-statistic was transformed into a p-
value, a transformation of which was combined across multiple studies. By contrast,
in Ghosh et al. (2003), the t-statistic was combined directly. An approach that was
more Bayesian in nature was taken by Wang et al. (2004), in which expression values
from one study were used to develop a prior distribution for the standardized effect
size; data from the remaining studies were used to generate posterior distributions. A
fully hierarchical approach was taken by Choi et al. (2003), who then used Markov
Chain Monte Carlo methods to sample from the posterior distributions. It should be
noted that all of these methods make the assumption that a standardized effect size
can be estimated directly for each individual study.

Another approach more in line with classification or supervised learning analyses is
to build a classifier or find a gene expression signature on one dataset and to see how
well it predicts in an independent microarray dataset. Such approaches were taken by
Beer et al. (2002), ? and Jiang et al. (2004). An alternative method using hierarchical
clustering, which is an unsupervised learning procedure, was taken by Sorlie et al.
(2003). They found a gene expression signature that defined molecular subtypes in
breast cancer; they found through interrogation of other datasets that the subtypes
were present there as well. Given the increasing availability of publicly available
large-scale gene expression datasets, it is increasingly important that results found
by one investigator on a particular dataset be validated using other datasets as well.

A large-scale comprehensive meta-analysis was performed by Rhodes et al. (2004a).
They performed a meta-analysis of 40 independent datasets (>3,700 array experi-
ments) across ***??? tissue sites. They found a universal profile of 67 genes that
could differentiate cancer versus noncancer tissue for a variety of cancers. In addi-
tion, they determined 36 cancer-specific signatures for determining a tissue-specific
cancer. The signatures also demonstrated good discrimination performance on three
independent datasets.

A more sophisticated method for meta-analysis was put forward by Shen et al. (2004),
based on an idea of Parmigiani et al. (2002). Namely, the idea is that for a given gene
from a given sample in a given study, it is either over-, under- or non-differentially
expressed with respect to a baseline cohort of genes. Each of the three states de-
fines a latent category, which induces a mixture model for gene expression values.
The latent states of over-, under- or non-differentially expressed are inferred using a
Markov Chain Monte Carlo sampling algorithm. The estimated probabilities of the
latent states are then transformed to define a “probability of expression,” which is
then used as input for a meta-analysis.

Much of the meta-analysis methods have studied differential expression across mul-
tiple studies. A notable exception is the study by Lee et al. (2004), in which inter-
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gene correlations across multiple studies was considered. The authors sought pairs
of genes that were consistently coexpressed across several datasets. As will be de-
scribed in the next section, such coexpression is the first step needed in building gene
regulatory networks.

Because of the fact that information on thousands of genes are typically considered,
there is an inherent multiple testing problem. A popular method for calibrating re-
sults in this setting has been through use of the false discovery rate (Benjamini and
Hochberg, 1995a). The false discovery rate, or FDR, is roughly defined as the ex-
pected proportion of falsely rejected null hypotheses among the set of rejected null
hypotheses. A smaller FDR indicates that there are more “real” discoveries found by
the investigator. This can be visualized by considering the cross-classification of n
single-gene hypotheses by whether they are rejected based on the data and their true
status (i.e. null hypothesis is true or alternative hypothesis is true). Such a table is
given here:

Table 10.1: Outcomes of n tests of hypotheses

Accept Reject Total

True Null U V n0

True Alternative T S n1

W Q n

The definition of false discovery rate (FDR) as put forward by Benjamini and Hochberg
(1995a) is

FDR ≡ E

[
V

Q
|Q > 0

]
P (Q > 0).

The conditioning on the event [Q > 0] is needed because the fraction V/Q is not
well-defined when Q = 0. Methods for controlling the false discovery rate have
been proposed by several authors (Benjamini and Hochberg, 1995a; Benjamini and
Liu, 1999; Benjamini and Yekutieli, 2001; Sarkar, 2002). In addition, methods for
directly estimating the false discovery rate (Storey, 2002b) are also available.

A more recent innovation put forward by Storey and Tibshirani (2003) has been es-
timation of a quantity known as the q-value, which represents the minimum positive
FDR rate at which significance is attained. It represents an analog of the p-value that
takes multiple testing into account. It is quite commonplace for investigators to rank
genes based on a q-value threshold.

Another technique that is done is to adjust p-values for multiple testing; a variety of
methods for doing so is found in ?. The p-value corresponds to the minimum sig-
nificance level at which significance is attained. For multiple testing as described
in Table 10.1, the an analog of the significance level is the familywide error rate
(FWER), defined as P (V ≥ 1). Further discussion for FWER-controlling proce-
dures can be found in Ge et al. (2003) and in a collection of papers by van der Laan
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and colleagues (Dudoit et al., 2004; van der Laan et al., 2004b,a). One unintended
result of the development of high-throughput genomic data technologies has been
the development of new statistical methodologies for addressing the multiple testing
problem.

10.3.1 Functional and Pathway Analyses

Once these meta-analyses are performed and a calibrated list of genes are generated,
the gene lists can be entered into databases representing functional processes. A sim-
ple visualization exercise, done in Rhodes et al. (2002), is to find metabolic pathways
in which multiple genes exist. One example of such a database is the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG). Based on a list of genes that were consistently
dysregulated across multiple studies comparing prostate cancer to non-prostate can-
cer, pathways such as the purine biosynthesis were found to have multiple genes.
This leads to the hypothesis that the purine biosynthesis pathway is dysregulated in
prostate cancer. While the study is only generating a hypothesis and not confirming
it, such a computational prediction can help to inform investigators as to the next
series of experiments to perform. Also, a visual display such as that given by KEGG
does not allow for any formal statistical assessment of significance.

More formal statistical analyses for enrichment of functional terms can be done using
the hypergeometric distribution. This requires a database of functional annotation
terms such as Gene Ontology (GO) (Ashburner et al., 2000a). The idea behind this
procedure is to see if the frequency of certain Gene Ontology terms in a list of genes
is similar to or significantly larger than that in an external database. If it is determined
that there is statistically significant enrichment of functional annotation terms in a
list, then again this generates the hypotheses that certain pathways are dysregulated
in the disease process. This can be easily seen with the following 2 × 2 table: There

Table 10.2: Fisher’s test example

Gene List Non-Gene List Total

GO term X a b G
Non GO term X c d N-G

l N-l N

are l genes in the list and N genes total, i.e. on the chip. The null hypothesis is that
there is no association between the rows and columns of the table; no association
means that there is no functional enrichment of GO term X in the list of genes. This
is tested for by calculating a p-value based on the hypergeometric distribution, which
conditions on the row and column totals. An exact test is known as Fisher’s exact test.

There are now many publicly available tools for performing such a test (Draghici
et al., 2003; Al-Sharour et al., 2004; Beissbarth and Speed, 2004). Note that the
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methods discussed in the last two paragraphs are post-hoc types of procedures in that
the pathway analysis is done conditional on selecting a list of genes. An alternative
is to directly model the information contained in the Gene Ontology databases with
gene expression data. However, this raises the problem of what constitutes a proper
metric by which the heterogeneous information from the two diverse databases can
be related; this currently remains an open question. We later discuss the use of graph-
ical models later in this chapter as well.

A resource initiated by our group is a database known as ONCOMINE (Rhodes
et al., 2004b), located at the URL http://www.oncomine.org/. The database repre-
sents an effort to systematically curate, analyze and make available all public can-
cer microarray data via a web-based database and data-mining platform. Within the
database, one can perform over 100 types of differential expression analyses based
on disease/non-diseased, stage of disease, subtype, etc., reported with study-specific
q-values. These analyses are based on standard differential expression analysis with
correction for multiple testing using the q-value. In addition, one can query individual
genes for known available genetic and proteomic information that is stored at other
databases (e.g., GenBank, Swiss-Prot, etc.). There are links with pathway databases
for visualization and assessing functional enrichment of the gene lists that are found.
One can also search for individual genes of interest to see their expression patterns
across multiple cancer studies.

10.4 Combining Data from Different Technologies

In the traditional statistical view of meta-analysis, one thinks of attempting to com-
bine information from multiple similar experiments. However, the challenge of bioin-
formatics is that high-throughput functional genomics data are being generated on a
variety of platforms and stored in different databases. The challenge then becomes
how to integrate diverse data. This leads to a new definition of “meta-analysis.”

10.4.1 Bayesian networks

One tool that has been utilized quite heavily for this type of problem has been graph-
ical models Lauritzen (1996); Jensen (2001). These are also referred to as Bayesian
networks and belief networks as well. The idea of graphical models is to estimate
dependencies between random variables through calculation of measures of covaria-
tion between them. As a simple example, let us consider three random variables, A,
B and C. If we assume that the joint distribution of (A, B, C) is multivariate normal,
then assuming the random variables have mean zero, the distribution is summarized
by the pairwise correlation coefficients between them. Thus, if we can estimate the
correlations, then we have “learnt” about the system characterized by A, B and C.
There was a lot of interest in attempting to construct regulatory networks by fitting
graphical models to gene expression data only. However, given the amount of exper-
imental variability in such data, this turned out not to be a major direction, so the
focus has been on building networks with multiple sources of data.
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One major goal of Bayesian networks has been to predict protein-protein interac-
tions. While much of the genomic data is measured at non-protein levels, actual cel-
lular activity and disease occurs at a protein level. Thus, it is of interest to figure out
how well functional genomic correlations predict protein-protein interactions. This
was first studied in yeast by Jansen et al. (2003). However, they had the advantage
of having high-throughput protein-protein interaction data available from yeast two-
hybrid experiments. Such experiments currently do not exist for humans.

In a recent application (Rhodes et al., 2005b), we used Bayesian networks to predict
protein-protein human interactions using functional genomic data. We used several
different types of information in order to develop the graphical model:

1. interactions between orthologs of human proteins;

2. intergene correlations from gene expression profiles;

3. shared functional annotations from Gene Ontology;

4. shared enrichment domains.

The idea was to develop a graphical model using known positive and negative protein-
protein interactions in order to develop a scale of evidence for predicting a protein-
protein interaction. To define the positives, we used the Human Protein Reference
Database (HPRD) (Peri et al., 2003), a bioinformatics resource that contains known
protein-protein interactions manually curated from the literature by expert biologists.
We queried 11,678 distinct literature-referenced protein-protein interactions among
5,505 proteins. For the negatives, we identified all protein pairs in which one protein
was assigned to the plasma membrane cellular component and the other to the nuclear
cellular component based on Gene Ontology. Based on fitting model, we predicted
approximately 10,000 interactions with a false positive rate of 20% and about 40,000
interactions with a false positive rate of 50%. Several of the predicted protein-protein
interactions were verified by subsequent experimentation, while other predictions
mimicked what was found in the reported experimental literature. This model has
been integrated into ONCOMINE and is available at the URL http://www.himapp.org/.

While there have been some successes with the graphical models approach, this area
definitely remains in its infancy. One limitation of the graphical model is that it only
uses pairwise covariation information. Furthermore, the graphical models used by
Jansen et al. (2003) and Rhodes et al. (2005b) involve a binning procedure that seems
somewhat ad hoc. One interesting alternative has been proposed by Balasubramanian
et al. (2004), who propose using a graph-theoretic approach to combining functional
genomics data from diverse platforms and test for significance of the nodal con-
nections using permutation testing. Interestingly, the appear to be similarities with
the use of graph-theoretic ideas in this area with those in social network literature
(Wasserman and Faust, 1994). This suggests that there may exist techniques from
that field that may be of use here.

Another point of the Bayesian networks is that they are bidirectional and do not
attempt to impose any directionality. However, we know that activity in biological
systems consists of a series of ordered steps. Thus, there might be some advantage to
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incorporating directionality into the system. Let us take the transcription process as
an example. First, the must be binding of DNA to the upstream promoter regions in
the genome so that transcription is “turned on.” Thus, one could imagine a model for
expression as a function of upstream promoter sequence for this scenario. Models
like this have been proposed for lower-level eukaryotes (Bussemaker and Siggia,
2001; Conlon and Liu, 2003) and are referred to as “dictionary models.” They take a
view that the expression value is a function of a score computed using the sequence
data, which is a conditional model. It remains to be seen whether such models could
work for human genomic data.

10.4.2 Toward an understanding of regulatory mechanisms

In the previous sections, we have described methods for combining information in
order to derive improved gene signatures and to make protein-protein interactions.
Another goal of interest is to derive “regulatory” modules. It is likely that some gene
expression patterns observed from microarray data represent a downstream readout
of a small number of genetic aberrations (e.g., mutations, amplifications, deletions,
translocations) that led to the activation or inactivation of a small number of transcrip-
tion factors. In some cases, cancer-causing genetic aberrations may not be directly
apparent from these downstream gene expression readouts. Recently, approaches to
developing gene expression regulatory modules in human studies have been taken by
Elkon et al. (2003), Segal et al. (2004) and Rhodes et al. (2005a).

The general approach requires a predefined list of genes. The list of genes can come
from an external database, such as Gene Ontology (e.g. set of genes involved in a
known process), or it may come from a differential expression analysis. Based on the
gene list, the Segal et al. (2004) approach is to determine which arrays are commonly
induced by multiple gene lists; the gene lists are then combined to form a “core” gene
cluster. One then determines which arrays show significant differential expression
based on the core gene cluster. One then determines if there is enrichment of clinical
annotation in the set of arrays found at the previous step. Through this procedure,
Segal et al. (2004) are able to find 456 regulatory modules from gene expression data
consisting of measurements of 14,145 genes in 1917 samples across 22 tissue sites.

The approach taken by Elkon et al. (2003), while similar in spirit, involves a ma-
jor difference. The difference is that sequence data are integrated with the gene ex-
pression profiling data. For the study by Elkon et al. (2003), approximately 13,000
putative promoter start sites were identified based on the NCBI Reference Sequence
Database (ftp://ftp.ncbi.nih.gov/genomes/H\_sapiens).Next, a set
of genes that were determined to be cell-cycle regulated from a human cell cycle gene
expression profiling study ***() were used; of the 874 putative cell-cycle genes in
that paper, promoter start sites were available for 568 of them. The authors searched
for significantly enriched position weight matrices in the entire set of the 568 cell
cycle-regulated promoters using the original 13K set as the background set and found
enrichment of six binding sets. Thus, this provides a set of candidate transcription
factors which may play a role in cell-cycle progression.
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The study of Rhodes et al. (2005a) is similar to that of Elkon et al. (2003). They
derive 265 gene lists from various differential expression analyses using a q-value
cutoff of 0.10. Next, they identify putative transcription factor binding sites in the
promoter sequences of human genes and come up with a database of 361 transcrip-
tion factors. Next, enrichment of each transcription factor in each of the gene lists
is done; again an adjustment for multiple testing based on false discovery rate cali-
bration is performed. From this analysis, they defined 311 regulatory programs that
displayed highly significant overlap (P < 0.00033) between a gene expression sig-
nature and a regulatory signature; these will serve as candidate regulatory modules
that can be tested experimentally.

The crux of the analyses described in this section is that based on defined lists of
genes, one calculates overlap measures of enrichment of a certain biological prop-
erty (here binding sites) with the lists. It is fairly easy to see how other types of
biological sequence information (e.g., protein structure information, etc.) might be
used here as well. In addition, there are many ways of defining “interesting.” It could
be differential expression from a two-group comparison, or cell-cycle regulated (i.e.,
periodic expression) in a microarray time-course study. The overlap statistic is a very
simple, and again, many other approaches are possible. This area will be a popular
one for further study.

10.5 In vivo/in vitro genomic data integration

An area that is beginning to be considered more frequently in functional genomic
studies in cancer is the integration of in vitro, i.e. experimental studies, with human
gene expression studies, termed in vivo data. Integrating results from such exper-
iments with in vivo cancer signatures holds the potential both to infer activity of
specific oncogenic pathways in vivo and to identify relevant effectors of oncogenic
pathways. For example, Huang et al. (2003) developed distinct in vitro oncogenic
signatures for three transcription factors, Myc, Ras and E2F1-3. These signatures
were able to predict Myc and Ras state in mammary tumors that developed in trans-
genic mice expressing either Myc or Ras, suggesting that specific oncogenic events
are encoded in global gene-expression profiles.

