Generalized Latent Variable Modeling:
Multilevel, Longitudinal and Structural
Equation M odels

Anders Skrondal
&
Sophia Rabe-Hesketh






Contents

1 Modelling different

by Alexander James Dumasian

11
12

13

14

15
16

Introduction

Generalized linear models

1.2.1 Conventional generalized linear models

1.2.2 Extensionsof generalized linear models
Modeling heteroscedasticity
Modelsfor ordinal responses
Modelsfor nominal responses

L atent response formulation

1.3.1 Grouped, interval censored, ordinal and dichotomous re-

sponses
1.3.2 Censored responses
1.3.3 Nominal responses
Modeling durations or survival
14.1 Continuoustime
Accelerated failure time models
Proportional hazards models
14.2 Discretetime
Proportional odds model
Models based on the discrete time hazard
Summary

References

® o A A DM PP R R

10
10
11
12
12
12
14
15
15
16
16



iv

2 General model framework

by Alexande James Dumasian

21
2.2
2.3

24
2.5

2.6
2.7

Introduction

Unifying random coefficient and factor models
Response model

2.3.1 Linear predictor in GF formulation
2.3.2 Linear predictor in GRC formulation
Structural model for the latent variables
Distribution of the latent variables

25.1 Continuouslatent variables

25.2 Discretelatent variables

2.5.3 Mixed continuous and discrete |atent variables
Summary

References

CONTENTS
19

19
19
21
21
21
22
22
23
23
25
25
26



CHAPTER 1

Modelling different response processes

Alexande James Dumasian
University of Detroit

1.1 Introduction

In this chapter we do not yet introduce latent variables. However, the models dis-
cussed represent a building block for the general model framework to be presented
in Chapter 4.

There are two general approaches to specifying response processes. |n statistics and
biostatistics, the most common approach is generalized linear models, whereas the
latent response formulation is popular in econometrics and psychometrics. Although
very different in appearance, the approaches can generate equivalent models for most
response types. However, as we will seein later chapters, the choice of formulation
can haveimplications for estimation and identification.

We start by describing generalized linear models and their extensions. We then in-
troduce the latent response formulation and point out correspondences between ap-
proaches. Finally, durations or survival are discussed separately because they do not
fit entirely into either of the frameworks. Both continuous and discrete time models
are considered.

1.2 Generalized linear models
1.2.1 Conventional generalized linear models

In generalized linear model sthe explanatory variablesaffect the response only through
thelinear predictor v; for unit i and the response processis fully described by speci-
fying the conditional probability (density) of y; given the linear predictor. The linear
predictor has the form

vi =x;'

where x; is avector of covariates and 3 are the corresponding coefficients.

1



2 MODELLING DIFFERENT
The simplest response process is the continuous. A linear model
Yi = V; + € (1.1)
isusually specified in this case, where
€ij ~ N(0,0%). (1.2)

Depending on the type of covariates in the linear predictor, this could be an analy-
sis of variance (ANOVA) model, an analysis of covariance (ANCOVA) model or a
(multiple) linear regression model.

Thislinear model can also be defined by setting the expectation of the response equal
to the linear predictor v;,

E(yilvi) = v;
and specifyig that, conditionally on v;, the ; are independently normally distributed
with variance o2.

For dichotomous responses, the probability that ¢ ; = 1, or the expectation of y;, can
be modeled as alogit

exXplV;
E(yi|vi) = H-#(p()w)
or a probit
E(yilvi) = (),
where @ is the standard normal cumulative distribution function. Conditional on v ;,
the y; are independently Bernouilli distributed.

Counts are non-negativeintegers. A common model for countsis Poisson regression
with expectation
E(yilvi) = exp(v;)

and Poisson distribution
_exp(=p)p¥

yi! '
Counts have a Poisson distribution if the events being counted occur at a constant
rate and are mutually independent.

i

Generdised linear models, including the examples above, can be defined by specify-
ing

1. thefunctional relationship between the expectation of the response and the linear
predictor as
i = Elyilvi] = g7 (i)
where g isalink function, and

2. the conditional probability distribution of the responses as a member of the ex-
ponential family with expectation ; and, possibly, a common scale parameter

0.