To begin to understand the mechanisms by which oncogenes cause cancer, stud-
ies have used gene-expression profiling to identify downstream targets of oncogenic
pathways in cell-culture systems. Conceptually, this involves manipulating a gene in
an in vitro system and measuring a global profile using gene expression technology
and then trying to relate the in vitro gene expression profile to an in vivo gene ex-
pression profile. Such an approach was taken by Lamb et al. (2003) to determine the
direct transcriptional effects of oncogene Cyclin D1. In vitro experiments were per-
formed in which the Cyclin D1 was both over and underexpressed, and global gene
expression profiles were determined. Lists of differentially expressed genes were
then generated. To correlate the lists with in vivo gene expression data, a two-step
process was utilized in which genes were first ordered based on correlation with Cy-
clin D1. Then, a Kolmogorov-Smirnov statistic was used to determine if the lists
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clustered within the ordered list based on correlation. Since there was significant
evidence of clustering, Lamb et al. (2003) found that the in vitro-defined targets of
Cyclin D1 were correlated with Cyclin D1 levels in vivo. This suggests that the direct
regulatory effects of Cyclin D1 may play an important role in tumorigenesis. The sta-
tistical problem brought up this type of analysis is determining clustering of a list of
genes within an ordered list of genes. While a Kolmogorov-Smirnov statistic has the
advantage of being a nonparametric statistic, the potential disadvantage to the use of
such a method will be a loss of efficiency. Determining alternative methodologies for
this type of problem will be important.

Another setting that leads to consideration of in vitro and in vivo genomic data is
when the in vitro experiment is performed in a model organism system. For example,
Sweet-Cordero et al. (2005) defined a signature by comparing lung tumors gener-
ated from a spontaneous KRAS mutation mouse model to normal mouse lung and
correlating it with gene expression profiles in human lung cancer studies. The ma-
jor issue in such an analysis is mapping mouse genes to orthologous human genes.
Sweet-Cordero et al. (2005) found that the mouse signature shared significant simi-
larity with human lung adenocarcinoma but not with other lung cancer types. Next,
they looked for evidence of the KRAS signature in human tumors carrying activating
KRAS mutations relative to wild-type tumors. Although no individual genes were
significantly associated with KRAS mutation status in human tumors, the mouse
KRAS signature was significantly enriched among genes rank-ordered by differen-
tial expression in human tumors with a KRAS mutation.

It is expected that experiments such as those described in the previous two para-
graphs will become much more commonplace in the future. Thus, it will be critical
to address issues and to develop methods for integrating in vivo and in vitro genomic
data so that inferences regarding transcriptional regulatory pathways in cancer can
be generated.

10.6 Software availability

Due to the recent innovations previously described, public use software for imple-
menting these methods is still in their infancy. As mentioned earlier, our group has
developed a database, ONCOMINE, located at the following URL:

http://www.oncomine.org/.

The database is geared towards biologists and does automated data analyses. Exam-
ples include differential expression analyses, analyses for functional enrichment of
GO terms and Kolmogorov-Smirnov analyses in the spirit of Lamb et al. (2003). In
addition, links to the protein-protein prediction project of Rhodes et al. (2005b) are
available. The website for this is located at http://www.himapp.org/.

Many genomic data analysts primarily use software languages such as MATLAB
and R (R Development Core Team, 200) for the analysis of genomic data. In par-
ticular, there has been a project towards the development of bioinformatics software
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packages in R, known as Bioconductor (Gentleman et al., 2004). The goals of the
Bioconductor project are threefold: goals of the project include:

1. foster collaborative development and widespread use of innovative software;

2. reduce barriers to entry into interdisciplinary scientific research,

3. promote the achievement of remote reproducibility of research results.

One benefit of R is that it is a high-level interpretable language that allows for rel-
atively fast development of methods. In addition, it has a nice ability for packaging
related components.

Another language that is of great use in this type of bioinformatics research is Perl.
Given that many of the databases are text databases, it is very important to be able to
manipulate such databases relatively easily. Perl is a very useful language for such
text manipulations.

10.7 Discussion

In this chapter, we have attempted to describe the current state of knowledge in the
area of functional genomic analyses. Because of the different types of functional ge-
nomic datasets that are being generated, this has led to an extension of the statistical
concept of meta-analysis. Now, analysts are faced with the prospect of combining
different sources of information from different types of platforms.

One of the techniques described earlier, graphical models, is a tool from the area
of machine learning. Machine learning algorithms tend to be black-box algorithms
that are useful for predictive inference. While the application of machine learning
algorithms to high-dimensional genomic datasets will lead to some predictions that
will be borne out, it is also important to attempt to build in biological information
as much as possible into the analyses. As an example, a central tenet of biology is
that binding of DNA to the binding sites transcription factors leads to activation of
gene expression. It would seem sensible that a model in which transcription factor
information is the independent factor and gene expression is the dependent variable
should be a better model for the system than a graphical model that assumes no
directionality.

Finally, an important non-statistical issue that needs to be addressed is how to store
information from these types of analyses such that they themselves can be combined.
One can imagine that lists of genes from different analyses can be used to make in-
ferences about various biological aspects in cancer studies. It then may be of interest
to compare the lists themselves in another type of meta-analysis so that higher-order
inferences about the biological network can be made. However, to do this will require
work to develop database requirements and standardization, much as was done in the
case of microarrays (Brazma et al., 2001).
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Abstract

With the development of genomic technologies, enormous amount of biological data
have been and are continually being generated. They include genomic sequence data,
gene expressions, protein-protein interactions, protein structures, protein localiza-
tions, protein functions, etc. For biological problems of interest, each data source
contributes partially to the understanding of the problems. An important issue is how
to integrate the different data sources to obtain a more complete understanding of the
problems. In addition, most of the data sources from the high throughput experiments
contain many false positive and false negative errors. Statistics plays an essential role
in understanding the reliability of the observed biological data as well as to choose a
more reliable data set from the observed ones. Statistics and machine learning tech-
niques can help the integration of different data sources to understand the biological
problems. We present two examples: to study the reliability of observed protein in-
teraction data sets, and to predict protein functions combining different data sources.

11.1 Introduction

In recent years, an increasing number of genomes of model organisms have been
sequenced. Using these genomic sequences, researchers have been able to make
tremendous progress in the study of genomes, such as numerous successes in the
identification of genes, the detection of protein-binding DNA motifs, and the de-
termination of gene regulation. Beyond these successes is the far more challeng-
ing and rewarding task of understanding proteomes by means of, e.g., (1) discov-
ering signal transduction pathways, (2) determining protein structures, (3) detect-
ing protein-protein, protein-DNA, and protein-metabolite interactions, (4) detecting
post-translational modifications of proteins, and ultimately (5) elucidating the func-
tions of genes and their protein products.

159
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Unlike a genome, which is a stable feature of an organism, a proteome varies with the
state of the development, the tissue, and the environment. Among many features of
a protein, the interaction with other proteins is one of the most important aspects of
its function. Traditionally, protein interactions have been studied individually by bio-
chemical techniques. However, the speed of discovering new interactions increased
dramatically in the last couples of years; several high-throughput techniques have
produced a total of about 80,000 interactions between yeast proteins, which consti-
tute a rough view of the actual protein-protein interaction network. The successful
methods include yeast two-hybrid assays Uetz et al. (2000b); ?); ?, protein complex
purification-mass spectrometry ??, microarray gene expression profiles ?, genetic
interactions ??, and computationally predicted protein associations ???. These pro-
tein interactions will be very useful to study gene regulatory networks, pathways,
as well as functions of proteins. To understand the interaction network and its ap-
plications for protein function prediction, it is essential to design a joint approach
using tools from mathematics, statistics, computer science, and molecular biology.
In recent years, several groups have developed computational tools to analyze and
compare the different interaction data sets.

Two issues are important in assessing the usefulness of an experimentally observed
protein-protein interaction data set. One is the reliability which is defined as the
fraction of real protein-protein interactions in the observed interactions and the other
is the coverage which is defined as the fraction of real interactions in the observed
data over all the real interactions. A database of high coverage is not very useful if its
reliability is low. Results of comparative analysis of multiple data sets have shown
significantly different coverage and reliability for each technique ???. In this paper
we review methods to study the following problems:

1. Estimate the reliability of a putative observed interaction data set.

2. Give a score that a pair of proteins interact by combining different data sources.

Assigning functions to novel proteins is one of the most important problems in the
post-genomic era. Many researchers have undertaken the task of functionally ana-
lyzing one of the most well-studied species, the yeast genome, comprising approxi-
mately of around 6400 proteins, of which roughly one-third do not have known func-
tions ?, and the other two-thirds, most likely, have many other unknown functions.
The annotation of the yeast genome will have a great impact on genomes of higher
organisms such as the human: new genes can be annotated through their homologous
yeast genes.

Several approaches have been applied to assign functions to genes, including ana-
lyzing gene expression patterns, phylogenetic profiles, protein fusions and protein-
protein interactions. Gene expression analysis can cluster genes based on similar
expression patterns. This makes it possible to assign a biological function to genes,
depending on the knowledge of the functions of other genes in the cluster ?. How-
ever, expression profiling gives an indirect measure of a gene product’s biological
and cellular function, because many cellular processes and biochemical events are
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ultimately achieved by interactions of proteins. A more complete study of protein
functions can be achieved by looking at not only the mRNA levels but also the pro-
tein interaction network. We will review the following methods for protein function
prediction:

1. A Markovian random field (MRF) model for assigning functions to proteins using
highly reliable protein-protein interaction data and other data sources including
gene expression profiles, protein sequence similarities, and features of individual
proteins, and correlations of protein functions.

2. The use of support vector machine (SVM) for protein function prediction com-
bining different data sources.

3. A kernel-based MRF model for protein function prediction.

The paper is organized as follows. We first provide the data sources for the studies.
Then we divide the paper into two major sections: estimating the reliability of ob-
served putative protein interactions and predicting protein functions based on reliable
protein interactions and other data sources. We then discuss the connections of the
two topics and future research questions.

11.2 Data Sources

Protein interactions have traditionally been studied individually by genetic, bio-
chemical, and biophysical techniques. However, these techniques are generally labor
intensive and cannot keep up with the speed new proteins are discovered. Recently,
several high-throughput methods for the detection of protein interactions have been
developed. These include the yeast two-hybrid assays ??Uetz et al. (2000b), mass
spectrometry ? and gene knockouts ?. In silico (computational) methods for interac-
tion prediction include the chromosomal proximity method ?, the gene fusion method
??, the phylogenetic method ?, and the combined method ???. Several databases
have been developed to collect different sources of protein interaction data including
the Munich Information Center for Protein Sequences (MIPS: http://mips.gsf.de/)
?, Database of Interacting Proteins (DIP: http://dip.doe-mbi.ucla.edu/) ?, Biomolec-
ular Interaction Network Database (BIND: http://www.bind.ca/)?, and the General
Repository for Interaction Datasets (GRID: http://biodata.mshri.on.ca/grid)?.

Gene Expressions are widely used to study the relationship between proteins. It is
generally believed that a pair of interacting protein pair are more likely to be co-
expressed than random protein pairs and thus gene expression data can be useful
for evaluating the reliability of protein interaction data as well as the probability
that two proteins interact. It is also generally believed that if two proteins are highly
correlated, they are more likely to have similar functions. Therefore, gene expression
data can also be useful for protein function prediction. For this study, we use the gene
expression data from Spellman et al. (1998). Other gene expression data can also be
used.
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Protein localizations. Proteins belong to different localizations in the cell and pro-
teins within the same locations are more likely to interact. Therefore, protein lo-
calization data can be useful for predicting protein interactions. We use the protein
localization data of Huh et al. (2003) in this study.

Domains. The amino acid sequence of a protein is extremely important for the pro-
teins function. The sequence of a protein determines its secondary and tertiary struc-
ture and thus, determines its interaction partners and its biological functions. Pro-
tein domains are conserved regions of peptide sequences with relatively independent
tertiary structures and represent important features for understanding protein func-
tion. We use Pfam domains as the source of domain information. The SwissPfam
(ver7.5) (ftp://ftp.genetics.wustl.edu/pub/pfam/) defines the mapping between pro-
teins SWISS-PROT/TrEMBL accession numbers and Pfam domains.

Gene Ontology (GO) (http://www.geneontology.org/) describes gene products (pro-
teins or RNA) based on three principles: Cellular component, Molecular function,
and Biological process. GO has a directed acyclic graph (DAG) structure. The high
level categories are more general and contain many more genes than low level cate-
gories. For protein function prediction, we base on the known gene annotation given
in GO.

All the databases listed above are publicly available.

11.3 Assessing the reliability of protein interaction data

Many protein interaction data sets generated from various laboratories using different
techniques are available. It is difficult to compare different interaction data because
different conditions and experimental techniques may not detect the same type of
interactions. Another difficulty comes from the fact that the true interaction data is
unknown. Two issues need to be considered in comparing different interaction data
sets. One is the reliability of the observed interaction data set defined as the over-
lap between the true interactions and the observed interactions over all the observed
interactions. The other is the coverage defined as the overlap between the true inter-
actions and the observed interactions over the true interactions. Without knowing the
true interaction data, it is difficult to study the coverage of a certain observed interac-
tion data set. On the other hand, it is possible to study the reliability of an observed
interaction data set using gene expressions and localizations.

Mrowka et al. (2001) first observed that the distribution of correlation coefficients of
gene expressions for true interacting protein pairs is stochastically larger than that
for random protein pairs. The distribution of gene expression correlation coefficients
for observed interacting protein pairs from high-throughput yeast-two-hybrid assays
is between that for random protein pairs and that for true interaction pairs. The ob-
servations indicate that the set of observed protein interactions from high-throughput
experiment is a mixture of random protein pairs and true interaction pairs. Several
problems are of interests:
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1. How do we choose the true interaction set (the gold standard)?

2. How do we estimate the fraction of true interactions among a set of observed
interactions?

3. Is it possible to give a reliability score for an individual observed interaction?

11.3.1 Estimating the reliability of putative protein interactions based on gene
expressions

There is no consensus choosing the gold standard set of true protein interactions.
Mrowka et al. (2001) used MIPS physical interactions (excluding those from high-
throughput experiments) as the gold standard. They used a bootstrap method to count
how many random pairs need to be added to the reference data such that it has the
same statistical behavior of gene expression correlation coefficients as that of the
observed protein-protein interaction data, and then estimate the reliability using the
sampling data. On the other hand, Deane et al. (2002) used INT, a subset of DIP in-
teractions which are derived from small-scale experiments, as the gold standard for
real interactions. They formalized the above idea assuming that the distribution of
the square of Euclidian distance between expression profiles of putative interacting
pairs is a mixture of that for the real interacting pairs and that of random pairs. They
then used a least square approach to estimate the reliability of the putative protein
interaction data. Deng et al. (2003) further extended the idea in Deane et al. (2002)
and used a maximum likelihood estimation (MLE) approach to estimate the reliabil-
ity of a putative interaction data set. Similar to Mrowka et al. (2001), they used MIPS
physical interactions as a reference set for true interactions. The same approach can
be applied to estimate the fraction of protein pairs that belong to the same complex
in an observed complex data set. The method can be briefly described as follows.

Let α be the reliability of a given set of putative protein interactions. Let O e(·), Te(·)
and Re(·) be the distribution of the correlation coefficients for gene pairs based on
gene expressions for the given set of putative protein interactions, the true protein
interaction set, and the random protein pairs, respectively. Then

Oe(·) = αTe(·) + (1 − α)Re(·). (11.1)

Te(·) and Re(·) can be approximated based on the correlation coefficients for pairs
of proteins within the golden standard set of protein interactions and the correlation
coefficients of all the protein pairs, respectively.

Deng et al. (2003) split the values of correlation coefficients into K = 20 bins. Let
nk be the number of observed interaction pairs in the k-th bin. Let p k and qk be the
fractions of real interactions and random pairs in the k-th bin, respectively. Then the
likelihood function can be defined as:

L(α) =
K∏

k=1

(αpk + (1 − α)qk)nk . (11.2)



164 PROTEIN INTERACTIONS

L(α) is a convex function and a classical gradient algorithm can be used to estimate
the parameter α, α̂, by maximizing L(α).

The following equation was used to calculate the variance of α̂,

Var(α̂) =

(
K∑

k=1

nk
(pk − qk)2

(α̂pk + (1 − α̂)qk)2

)−1

. (11.3)

11.3.2 Estimating the reliability of putative protein interactions based on gene
expressions and protein localizations

Huh et al. (2003) generated a large-scale protein localization map of yeast and showed
that protein interactions are strongly enriched among co-localized proteins and pro-
teins between specific cellular locations. Therefore both gene expressions and lo-
calizations can be used for reliability estimation ?. Again we model the putative
interaction data set as a mixture of true interactions and random pairs. Let θ ll′ and
δll′ be the probability that a true interacting pairs and random protein pair belong to
locations (l, l′), respectively. Let nkll′ be the number of observed protein pairs within
the putative interaction data set with correlation coefficient in the k-th bin and with
localizations (l, l′). Combining gene expression data and protein localization data
results in the following likelihood function

L(α) =
K∏

k=1

L0∏
l,l′=1

(αpkθll′ + (1 − α)qkδll′)nkll′ , (11.4)

where L0 is the number of locations being considered. α can again be estimated by
maximizing L(α).

The following equation was used to calculate the variance of α̂,

Var(α̂) =

⎛⎝ K∑
k=1

L0∑
l,l′=1

nkll′
(pkθll′ − qkδll′)2

(α̂pkθll′ + (1 − α̂)qkδll′)2

⎞⎠−1

. (11.5)

11.3.3 Applications to protein interactions from high throughput experiments

We applied the above methods to protein interaction data sets from several high
throughput experiments. Two groups of interaction data sets were studied. The first
group includes pairwise physical interactions including the MIPS, DIP, Uetz’s Uetz
et al. (2000b) and Ito’s ?? interaction data sets. The ItoiIST indicates the set of pro-
tein pairs that are observed to interact i times. The MIPS physical interactions are
used as a true interaction data set. The estimated reliability together with their stan-
dard deviations of the estimates using gene expressions and protein localizations
alone or combined are given in Table 1.

The second group includes the protein complexes such as the MIPS complex data, the
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Localization Gene Expression Both
Data Reliability Standard Err. Reliability Standard Err. Reliability Standard Err.

Physical Interactions
DIP 0.587 0.0082 0.815 0.0244 0.619 0.0076
Uetz 0.685 0.0273 0.529 0.0843 0.699 0.0257
Ito1IST 0.268 0.0140 0.167 0.0383 0.293 0.0133
Ito2IST 0.411 0.0259 0.558 0.0831 0.470 0.0253
Ito3IST 0.532 0.0345 0.753 0.1144 0.611 0.0321
Ito4IST 0.552 0.0397 0.895 0.1436 0.640 0.0366
Ito5IST 0.547 0.0429 0.964 0.1567 0.640 0.0394
Ito6IST 0.556 0.0491 0.676 0.1768 0.641 0.0451
Ito7IST 0.608 0.0544 0.791 0.1942 0.682 0.0492
Ito8IST 0.614 0.0572 0.878 0.2054 0.684 0.0514

Complexes
TAP 0.4544 0.0063 0.585 0.0081 0.516 0.0056
HMS-PCI 0.1975 0.0042 0.248 0.0053 0.205 0.0037

Table 11.1: Reliability of the protein physical interaction data (Uetz’s, DIP, and Ito’s
with different IST hits), and the protein complex data (the TAP and the HMS-PCI)
using the protein localization data, the gene expression data and both data sets.

TAP complex data, and the HMS-PCI complex data. Any pair of proteins within the
same complex are considered interacting. We treat the MIPS complex data as a true
protein complex data set. Table 1 gives the estimated reliability and the correspond-
ing standard deviation for the various protein complex data. The standard deviation
of the estimate using gene expression alone is very large with the estimated relia-
bility showing irregular patterns. For example, the estimated reliability for Ito4IST
(0.895) is much higher than the estimated reliability of Ito6IST (0.676) contradicting
with our intuition. The standard deviation of the estimated reliability using localiza-
tion alone is much smaller and the estimated reliability for ItoiIST increases as i
increases consistent with our intuition. Finally the standard deviation of the estimate
based on the combined data is smaller than that using gene expressions or protein
localizations alone.

11.3.4 Estimating the probability of interaction for individual protein pairs

The above approach can only estimate the fraction of true interactions in a putative
interaction data set. However, it does not give a reliability score for a particular ob-
served interaction. Saito et al. ? proposed the criterion “interaction generality” to
assess the reliability of a particular interaction protein pair based on the idea that a
protein cannot interact with too many interacting partners. If a protein interact with a
large number of proteins, it is most likely a “stick” protein and the observed interac-
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tions associated with this protein does not have real functional associations. Recently,
Troyanskaya et al. (2003) and Jansen et al. (2003) developed Bayesian approaches
to give a reliability measure for a particular putative interaction based on the ob-
servations that interacting protein pairs are more likely to have similar functions, to
have similar gene expression patterns, and to be in the same location. Troyanskaya
et al. (2003) gave a reliability score for two proteins to be functionally related and
Jansen et al. (2003) gave a reliability score for two proteins to be in the same com-
plex. Methods have also been developed to evaluate the contributions of individual
features as well as combined features for predicting protein interaction ??. It is found
that only relatively small number of features, for example, protein function, is ade-
quate for predicting protein interactions. ? proposed a Markov random field (MRF)
model for predicting protein interactions. They assumed a MRF model for the in-
teraction network based on the theory of random graphs ?. Conditional on the true
interaction network, they assumed probability models for the observed data. Machine
learning approaches were used to estimate the parameters as well as to predict the
posterior probability of interactions for protein pairs conditional on the observations
from different data sources. More details can be found in ?.

11.4 Protein function prediction using protein interaction data

It has been observed that interacting proteins are more likely to have similar functions
?. Therefore, protein interaction networks can be useful for protein function predic-
tion. For a given protein, all the proteins interacting with the given protein form its
neighbors. Fellenberg et al. ? and Schwikowski et al. ? developed a neighbor count-
ing method for protein function prediction. For an unknown protein, they counted the
number of known proteins of its neighbors for each function of interest and assigned
the unknown protein with the function category having the highest frequency. One
problem with this approach is that it does not consider the frequency of the proteins
having certain functions of interest. Hishigaki et al. ? developed a χ 2-statistic based
approach for protein function prediction. For an unknown protein and a function of
interest, a χ2-statistic is calculated by comparing the observed frequency with the ex-
pected frequency of neighbors having the function of interest. The unknown protein
is assigned the function with the highest χ2 statistic. Both the counting method and
the χ2 method do not consider unknown protein neighbors. Several novel methods
have been developed for protein function prediction based on interaction networks
and other data sources. In this section we review these approaches.

Suppose a genome has N proteins P1, · · · , PN . Let P1, · · · , Pn be the unknown
proteins and Pn+1, · · · , Pn+m be the known proteins, N = n + m. A protein may
have several different functions. To simplify the problem, we study each functional
category separately. For a function of interest, let X i = 1 if the i-th protein has
the function and 0 otherwise. The problem is to assign values to X = (X 1, · · · , Xn)
conditional on the protein interaction networks, other pairwise relationships, features
of individual proteins, and the functions of the known proteins.
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11.4.1 A Markov Random Field (MRF) model for protein function prediction

Based on the idea of guilty-by-association, Deng et al. ? first developed a MRF model
for protein function prediction. The basic idea is to assign a prior probability for
X = (X1, · · · , Xn+m), the configuration of function labelling based on the protein
interaction network. Under this model, they calculated the posterior probability dis-
tribution for (X1, · · · , Xn) conditional on the network and (Xn+1, · · · , Xn+m). The
key is how to assign the prior probability distribution. Different priors give different
accuracy for protein function prediction.

A MRF model based on one network

In ?, they assigned the prior as follows. Let π be the probability of a protein having
the function of interest. Without considering the interaction network, the probability
of a configuration of X is proportional to

N∏
i=1

πxi(1 − π)1−xi =
(

π

1 − π

)N1

(1 − π)N , (11.6)

where N1 =
∑N

i=1 xi.

Deng et al. ? then considered one interaction network. Let S denote all the interacting
protein pairs. The probability of the functional labelling conditional on the network
is proportional to

exp(βN01 + γN11 + κN00), (11.7)

where Nll′ is the number of (l, l ′)-interacting pairs in S, and

N11 =
∑

(i,j)∈S

xixj

= #{(1 ↔ 1) pairs in S},

N10 =
∑

(i,j)∈S

(1 − xi)xj + (1 − xj)xi

= #{(1 ↔ 0) pairs in S}, and

N00 =
∑

(i,j)∈S

(1 − xi)(1 − xj)

= #{(0 ↔ 0) pairs in S}.

(11.8)

Therefore, the total probability of the functional labelling is proportional to exp(−U(x)),
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where
U(x) = −αN1 − βN10 − γN11 − κN00

= −α

N∑
i=1

xi − β
∑

(i,j)∈S

xixj

− γ
∑

(i,j)∈S

(1 − xi)xj + (1 − xj)xi

− κ
∑

(i,j)∈S

(1 − xi)(1 − xj),

(11.9)

and α = log( π
1−π ).

U(x) is referred as the potential function in the field of MRF and defines a global
Gibbs distribution of the entire network,

Pr(X | θ) =
1

Z(θ)
exp(−U(x)), (11.10)

where θ = (α, β, γ, κ) are parameters and Z(θ) is a normalized constant calculated
by summing over all the configurations:

Z(θ) =
∑

x

exp(−U(x)).

Z(θ) is called the partition function.

Several other approaches for protein function prediction based on one interaction net-
work have been developed. In particular, Vazquez et al. (2003) considered multiple
function categories and proposed to maximize the number of interactions within the
same function categories. For one function of interest, it is equivalent to maximize

N00 + N11

where N00 and N11 are defined as above. The ? model differs from the ? model in
two significant ways. (1) Vazquez et al. (2003) used only the interaction network and
did not consider the fraction of proteins having the function of interest in the known
proteins. (2) Vazquez et al. (2003) gave an equal weight to intra-function class in-
teractions. Letovsky and Kasif ? proposed a model to assign functions to proteins
based on a probabilistic analysis of graph neighborhoods in a protein-protein inter-
action network, which is fundamentally a MRF model, and the belief propagation
algorithm was used to assign function probabilities for proteins in the network.

A Markov Random Field (MRF) model for multiple networks

Deng et al. ? further extended the above model to multiple networks and to include
features of individual proteins. Assume that L sources of protein pairwise relation-
ships that may be useful for protein function prediction are available. A network can
be built based on each pairwise relationship denoted as Net1, Net2, · · · , NetL, re-
spectively. The entire network we consider is the union of all the networks denoted
as S.
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Similar to equation (11.7), our belief for the functional labelling of all the proteins
based on network Netl is proportional to

P{ labelling |Netl} ∝ exp(βlN
(l)
10 + γlN

(l)
11 + κlN

(l)
00 ), (11.11)

where (N (l)
10 , N

(l)
11 , N

(l)
00 ) are defined similarly as equation (11.8).

Multiplying over all the networks, our belief for the functional labelling of all the
proteins is proportional to

P{ labelling |networks } ∝
L∏

l=1

exp(βlN
(l)
10 + γlN

(l)
11 + κlN

(l)
00 )

= exp
L∑

l=1

(
βlN

(l)
10 + γlN

(l)
11 + κlN

(l)
00

)
.

(11.12)

Our total belief for the functional labelling of all the proteins is proportional to the
multiplication of equations (11.6) and (11.12).

Then an MRF over all the functional labelling is defined by

P{labelling, networks} = exp(−U(x))/Z(θ), (11.13)

where

U(x) = −
n+m∑
i=1

xiα −
L∑

l=1

(
βlN

(l)
10 + γlN

(l)
11 + κlN

(l)
00

)
, (11.14)

θ indicates the vector of parameters, and Z(θ) is the summation of exp(−U(x)) over
all the functional labelling. Under the above model, all the parameters (κ 1, κ2, · · · , κL)
are redundant and are set to 1. In the terminology of MRF, U(x) is called the potential
function.

Incorporating features of individual proteins

In addition to protein pairwise relationships, features of individual proteins can be
very important for protein function prediction. A feature refers to an observation
about a protein. It can be the presence or absence of a motif signal, the protein’s
conservation and localization, the protein’s isoelectric point, its absolute mRNA ex-
pression level, or mutant phenotypes from experiments about the sensitivity or resis-
tance of disruption mutants under various growth conditions. Several investigators
have developed protein function prediction methods based on features of individual
proteins ????????. Deng et al. ? integrated features into the MRF models for protein
function prediction.

Suppose we have M features of interest, F1, F2, · · · , FM . The m-th feature can take
values 0, 1, 2, · · ·km − 1 where km is the number of categories for the m-th feature.
Let the feature vector corresponding to protein P i be fi = (fi1, fi2, · · · , fiM ), where
fim is the index for the m-th feature of the i-th protein. For the m-th feature, let
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p1m(k) (p0m(k)) be the conditional probability that a protein has feature index k
given that a protein has (does not have) the function of interest. For simplicity, we
assume that all the features contribute independently to the functions of proteins.

For a given feature vector f = (f1, f2, · · · , fM ), define

P1(f) =
M∏

m=1

p1m(fm),

P0(f) =
M∏

m=1

p0m(fm).

The probability of the features of all the proteins given the functional labelling is

P{features | labelling} =
∏

i:Xi=1

P1(fi) ×
∏

i:Xi=0

P0(fi). (11.15)

Multiplying equations (11.13) and (11.15), we have the following probability model

P{labelling, networks, domain features} =
P{labelling, networks} × P{domain features | labelling}.

(11.16)

Deng et al. ? described methods to estimate the posterior distribution of the functions
of the unknown proteins given the features of all the proteins, the different sources
of protein pairwise relationship, and the annotations of the known proteins.

Computational Issues

Given the above models, the problem is to estimate the posterior probability distri-
bution given the annotation of the known proteins, the features of all the proteins,
and the network. The parameters are also unknown. Using equation (11.16), it can
be shown that

log
Pr(Xi = 1 |F, X[−i], θ)

1 − Pr(Xi = 1 |F, X[−i], θ)

=αi +
L∑

l=1

(βl − 1)M (i)
0 (l) + (γl − βl)M

(i)
1 (l),

(11.17)

where F is the feature information for all the proteins, X [−i] = (X1, · · · , Xi−1, Xi+1, · · · , Xn+m),
αi = log πP1(fi)

(1−π)P0(fi)
, M

(i)
0 (l) and M

(i)
1 (l) are the numbers of neighbors of protein

Pi labelled with 0 and 1 according to the l-th network, respectively. The parameters
can be estimated based on the network consisting of the known proteins by an S-plus
routine ? using equation (11.17).

Once all the parameters have been defined, Gibbs sampler ? can be used to estimate
the posterior probability distribution of (X1, · · · , · · · , Xn). The algorithm can be
described as follows:
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1. Randomly set the value of missing data Xi = λi, i = 1, · · · , n with probability
π.

2. For each protein Pi, update the value of Xi using equation (11.17).

3. Repeat step 2 T times until all the posterior probabilities Pr(X i |D, X[−i], θ) are
stabilized.

11.4.2 Kernel-based methods for protein function prediction

In the MRF formulation, we only consider immediate neighbors for proteins. The
protein interaction network can be used to define similarity between any pair of pro-
teins using the diffusion kernel ?. In the following we first briefly describe kernel
based methods of Lanckriet et al. ??? to combine different data sources for protein
function prediction. Then we describe our effort to combine the idea of kernel based
method with the MRF model.

Support vector machine (SVM) and semidefinite programming (SDP)

In a series of recent papers, Lanckriet et al. ??? developed kernel-based methods for
protein function prediction using SVM. Suppose that there are L data sources such as
protein interactions, gene expressions, domains, localizations, etc. For the l-th data
source, a kernel matrix Kl (semi-positive definite) is defined. For continuous data
such as gene expressions, the Gaussian diffusion kernel can be used. For protein in-
teractions, diffusion kernel on graphs can be used ?. Several other kernel matrixes
have been developed for different sources of data structures in ???. To integrate dif-
ferent data sources, Lanckriet and colleagues considered the linear combinations of
the kernel matrixes

K =
L∑

l=1

μlKl

where μl ≥ 0, l = 1, 2, · · · are parameters to be determined.

They used SVM with 1-norm soft margin to build a classifier. The problem can then
be solved by solving the following constraint maximization problem:

maxα,t2αT e − ct

subject to t ≥ 1
ri

αT diag(y)Kldiag(y)α, l = 1, 2, · · · , L

αT y = 0,

C ≥ α ≥ 0,

(11.18)

where ri = trace(Ki), c = μT r and y is the annotation of the known proteins. This
problem is a quadratically constraint quadratic program (QCQP) problem (Boyd and
Vandenberghe 2001) and can be solved using standard software such as SeDuMi
(Sturm 1999). The computational time is O(n3), where n is the number of proteins
in the training set.
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Combining kernel with the MRF model for protein function prediction

Lanckriet et al. (2004a) showed that SVM described above outperformed the MRF
approach in almost all the function categories considered. One of the main reasons
probably is due to the inclusion of multiple level neighbors in the kernel based meth-
ods. Note that Kl(i, j) defines a similarity between protein Pi and protein Pj based
on the l-th data source. Similar to equation (11.11), the probability of the labelling
based on the l-th network Nl can be modelled as

exp(βlD10(l) + γlD11(l) + κlD00(l)) (11.19)

where βl, γl, and κl are constants, and

D11(l) =
∑
i<j

Kl(i, j)I{xi = 1, xj = 1},

D10(l) =
∑
i<j

Kl(i, j)I{(xi = 1, xj = 0) or (xi = 0, xj = 1)},

D00(l) =
∑
i<j

Kl(i, j)I{xi = 0, xj = 0}.

(11.20)

The summations are over all the protein pairs. Multiplying equation (11.6) and equa-
tion (11.19) for l = 1, 2, · · · , L, we obtain the the total probability proportional to

exp

(
αN1 +

L∑
l=1

(βlD10(l) + γlD11(l) + κlD00(l))

)
(11.21)

¿From equation (11.21), it can be shown that

log
P(Xi = 1 |X[−i], θ)

1 − P(Xi = 1 |X[−i], θ)

=α + (βl − κl)K
(i)
0 (l) + (γl − βl)K

(i)
1 (l).

(11.22)

where

K
(i)
0 (l) =

∑
j �=i

Kl(i, j)I{xj = 0},

K
(i)
1 (l) =

∑
j �=i

Kl(i, j)I{xj = 1}.

Note that if we let Kl(i, j) = 1 when protein i interacts with protein j and K l(i, j) =
0 otherwise in the l-th network, this new model is the same as the MRF model of
Deng et al. ?. We can similarly develop a MCMC approach to approximate the prob-
ability that an unknown protein having the function of interest. We refer the above
approach as kernel-based MRF (KMRF)
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11.4.3 Applications to real data

All the methods described above have been applied to predict protein functions. The
MRF model has been used for protein function prediction first based on the MIPS
function classification ?? and later were extended to functions defined in GO ?. The
SVM approach has been used to predict protein functions based on MIPS ?, to predict
ribosomal proteins and memberane proteins ?. A summary paper for protein function
prediction based on SVM is given in ?. The new KMRF method has been applied for
protein function prediction based on GO ? and for prediction of protein essentiality ?.
The KMRF approach can be easily extended to incorporate correlated functions. For
most functions that have been considered so far, the SVM approach outperformed the
MRF approach. The KMRF approach has similar performance as the SVM approach.
For example, for predicting protein essentiality, the receiver operating characteristic
(ROC) scores for the MRF, SVM, and the KMRF approaches are 0.804. 0.812, and
0.831, respectively, based on the core interaction data set. Integrating protein function
based on cellular processes, conservation, and localizations into the model increased
the ROC score of the KMRF model to 0.869.

11.5 Discussion

Enormous amount of biological data have been generated and stored in public and
private databases. These data sources are extremely important for biological stud-
ies. However, the data are generally noisy and contain many false positive and false
negative errors. There are no systematic statistical tools to choose the most reliable
data from the noisy data. The various data sources can most likely contribute to our
understanding of the biological problems of interest. The data sources are usually
correlated and their contributions to our understanding of the biological problems
are not independent. An important issue is how to integrate the usually noisy and
correlated data sources to understand the biological problems.

In this chapter, we review our recent efforts in integrating different data sources for
biological studies. First we describe likelihood based methods for estimating the reli-
ability of putative interaction data sets. We show that the localization data give more
accurate estimation of the reliability than using the gene expression data. Integrating
the localization and gene expression data can give even more accurate estimates of
the reliability of the different data sets. Other statistical methods for estimating the
probability of two proteins being interact integrating different data sources have also
been developed.

Second we describe methods for protein function prediction based on interaction
networks, genetic interactions, other pairwise relationships, as well as features of
individual proteins. These approaches include MRF, SVM, and KMRF. As far as
we know, the combination of kernels with MRF is novel in protein function predic-
tion. The simplicity of KMRF and its high accuracy in protein function prediction
warrant further studies of the this approach in other fields. As in most model based



174 PROTEIN INTERACTIONS

approaches, the KMRF model can be understand the contributory factors for the pro-
tein function of interest.

In protein function prediction, we implicitly assume that the networks under consid-
eration, such as the protein interaction network and genetic interaction network, are
highly reliable. Therefore we used the core interaction data in DIP in all our studies
on protein function prediction. We tried to use all the interactions (not reliable) in
DIP for protein function prediction and, as expected, the prediction accuracy is low-
ered. A problem is how best to use all the interactions for protein function prediction.
The effect of incompleteness of the interaction data on protein function prediction is
also unknown.

In summary, we show the power of integrating multiple data sources for biological
studies. Significant questions remain as to how to integrate noisy and incomplete
data in biological studies. It is also important to develop methods to evaluate the
dependence among the different data sources and to integrate the correlated data
sources for biological studies.
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12.1 Introduction

The availability of whole-genome sequence data has provided a rich resource of
deep insights into many biological, medical and pharmaceutical problems and ap-
plications, and is promising even more. Yet, along with these insights and promises,
genomic data have given rise to many challenging problems, mainly due to the quan-
tity and heterogeneity of such data. One of these major challenges is the phylogenetic
analysis of multiple gene datasets that whole genomes provide.

Phylogeny, i.e., the evolutionary history of a set of organisms, has become an indis-
pensable tool in the post-genomic era. Emerging techniques for handling essential
biological tasks (e.g., gene finding, comparative genomics, and haplotype inference)
are usually guided by an underlying phylogeny. The performance of these techniques,
therefore, depends heavily on the quality of the phylogeny. Almost all phylogenetic
methods, however, assume that evolution is a process of strict divergence that can be
modeled by a phylogenetic tree. While the tree model gives a satisfactory first-order
approximation for many families of organisms, other families exhibit evolutionary
events that cannot be represented by a tree. In particular, the evolutionary history
of bacterial genomes is characterized by the occurrence of processes such as hor-
izontal gene transfer (HGT)—transfer of genetic material across the boundaries of
of distantly related species—and inter-specific recombination—exchange of genetic
material. Further, hybrid speciation occurs among various groups of plants, fish, and
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frogs. In the presence of such evolutionary processes, the evolutionary relationship
of a set of organisms is modeled by a phylogenetic network.

Accurate reconstruction of these processes bears significant impact on many do-
mains. The Tree of Life—the phylogeny of all organisms on Earth—is one of the
grand challenges in evolutionary biology. The prokaryotic branch of this tree is be-
lieved to have a large number of horizontal gene transfer events, in addition to re-
combination events. Efforts to reconstruct a phylogeny for the prokaryotic branch
may prove futile without developing phylogenetic network models and reconstruc-
tion methods.

A significant aspect of these complex evolutionary mechanisms is their contribu-
tion to microbial genome diversification. Like all forms of life, bacteria undergoes
evolution. However, unlike many other organisms, bacterial evolution is not one
of strict divergence. Recombination usually occurs within populations; in bacteria,
however, recombination occurs among different strains. Further, HGT is ubiquitous
in the prokaryotic branch of the Tree of Life. ? has recently written of the various
health risks that recombination and HGT pose, including: (1) antibiotic resistance
genes spreading to pathogenic bacteria, (2) disease-associated genes spreading and
recombining to create new viruses and bacteria that cause diseases, and (3) transgenic
DNA inserting into human cell, triggering cancer. Hence, detecting and reconstruct-
ing these processes in bacteria play a major role in developing effective antibiotics,
and bears a great impact on human health.

Biologists have long acknowledged the presence of these processes, their signifi-
cance, and their effects. The computational research community has responded in
recent years and proposed a plethora of methods for reconstructing complex evolu-
tionary histories. The general theme of most existing methods can be summarized
by: construct gene trees and reconcile them (this is known as the separate analysis
approach). Gene tree reconciliation presents two major issues, namely identifying
the (biological) source of incongruence, and (computationally) reconciling the trees.
Many processes may lead to incongruent gene trees:
(1) Stochastic factors, such as wrong assumptions, insufficient data, incomplete sam-
pling, and differential rates of sequence evolution across lineages. These factors do
not violate the tree model of organismal evolutionary relationships; rather, the incon-
gruence they cause must be eliminated in the early stages of phylogenetic analyses.
(2) Intra-species factors, such as gene loss and duplication. Although these events
may lead to incongruent gene trees, they do not violate the tree model of organismal
evolutionary relationships.
(3) Inter-species factors, such as horizontal gene transfer (whose rate is very high
among prokaryotic organisms), and inter-specific recombination. These events result
in networks of relationships, rather than trees of relationships.

In this work, we review the intra- and inter-species factors that cause gene tree incon-
gruence and discuss current approaches for resolving these phenomena, with focus
on non-treelike evolution. Further, we address extensions to the coalescent model
to address non-treelike evolution. The rest of the chapter is organized as follows. In
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Section 12.2 we illustrate some of the processes that lead to incongruence gene trees.
In Section 12.3 we review existing methods for addressing gene tree incongruence
caused by gene loss and duplication (intra-species factors). In Section 12.4, we de-
scribe the phylogenetic network model and discuss the problem of reconciling gene
trees into species networks. In Section 12.5 we propose approaches for extending the
coalescent model to incorporate non-treelike evolutionary processes. We conclude
the chapter in Section 12.6.

12.2 Gene Tree Incongruence

A gene tree is a model of how a gene evolves through duplication, loss, and nu-
cleotide substitution. As a gene at a locus in the genome replicates and its copies
are passed on to more than one offspring, branching points are generated in the gene
tree. Because the gene has a single ancestral copy, barring recombination, the result-
ing history is a branching tree (?). Sexual reproduction and meiotic recombination
within populations break up the genomic history into many small pieces, each of
which has a strictly treelike pattern of descent (???). Thus, within a species, many
tangled gene trees can be found, one for each nonrecombined locus in the genome.
A species tree depicts the pattern of branching of species lineages via the process of
speciation. When reproductive communities are split by speciation, the gene copies
within these communities likewise are split into separate bundles of descent. Within
each bundle, the gene trees continue branching and descending through time. Thus,
the gene trees are contained within the branches of the species phylogeny (?).

Gene trees can differ from one another as well as from the species tree. Disagree-
ments (incongruence) among gene trees may be an artifact of the data and/or methods
used (stochastic factors). Various studies show the effects of stochastic factors on the
performance of phylogenetic tree reconstruction methods (e.g., ???????). Stochastic
factors confound the accurate reconstruction of evolutionary relationships, and must
be handled in the first stage of a phylogenetic analysis. Incongruence among gene
trees due to intra- or inter-species processes, on the other hand, is a reflection of true
biological processes, and must be handled as such.

Whereas eukaryotes evolve mainly though lineal descent and mutations, bacteria ob-
tain a large proportion of their genetic diversity through the acquisition of sequences
from distantly related organisms, via horizontal gene transfer (HGT) or recombina-
tion (?). Views as to the extent of HGT and recombination in bacteria vary between
the two extremes, with most views being in the middle (???????). However, there
is a common belief that recombination and HGT, among other processes, form the
essence of prokaryotic evolution. Further, these two are the main processes (in addi-
tion to random mutations) by which bacteria develop resistance to antibiotics (e.g.,
????). Gene transfer and exchange are considered a primary explanation of incongru-
ence among bacterial gene phylogenies and a significant obstacle to reconstructing
the prokaryotic branch of the Tree of Life (?).

We illustrate some of the scenarios that may lead to gene tree incongruence in Figure
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(a) (b)

(c) (d)

(e)

Figure 12.1: (a) Gene tree that agrees with the species tree. (b) Gene tree that disagrees
with the species tree due to gene loss and duplication. (c) Gene tree that disagrees with the
species tree due to HGT. (d) An inter-specific recombination event in which genetic mate-
rial is exchanged between species B and C. (e) A hybrid speciation event that leads to two
incongruent gene trees.

12.1. The species (or, organismal) tree is represented by the “tubes”; it has A and
B as sister taxa whose most recent common ancestor (MRCA) is a sister taxon of
C. Figure 12.1(a) shows a gene evolving within the branches of the same species
tree; in this case, the topologies of the gene and species trees agree (the topology of
this gene tree is shown in Figure 12.2(a)). In Figure 12.1(b) we show an example of
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(a) (b) (c) (d)

Figure 12.2: (a) The tree of the gene whose evolution is shown in Figure 12.1(a), and Figure
12.1(e). (b) The tree of the genes whose evolution is shown in Figures 12.1(b) and 12.1(c). (c)
The tree of the gene involved in the recombination event shown in Figure 12.1(d). (e) The tree
of the gene involved in the hybrid speciation event shown in Figure 12.1(e).

how intra-species processes may lead to incongruent gene trees. The figure shows a
gene evolving within the branches a species tree with one duplication event and three
losses. Note that the species tree differs from the gene tree; based on this gene, B
and C are sister taxa and their MRCA is a sister of taxon A. This gene tree is shown
in Figure 12.2(b).

Another event that may cause incongruence between the species tree and the gene
tree is HGT. In the case of HGT, shown in Figure 12.1(c), genetic material is trans-
ferred from one lineage to another. Sites that are not involved in a horizontal transfer
are inherited from the parent (as in Figure 12.2(a)), while other sites are horizontally
transferred from another species (as in Figure 12.2(b)).

In the case of inter-specific recombination, as illustrated in Figure 12.1(d), some ge-
netic material is exchanged between pairs of species; in this example, species B and
C exchange genetic material. The genes involved in this exchange have an evolu-
tionary history (shown in Figure 12.2(c)) that is incongruent with that of the species.
In hybrid speciation, two lineages recombine to create a new species. We can dis-
tinguish diploid hybridization, in which the new species inherits one of the two ho-
mologs for each chromosome from each of its two parents—so that the new species
has the same number of chromosomes as its parents, and polyploid hybridization,
in which the new species inherits the two homologs of each chromosome from both
parents—so that the new species has the sum of the numbers of chromosomes of its
parents. Under this last heading, we can further distinguish allopolyploidization, in
which two lineages hybridize to create a new species whose ploidy level is the sum of
the ploidy levels of its two parents (the expected result), and auto-polyploidization,
a regular speciation event that does not involve hybridization, but which doubles the
ploidy level of the newly created lineage. Prior to hybridization, each site on each
homolog has evolved in a tree-like fashion, although, due to meiotic recombination,
different strings of sites may have different histories. Thus, each site in the homologs
of the parents of the hybrid evolved in a tree-like fashion on one of the trees in-
duced by (contained inside) the network representing the hybridization event. Figure
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12.1(e) shows a network with one hybrid. Each site evolves down exactly one of the
two trees shown in Figures 12.2(a) and 12.2(d).

Notice that in the case of intra-species processes (gene loss and duplication), infer-
ring the species tree from a set of potentially conflicting gene trees is a problem of
reconciling the gene trees and explaining their differences through duplications and
losses of genes. Therefore, in this case, despite the potential incongruence among
the species and gene trees, the species phylogeny is still a tree (????). However, in
the case of recombination, HGT, and hybrid speciation, the evolutionary history of
the organismal genomes cannot be represented by phylogenetic trees; rather, phylo-
genetic networks are the appropriate model (??).

12.3 Trees Within Trees: The Gene Tree Species Tree Problem

Various reports of instances and effects of gene loss and duplication exist in the
literature (e.g., ???). When losses and duplications are the only processes acting on
the genes, a mathematical formulation of the gene tree reconciliation problem is as
follows:

Definition 12.1 (The Gene Tree Reconciliation Problem)

Input: Set T of rooted gene trees, a cost wD for duplications, and a cost wL for
losses.

Output: Rooted tree T with each gene tree t ∈ T mapped onto T , so as to mini-
mize the sum wDnD + wLnL, where nD is the total number of duplications and
nL is the total number of losses, over all genes.

This problem was shown to be NP-hard by ? and ?. Heuristics for the problem exist,
but these do not solve the optimization problem (see ??). Various fixed-parameter
approaches have been proposed by ?? and some variants can be approximated to
within a factor of 2 and shown by ?.

When loss and duplication are the only processes acting on the genes, two different
questions can be posed, depending on the input data:

1. Gene tree reconciliation problem—when the gene trees are known and the species
tree is known, what is the best set of duplication and loss events that reconcile each
gene tree with the species tree?

2. Species tree construction problem—when the gene trees are known, but the evolu-
tionary relationships among the species involved is not known, can the gene trees
provide the information necessary to derive an estimate of the species tree?

Both of these questions require the assumption of a certain model of gene duplication
and loss. The complexity of the gene-tree reconciliation problem is determined by
the model chosen, whereas the general species tree construction problem is NP-hard
under all commonly used models of gene duplication and loss.
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The simplest version of either problem uses a duplication-only model (i.e., losses do
not occur). During the period between years 1995 and 2000, this was a commonly
used model (????????). Under the duplication-only model, the gene tree reconcil-
iation problem has linear-time solutions (??), as well as other polynomial-time al-
gorithms that report better performance on real biological datasets (?). The species
tree construction problem is NP-hard , as was shown by ?. Different approaches have
been taken to solving the species tree construction problem including heuristics (?),
approximation algorithms (?), and fixed parameter tractable algorithms obtained by
parameterizing by the number of gene duplications separating a gene tree from the
species tree (?).

The other common model used is the more general duplication-loss model, which ad-
mits both duplication and loss events within gene trees. The gene tree reconciliation
problem has been shown to be polynomial-time under conditions where the evolution
of the sequences themselves are not considered (???); if this is taken into account,
the problem becomes NP-hard (??). Various efficient heuristics for the problem are
currently available (??). Early work on the gene tree reconciliation problem under
this model borrowed techniques from biogeography and host/parasite evolution (??).

12.4 Trees Within Networks: The Gene Tree Species Network Problem

As described in Section 12.2, when events such as horizontal gene transfer, hybrid
speciation, or recombination occur, the evolutionary history can no longer be mod-
eled by a tree; rather, phylogenetic networks are the appropriate model in this case.
In this section, we describe the phylogenetic network model and approaches for re-
constructing networks from gene trees.

12.4.1 Terminology and notation

Given a (directed) graph G, let E(G) denote the set of (directed) edges of G and
V (G) denote the set of nodes of G. Let (u, v) denote a directed edge from node
u to node v; u is the tail and v the head of the edge and u is a parent of v. The
indegree of a node v is the number of edges whose head is v, while the outdegree of
v is the number of edges whose tail is v. A node of indegree 0 is a leaf (often called
a tip by systematists). A directed path of length k from u to v in G is a sequence
u0u1 · · ·uk of nodes with u = u0, v = uk, and ∀i, 1 ≤ i ≤ k, (ui−1, ui) ∈ E(G);
we say that u is the tail of p and v is the head of p. Node v is reachable from u in
G, denoted u � v, if there is a directed path in G from u to v; we then also say
that u is an ancestor of v. A cycle in a graph is a directed path from a vertex back
to itself; trees never contain cycles: in a tree, there is always a unique path between
two distinct vertices. Directed acyclic graphs (or DAGs) play an important role on
our model; note that every DAG contains at least one vertex of indegree 0. A rooted
directed acyclic graph, in the context of this paper, is then a DAG with a single
node of indegree 0, the root; note that all all other nodes are reachable from the root
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by a (directed) path of graph edges. We denote by r(T ) the root of tree T and by
L(T ) the leaf set of T . Let T be a rooted phylogenetic tree over set S of taxa, and
let S ′ ⊆ S. We denote by T (S ′) the minimal rooted subtree of T that connects all
the element of S ′. Furthermore, the restriction of T to S ′, denote T |S ′ is the rooted
subtree that is obtained from T (S ′) by suppressing all vertices (except for the root)
whose number of incident edges is 2. Let S ′ be a maximum-cardinality set of leaves
such that T1|S ′ = T2|S ′, for two trees T1 and T2; we call T1|S ′ (equivalently, T2|S ′)
the maximum agreement subtree of the two trees, denoted MAST (T 1, T2). A clade
of a tree T is a complete subtree of T . Let T ′ = MAST (T1, T2); then, T1 − T ′ is
the set of all maximal clades whose pruning from T1 yields T ′ (we define T2 − T ′

similarly). In other words, there do not exist two clades u and u ′ in T1 −T ′ such that
either u is a clade in u′, or u′ is a clade in u.

We say that node x reaches node y in tree T if there is a directed path from x to y in
T . We denote the root of a clade t by r(t). We say that clade t1 reaches clade t2 (both
in tree T ) if r(t1) reaches r(t2). The sibling of node x in tree T is node y, denoted
siblingT (x) = y whenever x and y are children of the same node in T . We denote
by Tx the clade rooted at node x in T . The least common ancestor of a set X of taxa
in tree T , denoted lcaT (X) is the root of the minimal subtree of T that contains the
leaves of X . The edge incoming into node x in tree T is denoted by inedge T (x).

12.4.2 Phylogenetic networks

? modeled phylogenetic networks using directed acyclic graphs (DAGs), and differ-
entiated between “model” networks and “reconstructible” ones.

Model networks A phylogenetic network N = (V, E) is a rooted DAG obeying
certain constraints. We begin with a few definitions.

Definition 12.2 A node v ∈ V is a tree node if and only if one of these three condi-
tions holds:

• indegree(v) = 0 and outdegree(v) = 2: root;
• indegree(v) = 1 and outdegree(v) = 0: leaf; or
• indegree(v) = 1 and outdegree(v) = 2: internal tree node.

A node v is a network node if and only if we have indegree(v) = 2 and outdegree(v) =
1.

Tree nodes correspond to regular speciation or extinction events, whereas network
nodes correspond to reticulation events (such as hybrid speciation and horizontal
gene transfer). We clearly have VT ∩VN = ∅ and can easily verify that we have VT ∪
VN = V .

Definition 12.3 An edge e = (u, v) ∈ E is a tree edge if and only if v is a tree node;
it is a network edge if and only if v is a network node.
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The tree edges are directed from the root of the network towards the leaves and the
network edges are directed from their tree-node endpoint towards their network-node
endpoint.

A phylogenetic network N = (V, E) defines a partial order on the set V of nodes.
We can also assign times to the nodes of N , associating time t(u) with node u; such
an assignment, however, must be consistent with the partial order. Call a directed
path p from node u to node v that contains at least one tree edge a positive-time
directed path. If there exists a positive-time directed path from u to v, then we must
have t(u) < t(v). Moreover, if e = (u, v) is a network edge, then we must have
t(u) = t(v), because a reticulation event is effectively instantaneous at the scale of
evolution; thus reticulation events act as synchronization points between lineages.

Definition 12.4 Given a network N , two nodes u and v cannot co-exist (in time) if
there exists a sequence P = 〈p1, p2, . . . , pk〉 of paths such that:

• pi is a positive-time directed path, for every 1 ≤ i ≤ k;
• u is the tail of p1, and v is the head of pk; and
• for every 1 ≤ i ≤ k − 1, there exists a network node whose two parents are the

head of pi and the tail of pi+1.

Obviously, if two nodes x and y cannot co-exist in time, then a reticulation event
between them cannot occur.

Definition 12.5 A model phylogenetic network is a rooted DAG obeying the follow-
ing constraints:

1. Every node has indegree and outdegree defined by one of the four combinations
(0, 2), (1, 0), (1, 2), or (2, 1)—corresponding to, respectively, root, leaves, inter-
nal tree nodes, and network nodes.

2. If two nodes u and v cannot co-exist in time, then there does not exist a network
node w with edges (u, w) and (v, w).

3. Given any edge of the network, at least one of its endpoints must be a tree node.

Reconstructible networks Definition 12.5 of model phylogenetic networks assumes
that complete information about every step in the evolutionary history is available.
Such is the case in simulations and in artificial phylogenies evolved in a laboratory
setting—hence our use of the term model. When attempting to reconstruct a phylo-
genetic network from sample data, however, a researcher will normally have only
incomplete information, due to a combination of extinctions, incomplete sampling,
and abnormal model conditions. Extinctions and incomplete sampling have the same
consequences: the data do not reflect all of the various lineages that contributed to
the current situation. Abnormal conditions include insufficient differentiation along
edges, in which case some of the edges may not be reconstructible, leading to poly-
tomies and thus to nodes of outdegree larger than 2. All three types of problems may
lead to the reconstruction of networks that violate the constraints of Definition 12.5.
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(The distinction between a model phylogeny and a reconstructible phylogeny is com-
mon with trees as well: for instance, model trees are always rooted, whereas recon-
structed trees are usually unrooted. In networks, both the model network and the
reconstructed network must be rooted: reticulations only make sense with directed
edges.) Clearly, then, a reconstructible network will require changes from the defini-
tion of a model network. In particular, the degree constraints must be relaxed to allow
arbitrary outdegrees for both network nodes and internal tree nodes. In addition, the
time coexistence property must be reconsidered.

There are at least two types of problems in reconstructing phylogenetic networks.
First, slow evolution may give rise to edges so short that they cannot be reconstructed,
leading to polytomies. This problem cannot be resolved within the DAG framework,
so we must relax the constraints on the outdegree of tree nodes. Secondly, missing
data may lead methods to reconstruct networks that violate indegree constraints or
time coexistence. In such cases, we can postprocess the reconstructed network to
restore compliance with most of the constraints in the following three steps:

1. For each network node w with outdegree larger than 1, say with edges (w, v 1),
. . . , (w, vk), add a new tree node u with edge (w, u) and, for each i, 1 ≤ i ≤ k,
replace edge (w, vi) by edge (u, vi).

2. For each network node w whose parents u and v violate time coexistence, add
two tree nodes wu and wv and replace the two network edges (u, w) and (v, w)
by four edges: the two tree edges (u, wu) and (v, wv) and the two network edges
(wu, w) and (wv, w).

3. For each edge (u, v) where both u and v are network nodes, add a new tree node
w and replace the edge (u, v) by the two edges (u, w) and (w, v).

The resulting network is consistent with the original reconstruction, but now satisfies
the outdegree requirement for network nodes, obeys time coexistence (the introduc-
tion of tree edges on the paths to the network node allow arbitrary time delays), and
no longer violates the requirement that at least one endpoint of each edge be a tree
node. Moreover, this postprocessing is unique and quite simple. We can thus define
a reconstructible network in terms similar to a model network.

Definition 12.6 A reconstructible phylogenetic network is a rooted DAG obeying
the following constraints:

1. Every node has indegree and outdegree defined by one of the three (indegree,outdegree)
combinations (0, x), (1, y), or (z, 1), for x ≥ 1, y ≥ 0, and z ≥ 2—corresponding
to, respectively, root, other tree nodes (internal nodes and leaves), and network
nodes.

2. If two nodes u and v cannot co-exist in time, then there does not exist a network
node w with edges (u, w) and (v, w).

3. Given any edge of the network, at least one of its endpoints must be a tree node.

Definition 12.7 A network N induces a tree T ′ if T ′ can be obtained from N by the
following two steps:
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1. For each network node in N , remove all but one of the edges incident into it; and

2. for every node v such that indegree(v) = outdegree(v) = 1, the parent of v
is u, and the child of v is w, remove v and the two edges (u, v) and (v, w), and
add new edge (u, w) (this is referred to in the literature as the forced contraction
operation).

For example, the network N shown in Figure 12.1(e) induces both trees shown in
Figure 12.2(a) and Figure 12.2(d).

12.4.3 Reconstructing networks from gene trees

From a graph-theoretic point of view, the problem can be formulated as pure phy-
logenetic network reconstruction (???). In the case of HGT, and despite the fact the
evolutionary history of the set of organisms is a network, ? showed that an under-
lying species tree can still be inferred. In this case, a phylogenetic network is a pair
(T, Ξ), where T is the species (organismal) tree, and Ξ is a set of HGT edges whose
addition to T results in a phylogenetic network N that induces all the gene trees. The
problem can be formulated as follows.

Definition 12.8 (The HGT Reconstruction Problem)

Input: A species tree ST and a set G of gene trees.

Output: Set Ξ of minimum cardinality whose addition to ST yields phylogenetic
network N that induces each of the gene trees in G.

However, in the case of hybrid speciation, there is no underlying species tree; instead
the problem is one of reconstructing a phylogenetic network N that induces a given
set of gene trees.

Definition 12.9 (The Hybrid Speciation Reconstruction Problem)

Input: A set G of gene trees.

Output: A Phylogenetic network N with minimum number of network nodes that
induces each of the gene trees in G.

The minimization criterion reflects the fact that the simplest solution is sought; in
this case, the simplest solution is one with the minimum number of HGT or hybrid
speciation events. We illustrate this point with the example species tree ST in Fig-
ure 12.3(a) and the gene tree GT in Figure 12.3(b). Assume that the actual HGT
events that took place are the one depicted in Figure 12.3(c). Nonetheless, the sce-
nario depicted in Figure 12.3(d) has fewer HGT events, yet induces GT . In this case,
the solution in Figure 12.3(d) is the one sought by the HGT Reconstruction Prob-
lem. Although the scenarios depicted in Figure 12.3(c) and Figure 12.3(d) are very
different, inferring the one in Fig 12.3(c) as the correct solution, in the absence of
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(a) (b) (c) (d)

Figure 12.3: (a) A species tree ST . (b) A tree GT of a horizontally transferred gene. Both
networks in (c) and (d) are formed based on ST , and both induce GT . However, even though
the actual HGT scenarios that took place are described by the network in (c), the HGT Recon-
struction Problem seeks the solution in (d).

any additional biological knowledge about the organisms, would be rather arbitrary.
Hence, based on the species and gene tree topologies, solving the HGT Reconstruc-
tion Problem offers the “best” solution. Another serious problem that impacts the
identifiability of reticulate evolution is that of extinction and incomplete taxon sam-
pling. ? illustrated some of the scenarios that lead to non-identifiability of reticulation
events from a set of gene trees.

? gave an efficient algorithm for solving the HGT Reconstruction Problem; however,
their algorithm handles limited special cases of the problem in which the number of
HGT events is very small, and the number of times a gene is transferred is very low
(also, their tool handles only binary trees; ?). ? gave efficient algorithms for solv-
ing the Hybrid Speciation Reconstruction Problem, but for constrained phylogenetic
networks, referred to as gt-networks; further, they handled only binary trees. ? have
recently introduced RIATA-HGT, which is the first method for solving the general
case of the HGT Reconstruction Problem. The method can be easily modified to
yield a heuristic for solving the Hybrid Speciation Reconstruction Problem. We now
describe the method and its empirical performance.

RIATA-HGT: reconstructing HGT from gene trees

We describe the algorithm underlying RIATA-HGT in terms of a species tree and a
gene tree. The core of RIATA-HGT is the divide-and-conquer algorithm Compute-
HGT algorithm (outlined in Figure 12.4). The algorithm starts by computing the
MAST , T ′, of the species tree ST and gene tree GT ; tree T ′ forms the basis for
detecting and reconstructing the HGT events (computing T ′ is done in Step 1 in
Figure 12.4). The algorithm then decomposes the clade sets U 1 and U2 (whose re-
moval from ST and GT , respectively, yields T ′) into maximal clades such that each
maximal clade in one of the two sets is “matched” by a maximal clade on the same
leaf set in the second set. The algorithm for this decomposition is outlined in Figure
12.5. The algorithm then recurses on each maximal clade and its matching maximal
clade (Steps 5.c.(1) and 5.d.(5).(1) in Figure 12.4) to compute the HGT events whose
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recipients form sub-clades of those maximal clades. Finally, we add a single HGT
event per each maximal clade to connect it to its “donor” in the ST ; this is achieved
through the calls to AddSingleHGT (Figure 12.6) in Steps 5.c.(2) and 5.d.(5).(3) in
Figure 12.4.

PROCEDURE COMPUTEHGT(ST ,GT )
Input: Species tree ST , and gene tree GT , both on the same set S of taxa.
Output: Computes the set Ξ of HGT events such that the pair (ST, Ξ) induces
GT .

1. T ′ = MAST (ST, GT );

2. If T ′ = ST then

(a) Return;

3. U1 = ST − T ′; U2 = GT − T ′;

4. V = ∅;
5. Foreach u2 ∈ U2

(a) Decompose(U1, u2, T
′, V );

6. U2 = V ;

7. While V �= ∅
(a) Let u2 be an element of V ;

(b) Let u1 ∈ U1 be such that L(u2) ⊆ L(u1);

(c) Y = {y ∈ U2 : L(y) ∩ L(u1) �= ∅};

(d) Z = {y|(L(y) − L(u1)) : y ∈ Y };

(e) V = V − Y ; V = V ∪ Z;

(f) X = {u1|L(y) : y ∈ Y };

(g) Foreach y ∈ Y

i. Let x ∈ X be such that L(x) ∩ L(y) �= ∅;
ii. ComputeHGT (x, y);
iii. AddSingleHGT (ST,GT, y, U2, T

′);

Figure 12.4: The main algorithm for detecting and reconstructing HGT events based on a
pair of species tree and gene tree.

Theoretically, RIATA-HGT may not compute the minimum-cardinality set of HGT
events; ? established the following properties of the method.

Theorem 12.1 Given a species tree ST and a gene tree GT , the network N ob-
tained by running RIATA-HGT on (ST, GT ) induces GT . Further, RIATA-HGT takes
O(n4) time in the worst case, where n is the number of leaves in ST .

Moreover, experimental results show very good empirical performance on synthetic
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PROCEDURE DECOMPOSE(U1,u2, T , U ′)
Input: Set U1 of clades from ST , clade u2 from GT , the backbone clade u2, and
U ′ which will contain the “refined” clades of u2.
Output: Decompose u2 so that no clade in U ′ has a leaf set that is the union of
leaf sets of more than one clade in U1.

1. If ∃u1 ∈ U1 such that L(u2) ⊆ L(u1) then

(a) U ′ = U ′ ∪ {u2};

(b) B(u2) = T ;

(c) Return u2;

2. Else

(a) If ∃u1 ∈ U1 such that r(u2) = r(u2|L(u1))

i. t = u2|L(u1);
ii. U ′ = U ′ ∪ {t};
iii. B(t) = T ;
iv. Let X = u2 − t;
v. Foreach x ∈ X

A. Decompose(U1, x, t, U ′);

vi. Return t;

(b) Else

i. Let c1, . . . , ck be the children of r(u2);
ii. x = Decompose(U1, Tc1 , T, U ′);
iii. For i = 2 to k

A. Decompose(U1, Tci
, x,U ′);

iv. Return x;

Figure 12.5: The algorithm for decomposing the clades in U1 and U2 such that for all u1 ∈ U1

and u2 ∈ U2 we have L(u1) �⊂ L(u2).

data, as illustrated in Figure 12.7. The whisker-and-box plot in Figure 12.7(a) shows
the individual numbers of HGT events as predicted by RIATA-HGT versus the ac-
tual numbers. Figure 12.7(b) shows the average (of 30 runs) numbers of HGT events
as predicted by RIATA-HGT versus the actual numbers (for full details of how the
simulation studies were conducted and detailed analyses of the results, please refer
to ?). The plots demonstrate empirically the excellent performance of RIATA-HGT;
it estimates the exact number of HGT events in a great majority of the cases, with
very mild over- or under-estimation in the other cases. Over-estimation is an artifact
of the heuristic nature of RIATA-HGT, whereas under-estimation is an artifact of
the parsimony criterion in the definition of the problem (see the discussion above).
RIATA-HGT was also applied to the bacterial gene datasets reported in ?, and pro-
duced the results hypothesized by Lerat et al. In summary, RIATA-HGT performed
very well on the synthetic datasets, as well as on the biological datasets.
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PROCEDURE ADDSINGLEHGT(ST , GT , u2, U2 , T ′)
Input: Species tree ST , gene tree GT , clade u2 of GT , set U2 of clades of GT ,
and MAST T ′ of ST and GT .
Output: Add to Ξ a single HGT event whose donor is determined in this
procedure and whose recipient is clade u2.

1. Q = L(u2) ∪ L(B(u2));
2. T ′′ = GT |Q; p = lcaT ′′ (L(u2));

3. tq = lcaST (L(u2)); te = inedgeST (tq);

4. If p is a child of r(T ′′) and |L(B(u2))| > 1 then

(a) sq = lcaST (L(B(u2)));

(b) Ξ = Ξ ∪ (sq → te);

5. Else

(a) O =
�

{p′:p′=siblingT ′′ (p)} L(Tp′);

(b) sq = lcaST (O); se = inedgeST (sq);

(c) Ξ = Ξ ∪ (se → te);

Figure 12.6: The algorithm for detecting and reconstructing the single HGT event in which
clade u2 is the recipient.

12.5 The Coalescent and Reticulate Evolution

12.5.1 The coalescent and lineage sorting in ancestral populations

Intra-species events (i.e., gene duplication and loss) occur because of random contri-
bution of each individual to the next generation. Some fail to have offsprings (gene
loss) while some happen to have multiple offsprings (gene duplication). This means
a number of duplication and loss events occur every generation. In population ge-
netics, this process was first modeled by R. A. Fisher and S. Wright, in which each
gene of the population at a particular generation is chosen independently from the
gene pool of the previous generation, regardless of whether the genes are in the same
individual or in different individuals.

Under the Wright-Fisher model, “the coalescent” considers the process backward in
time (???). That is, the ancestral lineages of genes of interest are traced from off-
springs to parents. A coalescent event occurs when two (or sometimes more) genes
are originated from the same parent, which is called the most recent common an-
cestor (MRCA) of the two genes. This event corresponds to gene duplication when
the process is considered forward in time. Gene loss events can be ignored in the
coalescent process, because we are not interested in the lineages that do not exist at
present.

The basic process can be treated as follows. Consider a pair of genes at time τ 1 in
a random mating haploid population. The population size at time τ is denoted by
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(a) (b)

Figure 12.7: The results of RIATA-HGT on synthetic datasets. (a) A box-and-whisker plot
for the predictions of HGT event numbers made by RIATA-HGT. (b) The averages of HGT
event numbers estimated by RIATA-HGT vs. the actual number of HGT events. Each point is
the average of 30 runs of RIATA-HGT.

Figure 12.8: An illustration of the coalescent process in a three species model with discrete
generations. The process is considered backward in time from present, T0, to past. Circles
represent haploid individuals. We are interested in the gene tree of the three genes (haploids)
from the three species. Their ancestral lineages are represented by closed circles connected by
lines. A coalescent event occurs when a pair of lineages happen to share a single parental gene
(haploid).

N(τ). The probability that the pair are from the same parental gene at the previous
generation (time τ1 +1) is 1/N(τ1 +1). Therefore, starting at τ1, the probability that
the coalescence between the pair occurs at τ2 is given by

Prob(τ2) =
1

N(τ2)

τ2−1∑
τ=τ1+1

(
1

N(τ)

)
. (12.1)

When N(τ) is constant, the probability density distribution (pdf) of the coalescent
time (i.e., t = τ2 − τ1) is given by a geometric distribution, and can be approximated
by an exponential distribution for a large N :

Prob(t) =
1
N

e−t/N . (12.2)

The coalescent process is usually ignored in phylogenetic analysis, but has a sig-
nificant effect (causing lineage sorting) when closely related species are considered
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(a) (b)

Figure 12.9: (a) The probabilities of the three types of gene tree, (AB)C, (AC)B, and A(BC),
as functions of (T2 − T1)/N . (b) The probabilities that the gene tree is resolved from DNA
sequence data. The probabilities are given functions of the mutation rate for the three types of
tree, (AB)C, (AC)B, and A(BC), when (T2 − T1)/N = 0.5. The white regions represent the
probabilities that the gene tree is not resolved.

(???). The situation of Figure 12.1(b) is reconsidered under the framework of the
coalescent in Figure 12.8. Here, it is assumed that species A and B split T1 = 5 gen-
erations ago, and the ancestral species of A and B and species C split T2 = 19 gen-
eration ago. The ancestral lineage of a gene from species A and that from B meet in
their ancestral population at time τ = 6, and they coalesce at τ = 35, which predates
T2, the speciation time between (A, B) and C. The ancestral lineage of B enters in
the ancestral population of the three species at time τ = 20, and first coalesces with
the lineage of C. Therefore, the gene tree is represented by A(BC) while the species
tree is (AB)C. That is, the gene tree and species tree are “incongruent”. Under the
model in Figure 12.8, the probability that the gene tree is congruent with the species
tree is 0.85, which is one minus the product of the probability that the ancestral lin-
eages of A and B do not coalesce between τ = 6 and τ = 9, and the probability that
the first coalescence in the ancestral population of the three species occur between
(A and C) or (B and C). The former probability is 14

15
12
13

11
12 ...78

7
8 = 0.22 and the

latter is 2
3 .

Under the three-species model (Figure 12.8), there are three possible types of gene
tree, (AB)C, (AC)B and A(BC). Let Prob[(AB)C], Prob[(AC)B] and Prob[A(BC)]
be the probabilities of the three types of gene tree. These three probabilities are sim-
ply expressed with a continuous time approximation when all populations have equal
and constant population sizes, N , where N is large:

Prob[(AB)C] = 1 − 2
3
e−(T2−T1)/N , (12.3)

and

Prob[(AC)B] = Prob[A(BC)] =
1
3
e−(T2−T1)/N . (12.4)

Figure 12.9(a) shows the three probabilities as functions of (T 2 − T1)/N .

An interesting application of this three species problem is in hominoids; A: human,
B: chimpanzee and C: gorilla. It is believed that the species three is (AB)C. ? in-
vestigated DNA sequences from 88 autosomal intergenic regions, and the gene tree
is estimated for each region. They found that 36 regions support the species tree,
(AB)C, while 10 estimated trees are (AC)B and 6 are A(BC). No resolution is
obtained for the remaining 36 regions (see below). It is possible to estimate the time
between two speciation events, T2 − T1, assuming all populations have equal and
constant diploid population sizes, N (?). Since 36 out of 52 gene trees are congruent
with the species tree, T2−T1 is estimated to be −ln[(3/2)(36/52)] = 0.77 times 2N
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(a) (b)

Figure 12.10: (a) A three species model with a HGT event. A demonstration that a congruent
tree could be observed even with HGT. (b) The probabilities of the three types of gene tree,
(ab)c’, (ac’)b, and a(bc’), as functions of Th/N . T1 = 2N and T2 = 3N are assumed.

generations. It should be noted that 2N is used for the coalescent time scale instead
of N because hominoids are diploids. If we assume N to be 5× 104 − 1× 105 (??),
the time between two speciation events is 7.7 − 15.5 × 104 generations, which is
roughly 1 − 3 million years assuming a generation time of 15 − 20 years.

It is important to notice that the estimation of the gene tree from DNA sequence data
is based on the nucleotide differences between sequences, and that the gene tree is
sometimes unresolved. One of the reasons for that is a lack of nucleotide differences
such that DNA sequence data are not informative enough to resolve the gene tree.
This possibility strongly depends on the mutation rate. Let μ be the mutation rate
per region per generation, and consider the effect of mutation on the estimation of
the gene tree. We consider the simplest model of mutations on DNA sequences, the
infinite site model (?), in which mutation rate per site is so small that no multiple
mutations at a single site are allowed. Consider a gene tree, (AB)C, and suppose
that we have a reasonable outgroup sequence such that we know the sequence of the
MRCA of the three sequences. It is obvious that mutations on the internal branch
between the MRCA of the three and the MRCA of A and B are informative. If at
least one mutation occurred on this branch, the gene tree can be resolved from the
DNA sequence alignment. This effect is investigated by assuming that the number
of mutations on a branch with length t follows a Poisson distribution with mean
μt. Figure 12.9(b) shows the probability that the gene tree is resolved; T 2 − T1 =
0.5N generations is assumed so that the probability that the gene tree is (AB)C
is about 0.6. As expected, as the mutation rate increases, the probability that the
gene tree is resolved from the sequence alignment increases, and this probability
exceeds 90% when Nμ > 1.52. Similar results are obtained for the other two types
of trees, (AC)B and A(BC), that appears with probability 0.2 for each (see also
Figure 12.9(b)).

12.5.2 Gene trees, species trees and reticulate evolution

In the previous section, we have shown that the gene tree is not always identical to
the species tree. With keeping this in mind, let us consider the effect of horizontal
gene transfer (HGT) on gene tree under the framework of the coalescent.

The application of the coalescent theory to bacteria is straightforward. Bacterial evo-
lution is better described by the Moran model rather than the Wright-Fisher model
because bacteria do not fit a discrete generation model. Suppose that each haploid in-
dividual in a bacterial population with size N has a lifespan that follows an exponen-
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tial distribution with mean l. When an individual dies, another individual randomly
chosen from the population replaces it to keep the population size constant. In other
words, one of the N−1 alive lineages is duplicated to replace the dead one. Under the
Moran model, the ancestral lineages of individuals of interest can be traced backward
in time, and the coalescent time between a pair of individuals follows an exponential
distribution with mean lN/2 (??). This means that one half of the mean lifetime in
the Moran model corresponds to one generation in the Wright-Fisher model.

It may usually be thought that HGT can be detected when the gene tree and species
tree are incongruent (see Section 12.4). However, the situation is complicated when
lineage sorting is also involved. Consider a model with three species, A, B, and C,
in which an HGT event occurs from species B to C. Suppose the ancient circular
genome has a single copy of a gene as illustrated in Figure 12.10(a). Let a, b and c
be the focal orthologous genes in the three species, respectively. At time T h, a gene
escaped from species B and was inserted in a genome in species C at T i, which is
denoted by c′. Following the HGT event, c was physically deleted from the genome,
so that each of the three species currently has a single copy of the focal gene.

If there is no lineage sorting, the gene tree should be a(bc ′). Since this tree is incon-
gruent with the species tree, (AB)C, we could consider it as an evidence for HGT.
However, as demonstrated in Section 12.2, lineage sorting could also produce the in-
congruence between the gene tree and species tree without HGT. It is also important
to note that lineage sorting, coupled with HGT, could produce congruent gene tree,
as illustrated in Figure 12.10(a). Although b and c ′ have more chance to coalesce
first, the probability that the first coalescence occurs between a and b or between a
and c′ may not be negligible especially when T1 − Th is short.

The probabilities of the three types of gene tree can be formulated under this tri-
species model with HGT as illustrated in Figure 12.10(a). Here, Th could exceed T1,
in such a case it can be considered that HGT occurred before the speciation between
A and B. Assuming that all populations have equal and constant population sizes,
N , the three probability can be obtained modifying (12.3) and (12.4):

Prob[(AB)C] =
{

1
3e−(T1−Th)/N if Th ≤ T1

1 − 2
3e−(Th−T1)/N if Th > T1

, (12.5)

Prob[(AC)B] =
{

1
3e−(T1−Th)/N if Th ≤ T1
1
3e−(Th−T1)/N if Th > T1

, (12.6)

and

Prob[A(BC)] =
{

1 − 2
3e−(T1−Th)/N if Th ≤ T1

1
3e−(Th−T1)/N if Th > T1

. (12.7)

Figure 12.10(b) shows the three probability assuming T 1 = 2N and T2 = 3N .

Thus, lineage sorting due to the coalescent process works as a noise for detecting and
reconstructing HGT based on gene tree, sometimes mimicking the evidence for HGT
and sometimes creating a false positive evidence for HGT. Therefore, to distinguish
HGT and lineage sorting, statistics based on the theory introduced in this chapter
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is needed. We only considered very simple cases with three species here, but it is
straightforward to extend the theory to more complicated models.

12.6 Summary

In this chapter, we have reconsidered the gene tree species tree problem in the con-
text of reticulate evolution. In particular, we discussed gene tree incongruence due
to reticulate evolution and presented our recent heuristic, RIATA-HGT, for resolv-
ing this type of incongruence. Further, we have addressed extensions of the coales-
cent model to incorporate non-treelike evolutionary events, such as horizontal gene
transfer. Gene tree incongruence is both an obstacle impeding accurate phylogeny
reconstruction and a tool for detecting and reconstructing evolutionary events such
as HGT and hybrid speciation. Future directions for further research include:

1. Testing the performance of existing methods for resolving gene tree incongruence
in the context of intra- and inter-species evolutionary events.

2. Developing and testing accurate and fast methods for reconstructing phylogenetic
networks from gene trees under the conditions of incomplete taxon sampling and
missing orthologs.

3. Extending our initial progress on the coalescent model beyond three species and
to incorporate hybrid speciation and meiotic recombination.



CHAPTER 13

From genomes to organisms: integrating
genomic data

Cristian I. Castillo-Davis
***

13.1 Introduction

Biology has gone from being a data-poor science to a data-rich one and thus presents
an exciting challenge not only for biologists but also for statisticians, computer sci-
entists and other quantitative workers. The prodigious and ever-growing bounty of
“-omic” data generated by technologies enabled by whole genome DNA sequenc-
ing projects is quickly out-pacing our ability to digest and meaningfully synthesize
it. These data include transciptional, proteomic, and phenotypic data, to name but a
few.

However, recent work has shown that a biologically and statistically thoughtful com-
bination of different data types in either a hypothesis-driven or data-mining frame-
work can lead to a deeper, more comprehensive understanding of biology. Post- ge-
nomic analysis, the interpretation and synthesis of thousands of data points from a
chemical, clinical, evolutionary, or other perspective thus promises to be an area of
great methodological and scientific development in this century.

For many genes, something is known about their molecular and biological function,
pathway membership, physical chromosomal location, level of polymorphism, RNAi
phenotype, disease phenotype, and rate of molecular evolution. For non-coding re-
gions, data are often available concerning the presence of known or putative tran-
scription factor binding sites, levels of DNA methylation or acetylation, and GC
content. While freely available through public databases, these different kinds of
biological data are often unexamined with respect to each other. One reason for this
situation is a lack of conceptual and methodological tools for their analysis. The con-
tinual release of new genomic and proteomic datasets insures that this situation will
only be exacerbated in the coming decades. At the same time, this problem offers
an unprecedented opportunity for innovation and scientific discovery not only for
biologist but for statisticians, computer scientists, and others.

195
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Since there is no one solution to the problem of integrating high-throughput genomic
data, and since the types of data available will undoubtedly change over time, I will
concentrate on familiarizing the reader with specific examples where integrative post-
genomic analysis has been successfully applied, and highlight key areas of investiga-
tion that are especially fertile for future contribution. In doing so, out of familiarity,
I will use examples largely from my own work. My goal is not a comprehensive
review of the literature but an illustration of some of the applications, challenging
problems, and exciting possibilities of combining different types of genomic data
toward biological ends.

13.2 Case-study I — Intron evolution

To illustrate a relatively straightforward case of hypothesis-driven post-genomic anal-
ysis that uses disparate data-types in its execution we will begin with an example
involving the evolution of gene structure Castillo-Davis et al. (2002).

13.2.1 Background

Introns are intervening sections of DNA within protein-coding regions of genes that
do not encode amino-acids (Figure 13.1) and are primarily made up of non-functional
“junk DNA.” These sections of DNA are nonetheless transcribed (copied) by the
cell along with the protein-coding sections (known as exons) into messenger RNA
(mRNA) as one long transcript. The introns in an mRNA transcript are subsequently
cut out of the transcript (literally) and the exons spliced together (literally) to form
the usable mRNA message.

This mRNA transcript is later translated into an amino-acid chain which then folds
to make a protein. Some of the largest introns are found in the human genome, where
the total length of intron sequences in a gene often reaches tens of thousands of nu-
cleotides such that transcription of a single gene requires several minutes and thou-
sands of ATP molecules (the energy currency of the cell).

13.2.2 Hypothesis

Because transcription is a slow and metabolically expensive process in eukaryotes,
it was hypothesized that, at least for highly expressed genes, transcription of long
introns, might be energetically costly. If so, in genes that are highly expressed, it
is predicted that natural selection will favor shorter introns. To test this hypothesis
requires at least two sets of data: 1) data on gene structure detailing the sizes of exons
and introns making up all the genes in a genome, and 2) estimates of the expression
level of each gene.
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exons

introns

spliced mRNA

gene start gene end

Figure 13.1: Exon-intron structure of a gene

13.2.3 Methods

At the time of this study, sufficient information on both exon-intron structure and
gene expression data were available only for two species: the nematode Caenorhab-
ditis elegans and human. Gene structure information for each species was avail-
able through genome databases and consisted of coordinates listing exon and in-
tron boundaries. In terms of expression data, for C. elegans, Affymetrix microar-
ray expression data collected over development was available that provided absolute
transcript abundance measures for each gene. Unfortunately, such microarray exper-
iments were not available for human, and gene expression was instead estimated by
expressed sequence tag abundance.

Expressed sequence tags (ESTs) are short stretches of DNA, randomly sequenced
after reverse transcribing a pool of mRNA that is typically extracted from a tissue or
organ. Since some mRNA transcripts are more abundant than others, these will be
sequenced more often, and in turn will end up making up the bulk of sequences in
an EST database. By aligning the known DNA sequence of a given gene with EST
sequences in an EST database and counting the number of significant matches, one
can estimate the expression level of that gene Bortoluzzi and Danieli (1999). This
was the approach taken in this study to estimate gene expression level in human,
using BLAST Altschul et al. (1997) for sequence alignment and all available human
EST sequences in GenBank Benson et al. (2005).
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13.2.4 Result

By combining information on intron size and the two types of expression data dis-
cussed above, it was found that introns in highly expressed genes were indeed sub-
stantially shorter than those of genes expressed at low levels in both in human and C.
elegans (Figure 13.2).

13.2.5 Discussion

In this case study, the authors had a very specific hypothesis in mind and attempted to
test its predictions using available data. No sophisticated modeling was used nor were
high-level statistics necessary to obtain the biological results. This case study shows
that the evaluation of important biological hypotheses is possible with a minimal
amount of disparate genomic data (in this case, three types) if the data are combined
in a biologically and statistically thoughtful manner. Many important biological ques-
tions remain unanswered even in the wake of an abundance of genomic data. I hope
this inspires workers outside and on the periphery of biology to apply novel tools and
fresh perspectives to genomic investigation. The opportunity for methodological and
scientific contribution are great.

13.3 Case Study II — Functional genomics and protein evolution

To illustrate a case of post-genomic analysis that is more data-mining in spirit and
that utilizes a number of different data types, we now turn to a study on protein
conservation and function Castillo-Davis et al. (2004). This study is largely aimed
at answering three basic questions: “What are the slowest evolving (most conserved)
proteins in animal genomes and what do they do?” and “What are the fastest evolving
(least conserved) proteins in animal genomes and what do they do?” And finally, “Are
fast and slow evolving genes the same types of genes in different animals?”

13.3.1 Background

An important question in biology is how selective forces act on the genome in the
evolution of different species. For example, does natural selection act similarly on
proteins across lineages as distinct as phyla? Since most multicellular organisms
contain a similar complement of genes and gene families owing, in part, to a com-
mon cellular biology, it might be expected that natural selection acts homogeneously
across functionally similar genes in widely disparate taxa. However, this is not cer-
tain and there are many reasons why inhomogeneous levels of conservation across the
proteome might be expected in different animals for example strong lineage-specific
adaptation. To address this question we need first to determine the rate of evolution
of all genes in two different animals and second, integrate this information with data
on gene function.
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Figure 13.2: Mean expression level versus intron size in (a) H. sapiens and (b) C.
elegans
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13.3.2 Methods

Rates of evolution for two species pairs in two different animal phyla, Chordata
(mouse/human) and Nematoda (C. elegans/C. briggsae) (Figure 13.3) were esti-
mated by the maximum likelihood method of Yang and colleagues Goldman and
Yang (1994) Nielsen and Yang (1998). This method calculates the estimated rate of
nonsynonymous (amino-acid changing) substitutions between proteins d N and the
synonymous (non amino-acid changing) rate of substitution d S between proteins.

H. sapiens    M. musculus       C. elegans    C. briggsae       

~50-90
MY

~600-670
MY

Chordata                                     Nematoda       

Figure 13.3: Evolutionary relationships and divergence times of species studied in
case study II. MY = million years.

These data were subsequently examined with respect to gene function using two
complementary approaches. In the first approach, a list of the top 10% fastest and
slowest evolving proteins in each species pair (in terms of dN were compared with
known gene functions from the Gene Ontology (GO) database Ashburner et al. (2000b)
(http://www.geneontology.org) and tested for statistical enrichment. In the second,
tissue-specific expression of all genes in the mammalian dataset was estimated based
on hits to EST sequence libraries and then rates of evolution for genes expressed in
each tissue type were calculated.

The statistical enrichment of various functional classes among slow and fast evolving
genes was evaluated using GeneMerge Castillo-Davis and Hartl (2003) (http://www.oeb.harvard.edu/hartl/lab/publications/G
Annotated gene functions from the Gene Ontology Consortium Ashburner et al.
(2000b) for human and C. elegans were used as input for GeneMerge. GeneMerge
related methods will be discussed in greater depth later in the chapter.

EST data were obtained from cDNA libraries available in GenBank (http://www.ncbi.nlm.nih.gov).
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More than 450,000 ESTs from 12 normal adult mouse tissues were collected and
alignments evaluated against each mouse gene using BLASTN Altschul et al. (1997).
Genes with significant hits to ESTs were then normalized and clustered into tissue-
specific groups by means of a Self-Organizing Tree Algorithm (SOTA) Herrero et al.
(2001). Clusters represent genes that have similar expression patterns across tissues
(Figure 13.4). Mean divergence estimates were then calculated for each cluster with
confidence intervals estimated by means of nonparametric bootstrap re-sampling
with 1,000 replicates.

13.3.3 Results

The 10% fastest evolving genes in mammals, according to the GO annotations,
were largely involved in reproduction, immunity, and signal transduction (Table 2),
whereas transcription factors were over-represented among fast evolving nematode
proteins (Table 3).

GO Description Fraction P-value GO ID

Immune response 100/577 3.77E-040 GO:0006955

Response to pest/pathogen/parasite 61/577 2.76E-023 GO:0009613

Antimicrobial humoral response 24/577 4.84E-013 GO:0019730

Response to wounding 27/577 2.68E-006 GO:0009611

Innate immune response 20/577 0.000357 GO:0045087

Inflammatory response 19/577 0.001230 GO:0006954

Lymphocyte activation 7/577 0.008820 GO:0046649

Pregnancy 8/577 0.009790 GO:0007565

Table 2. Functional overrepresentation of fast evolving mammal genes.

GO Description Fraction P-value GO ID

DNA-dependent regul. of transcription 45/753 4.27E-5 GO:0006355

Regulation of transcription 45/753 5.72E-5 GO:0045449

Nucleic acid metabolism 53/753 0.03675 GO:0006139

Table 3. Functional overrepresentation of fast evolving worm genes.

Corroborating these results, the EST data (Figure 13.4) showed that genes co-expressed
in the thymus and spleen (immune organs) in mouse evolved the fastest among all
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tissues dN = 0.142. Additionally, an accelerated mean rate of evolution was seen in
genes co-expressed in the ovary and uterus dN = 0.122, organs with a reproductive
role.

In contrast, the slowest-evolving genes in both nematodes and mammals were in-
volved in the same basic cellular processes including protein biosynthesis, cell growth
and GTP-mediated signal transduction (Table 4,5).

GO Description Fraction P-value GO ID

Protein metabolism 140/699 5.76E-10 GO:0019538

Intracellular protein transport 44/699 5.89E-9 GO:0006886

Small GTPase mediated sign. transd. 30/699 1.85E-7 GO:0007264

Ubiquitin-dependent protein catabolism 25/699 4.81E-6 GO:0006511

Biosynthesis 69/699 0.000284 GO:0009058

Nucleocytoplasmic transport 13/699 0.000461 GO:0006913

Metabolism 265/699 0.001011 GO:0008152

mRNA splicing 10/699 0.039416 GO:0006371

Table 4. Functional overrepresentation of slow evolving mammal genes.

GO Description Fraction P-value GO ID

Physiological processes 268/753 4.04E-12 GO:0007582

Protein biosynthesis 48/753 1.82E-11 GO:0006412

Cellular process 132/753 4.89E-11 GO:0009987

Biosynthesis 63/753 5.25E-11 GO:0009058

Small GTPase mediated sign. transd. 23/753 7.89E-11 GO:0007264

Metabolism 189/753 2.17E-5 GO:0008152

Protein metabolism 92/753 3.01E-5 GO:0019538

mRNA splicing 5/753 0.016747 GO:0006371

Table 5. Functional overrepresentation of slow evolving worm genes.

Thus it appears that while fast-evolving genes tend to be lineage-specific, highly-
conserved genes are the same in different types of animals and are mainly involved
in core cellular functions.
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Figure 13.4: Tissue-specific gene expression and protein divergence. Histograms
show the mean correlation coefficient for gene expressed in a cluster. Reproduced
with permission from Cold Spring Harbor Laboratory Press Castillo-Davis et al.
(2004).

13.3.4 Discussion

Leaving aside the biological implications of the study we will concentrate on the
methods used to integrate the comparative and functional genomic data. Firstly, note
that a two-pronged and complementary approach was taken to establish gene func-
tion. Database annotations are currently incomplete with upwards of 50% of genes
having unknown function, even in model organisms. Thus, it was important in this
study to complement the database annotation data with a method using all genes,
even those with unknown functions. The EST-based tissue-specific expression anal-
ysis satisfied this goal. In general when combing genomic data— which are often
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noisy or incomplete— similar strategies of data complementation are often useful
since certain data types can bolster deficiencies in others.

13.4 Toward general methods for data-combination and exploration

Having reviewed two case-studies involving the combination of disparate data types,
we now turn to a more general discussion of methods to combine and analyze ge-
nomic data. Data associated with genes are many and varied and will undoubtedly
grow as genomic and proteomic investigations accelerate. To deal with this explosion
of data requires 1) a clear analytical framework and 2) the flexibility to examine new
data as soon as they become available. To date, there are very few approaches that
meet both these criteria.

However, one approach that has been quite fruitful is the so-called over-representation
framework where investigators examine the overlap of particular attributes in a sam-
ple of genes drawn from a larger set of genes, often a genome. By far, the most
common application of this approach is the examination of a list of genes that are
found to be highly expressed in, say, breast cancer tissue versus normal breast tis-
sue, for statistical over-representation of gene functions within the list. There are
several programs that implement this general algorithm Martin et al. (2004) (Table
6) using functions provided by the Gene Ontology Consortium; the most commonly
implemented statistic to assess overrepresentation is based on the hypergeometric
distribution Martin et al. (2004).

Pr(r|n, p, k) =

(
pn
r

)(
(1−p)n

k−r

)(
n
k

) (13.1)

The hypergeometric distribution describes the discrete probability of selecting r
items of one kind in a sample of size k from a population of size n, where p is
equal to the proportion of r type items in the population, and sampling is without
replacement. The hypergeometric thus gives quantification of the level of ones sur-
prise at finding overrepresentation for a particular item in a given sample of size k
drawn from the larger population, size n. k is typically a set of genes that are highly
or lowly expressed and n is the population set, the set from which k is drawn, usually
all genes on a particular microarray. P-values can be calculated by summing over the
tail of the distribution for all less-likely cases.

k∑
i=r

Pr(i|n, p, k) (13.2)

Since several to hundreds of gene attributes are usually tested for overrepresentation
in a given analysis, correction for multiple hypothesis testing is important. For ex-
ample, if we were to test whether a set of genes involved in brain cancer were found
disproportionately on a particular chromosome by testing for overrepresentation on
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each of the 22 non-sex human chromosomes, we would have carried out 22 separate
hypothesis tests. Thus, some kind of P-value correction must be made. The tradi-
tional Bonferroni correction is the most popular Martin et al. (2004), but, less severe
corrections, such as those based on the False Discovery Rate (FDR) Benjamini and
Hochberg (1995b) Storey (2002a), are becoming more common.

Program Stat. Mult. Test. Corr.

CLENCH Hypergeometric* NA

FatiGO Fisher exact test FDR

FuncAssociate Fisher exact test P-value adjus.

FuncSpec Hypergeometric Bonferroni

GeneMerge Hypergeometric Bonferroni

GFINDer Hypergeometric* Bonferroni

GoMiner Fisher exact test NA

Gostat Fisher exact test Holm/FDR/Yekutieli

GO Term-Finder (CPAN) Hypergeometric Bonferroni/FDR

GOTM Hypergeometric NA

GOToolBox Hypergeometric* Bonferroni

Table 6. Overrepresentation tools that use Gene Ontology annotations; from Martin
et al. (2004); see references therein for associated publications). * indicates

software is capable of other statistical tests as well.

The first general-purpose implementation of the overrepresentation approach to ge-
nomic data, GeneMerge Castillo-Davis and Hartl (2003) was designed with the ex-
press purpose of combining many different types of data related to genes, and thus
will be our focus here. In GeneMerge the study set k may be genes found to be sig-
nificantly up or down-regulated in a microarray experiment or a list of genes deemed
interesting for any another reason. Genes in the sample k are associated with particu-
lar identifiers, for example functions, processes, or states. The number of genes with
a particular identifier is r. p is the fraction of genes in the population n associated
with the particular identifier under investigation.

GeneMerge returns both descriptive information regarding the genes under investi-
gation and Bonferroni corrected and uncorrected rank scores regarding overrepresen-
tation of any number of different descriptors in a given set of genes. Functional or
categorical descriptive data is associated with genes in gene-association files. These
text files link each gene in a genome with a particular datum of information. For ex-
ample, the name of a gene and its chromosomal location, its sensitivity to a particular
small-molecule, or its identity as over-expressed in a particular type of cancer.
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The use of overrepresentation techniques has been quite useful when applied to mi-
croarray data using GO gene functions (for example Ranz et al. (2003) Pletcher
et al. (2002) and many, many more) and genetic pathway membership (for exam-
ple Cavalieri et al. (2000) and many, many more). Interestingly however, this method
has been less often used for data exploration and hypothesis testing of more diverse
gene-association data, for example, mutation phenotypes, microarray expression out-
comes, and genetic interactions. A partial list of gene-association data potentially
useful for different genomic analyses is given in Table 7. Unfortunately, most soft-
ware implementations do not allow users to generate and utilize a wide range of
gene-association data. One advantage of GeneMerge over other similar programs is
that its gene-association files are simply tab-delimited text files that can be prepared
using any spreadsheet program.
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Gene-association Data

knock-out phenotype

disease phenotype

polymorphic / non-polymorphic locus

local recombination rate

expression phenotype under influence of chemical X

publication mention

transcription factor binding sites

protein-protein network connectivity (degree)

viability/inviability if deleted

acetylated under condition X

GC content

sex-specific expression

tissue-specific expression

has ortholog in clade X

rate of molecular evolution

genetic interactions with other genes

over/under-expressed in experiment X

alternatively spliced

RNAi phenotype

expressed in anatomical region X

Table 7. A partial list of gene-association data.

To illustrate how the overrepresentation approach can be applied to data beyond the
traditional microarray expression/GO function paradigm, two examples are given be-
low. These are followed by a discussion of the limitations and possible extensions of
the method as well as potential new approaches for the combination and examination
of disparate genomic data.
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13.4.1 Overrepresentation methods — beyond microarray data

To illustrate the flexibility of overrepresentation techniques as applied to genomic
data, I will present two unpublished examples, one involving a population genomics
question and another involving literature mining.

Population genomics

Recent analysis of genomic data suggests that protein evolution is related to protein
effects on organism fitness; specifically, it has been shown that proteins that cause
lowered fitness when deleted in yeast, so called “non-dispensable” genes, tend to
evolve more slowly Hirsh and Fraser (2001). While amino acid substitution rates
tend to be higher in dispensable genes over long evolutionary distances Hirsh and
Fraser (2001), it is not known whether in natural populations these genes also tend to
be more polymorphic, that is, show more inter-individual variation. Given that selec-
tion against deleterious mutations is also expected to operate at the population level,
coupled with the observation that variation among natural populations is ultimately
transformed into variation among species, we may predict that dispensable genes
will be more polymorphic within populations. In other words, non-essential genes
will show more variation than essential genes in a population.

Polymorphic genes were identified using genomic hybridizations to Affymetrix ar-
rays containing 126,645 unique 25mer yeast probes among 14 strains of laboratory
and wild yeast Winzeler et al. (2003). These arrays are sensitive to the detection of
single nucleotide polymorphisms. Unfortunately, distinction between synonymous
and nonsynonymous substitutions is not possible with these arrays. Genes with at
least one detected polymorphism among the 14 strains were considered polymorphic.
Genes with no polymorphism were considered non-polymorphic. Among the 2991
genes probed on the chip, 1874 (63%) were polymorphic by this criterion. To cre-
ate a deletion viability gene association file, lists of genes that result in inviablity or
are viable when deleted were obtained from the Saccharomyces Genome Database
(http://genome-www.stanford.edu/Saccharomyces/) based on the data of Winzeler
et al. (1999) and Giaever et al. (2002). 4713 genes were listed as having a deletion
viable phenotype and 1115 genes an inviable deletion phenotype. 413 genes had no
data available concerning deletion phenotype. The hypothesis that population level
polymorphism is more likely to occur in dispensable genes appears to be supported
by the data.

Among S. cerevisiae genes categorized as polymorphic, more are viable upon dele-
tion than is expected by chance. Of the 1874 genes categorized as polymorphic, 1454
(77%) were deletion viable, representing an enrichment in this class of genes (P <
0.006) (Table 8).
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Description Fraction P-value corr. P-value ID

deletion inviable 336/1874 0.3880 0.7760 del inv

deletion viable 1454/1874 0.0025 0.0051 del via

Table 8. Polymorphism and deletion viability in yeast.

Thus selection against deleterious mutations in potentially more important genes
appears to result in visibly lower levels of polymorphism at the population level.
While this result is preliminary, it provides one example of how overrepresentation
approaches can be used to explore genomic hypotheses efficiently in data beyond the
microarray/GO function paradigm.

Literature mining

Using word frequency to extract meaning from a corpus of literature is a main-
stay of text-mining techniques. In terms of genomic analysis, for example, Jenssen
and colleagues Jenssen et al. (2001) used the frequency of co-occurrence of gene
names in scientific abstracts to generate a gene-to-gene co-citation network that can
be used in the analysis of microarray data. Conversely, others have used literature-
mining techniques to asses whether clusters of particular genes share a common
biological function Raychaudhuri et al. (2002). Since literature also constitutes a
type of gene-association data, albeit of a more complex kind, it is possible to use
overrepresentation-based approaches to mine literature as well.

One example of this strategy uses abstracts from scientific publications and extracted
keywords to look for overrepresentation of keywords among publications associated
with gene lists (Hong, Liu, Wong, Castillo-Davis, unpublished). In this work, approx-
imately 10 million literature abstracts associated with all genes under analysis were
extracted from PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) and filtered
for keywords by excluding all non-technical words using a generic dictionary word
list. Next, the overrepresentation of keywords in papers associated with the sample
set of genes versus the population set was assessed using the hypergeometric distri-
bution. This simple approach was effective when used to examine a set of genes with
known enrichment in developmental functions in human (Table 9). This literature-
based method generated much more detailed information on gene function and bi-
ological sub-processes, than, for instance, GO annotations (data not shown). These
included specific gene names (BMP, NOTCH, MYC, NOGGIN), functional regions
(enhancer, homeobox), and potentially interesting disease relationships (Parkinson-
ism).
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Keyword P-value

hif 6.14E-63

myc 8.86E-36

parkin 3.59E-33

gata 1.11E-20

bmp 2.71E-19

morphogenetic 2.46E-17

notch 2.46E-17

eph 3.18E-17

ephrin 8.99E-16

transcription 1.82E-15

malformation 3.90E-15

parkinsonism 8.12E-14

twist 3.96E-12

homeodomain 1.22E-10

hox 1.31E-10

differentiation 1.47E-09

noggin 1.64E-09

developmental 3.90E-09

homeobox 9.25E-09

enhancer 1.44E-08

morphogenesis 5.86E-08

Table 9. Literature-based over-representation results for developmental genes.

Different implementations of literature-based overrepresentation methods along these
lines and others Muller et al. (2004) are likely to be increasingly useful for extracting
biological meaning from genomic data.

13.5 Limitations and possible solutions

A major drawback of most over-representation methods is the discretization of data
into binary categories. In case study II for example, a decision had to be made about
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what constituted slow and fast evolving genes. The authors chose to test for func-
tional overrepresentation among the 10% slowest and then the 10% fastest evolving
genes. While the results of the study were not particularly sensitive to the 10% cut-off
(data not shown) such a cut-off may not be desired in other contexts. For example,
for other purposes it might be interesting to comprehensively examine the relation-
ship between evolutionary rate and gene function. One could choose a priori a set
of biological functions and some level of granularity in the GO hierarchy and then
calculate rates of evolution of genes in each category. Going a step further one could
calculate rates of evolution for genes in every functional category at all levels in the
GO hierarchy. While informative, note that interrogation of the data in this manner
has moved us from a hypothesis-testing mode to a data-mining mode.

The visualization of the results of such a comprehensive analysis also present a diffi-
cult problem. How can one visualize the discrete and structured functional relation-
ships inherent in the GO hierarchy and the continuous evolutionary rate information
or other such variables, perhaps several, all at the same time? A bubble graph illus-
trated in Figure 13.5 is one possible solution. In this figure, each node represents a
particular GO function and edges connect functions in accordance with relationships
of the GO function tree (a so-called directed acyclic graph, or DAG). The size of
each node indicates the mean rate of amino-acid substitution (d N ) for genes within
the node— that is, the rate of evolution of genes with a particular function. In this
hypothetical example, genes with known transcription factor (TF) activity exhibit a
faster rate of evolution than other types genes.

Note that the number of genes within each node may be different and genes may
belong to multiple nodes. Thus, while we have improved our understanding of rela-
tionship between evolutionary rate and gene function in the data, we have done so
at the expense of statistical power; all possible relationships between evolutionary
rate and function have been explored. Such trade-offs are likely to be common and
must be weighed by the aims of the study, specifically, whether the ultimate goal is
hypothesis-testing or data-mining.

While some gene attributes are discrete, such as on which chromosome a gene re-
sides, others are continuous, such as the expression level of a gene in a particular
tissue or its relative level of evolutionary conservation. In these cases the usefulness
of categorical statistical tests such as those based on the hypergeometric distribution
are called into question. Suppose, for example, that instead of rigidly assigning gene
function in a boolean manner, one could assign probabilities concerning gene func-
tion to genes. How might one design a test for overrepresentation in this case? While
regression-based techniques have been applied on a case-by-case basis to particular
problems (for instance Liu et al. (2002) there is as of yet no general algorithm avail-
able for the interrogation and comparison of disparate data types with continuous
values or with a mixture of continuous and categorical values.

The development of such a framework will be challenging, in particular because the
categorical structure of some types of biological data can be complex, such as the
GO DAG. Interestingly however, directed and undirected graphs are often extremely
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molecular function
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Figure 13.5: Bubble graph representation of the relationship between a continuous
variate (rate of evolution, dN ) and a graphical structure (the GO functional hierar-
chy).

natural representations of gene functions and gene interactions, for example, protein-
protein interaction networks Uetz et al. (2000a) Ito et al. (2001) Li et al. (2004) Giot
et al. (2003) and metabolic and developmental pathways Kanehisa et al. (2002). The
addition of weights to graph edges or variance measurements for individual nodes
will only increase the complexity of analyzing such data. The development of sta-
tistical tests and data-exploration methods, perhaps akin to overrepresentation tech-
niques, will be critical in exploiting these types of data.

Equally important in the analysis of disparate genomic data is data visualization.
How best to visualize several dimensions of the data simultaneously, some of which
may have complex structures? Some overrepresentation-based tools have begun to
address this issue by creating dynamic output that maps, for instance, overrepre-
sentation P-values onto the GO hierarchy, for example, the“GO Term Finder” of
the Saccharomyces Genome Database Boyle et al. (2004) (Figure 13.6, or the up- or
down-regulation of genes onto a metabolic pathway using the KEGG database Kane-
hisa et al. (2002), for example, Pathway Processor Grosu et al. (2002). Unfortunately,
these visualization solutions are species- or gene-association-specific and have not
yet been generalized.

A particularly important challenge will be the analysis of high-throughput pheno-
typic data in combination with genomic data. Phenotypic data, including anatomi-
cal sections of Medicine (U.S.), three-dimensional CT scans, and MR images have
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Figure 13.6: Partial graphical output of the SGD GoTermFinder Boyle et al. (2004).

even more complex structures than graphs and network diagrams. Incorporating ge-
nomic and proteomic data with the mixture of continuous and discontinuous spatial
information inherent in morphological data will be challenging. Flexible visualiza-
tion and statistical techniques that allow for the input and processing of standardized
structural information (in the form of graphs, network diagrams, or 3-dimensional
volumes) along with the requisite gene lists and relevant gene-association data is
desperately needed. Contribution from many different disciplines, including com-
puter imaging, scientific visualization, and biostatistics, especially areas related to
morphometrics, will be required to achieve a comprehensive understanding of how
genotype and organism phenotype are related.
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13.6 Summary

Despite an abundance of genomic, proteomic, and increasingly, gross phenotypic
data, many straightforward biological questions remain difficult to answer due to
the complex and varied nature of these data. As we have seen, overrepresentation
techniques and related methods, when applied creatively and critically, hold some
promise in helping shed light on this tangled surfeit of biological information. In
particular, the use of more and varied gene-association data with these methods
promises to be quite powerful for data-mining and cursory hypothesis testing ap-
plications. At the same time, the limitations of these approaches are many; highly
structured data in the form of gene networks, morphological data, protein-protein
interactions, and simply the growing dimensionality of biological measurements in
genome-wide studies strain the conceptual and statistical limits of the overrepresen-
tation framework. Many challenges remain in assimilating complex biological data
structures into current statistical and data-mining approaches. Data visualization will
be an additional challenge. Progress will likely require heavy cross-disciplinary col-
laboration amongst statisticians, biologists, and computer scientists, among others.
The expansion and application of statistical and graphical approaches to the analysis
of genomic data presents numerous, rich opportunities for intellectual contribution.
With luck, these advances will help expedite the larger goal of deciphering nature’s
profound complexity.
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Lönnstedt, I. et al., Microarray analysis of two interacting treatments: a linear model’,
Tech. rep., Uppsala University, Sweden, Department of Mathematics, 2001.
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