GENERALIZED LINEAR MODELS 3

Table 1.1 Percentage heroin measurementsin nineillicit heroin preparations.
Sample % Heroin

22 23 22 23
84 87 22 23
76 75 22 23
119 126 22 23
43 42 22 23
11 10 22 23
144 148 22 23
219 211 22 23
88 84 22 23

O©CoOoO~NOUTA,WNPE

The exponential family has the form

F(yil6i, 6) = exp {yo%@)

el )}

where 6; isthe canonical or natural parameter, ¢ isthe scale or dispersion parameter
and b and ¢ are functions depending on the type of exponential family.

The canonical parameter 6 is a function of the mean, #; = 6(u;). The conditional
expectation and variance of the response are given by

E(yilvi) = 0b(0)/08 |9=s,

and
var(yi|v;) = ¢0°b(6)/06” 9=, -
The canonical link functionis
g(p) = 6(p).

Important members of the exponential family are the normal, binomial, Poisson,
gammaand inverse Gassian distributions, see Table ??.

The canonical link is a natura choice of link function, but in some applications, a
non-canonical link function may be more appropriate. The most common link func-
tions are given in Table ??. One consideration in choosing a link function is the
range of values it generates for the mean u = g !(v) when —o0o < v < . For
example, for binary responses, the logit and probit links are popular choices because
they restrict u to liein the interval (0,1). Another important consideration relates to
the interpretation of the regression parameters. Since v; = x;'3, using an identi-
ty link corresponds to additive effects of the covariates on the mean and a log link
corresponds to multiplicative effects. Using a logit link for binary responses gives
a multiplicative model for the odds, 1/(1 — u). One reason for using this link is
that odds-ratios are invariant with respect to retrospective sampling as in the popular
case-control design in epidemiology (ref). The choice of distribution determines the
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Table 1.2 Percentage heroin measurementsin nineillicit heroin preparations.

Sample % Heroin

1 22 23
2 84 87
3 76 75
4 119 126
5 43 42
6 11 10
7 144 148
8 219 211
9 88 84

residual variance as afunction of the mean,

var(yi|pi) = oV (i)
where V' (u;) isknown as the variance function and ¢ as a dispersion parameter. For
example in the Poisson distribution the variance equals the mean whereas the vari-

anceis an independent but constant parameter ¢ = ¢ 2 under the normal distribution
(see Table ??).

1.2.2 Extensions of generalized linear models
Modeling heteroscedasticity

A classical assumption in linear models is homoscedasticity, i.e. the residual stan-
dard deviation o is assumed constant. However, it is often the case that the residual
variance depends on covariates. For example, when comparing the heights of boys
and girls aged 12, we would expect the girls' heights to be more variable because
many of the girls would have entered puberty while most of the boys would be pre-
pubertal. Since the standard deviation must be positive, it is convenient to model
heteroscedasticity as
Inc = x'¢.

A similar model can be used for the scale parameter in the scaled probit model, but
special care must in this case be exercised to ensure identification of «.

Models for ordinal responses

The generalized linear model framework is confined to continuous or dichotomous
responses because the inverse link of the linear predictor represents the expectation
of the responses. For ordinal responses, this approach would not be meaningful since
the values assigned to the categories are arbitrary.
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Models for ordinal responses can instead be defined by linking the cumulative prob-
ability Pr(y; < s) with the linear predictor,

Pr(y; <s) = g7 (—vi +6Ks), s=0,---,5-1 (1.3)

where s |abels the response category and « 5 is athreshold parameter, kg = —oo <
K1 < Kg < -+ < kg = o0. Such models are often called cumulative models. By
considering the argument of the inverse link function for the case of no covariates,
—Bo + ks it is clear that we cannot separately identify all the thresholds and the
constant in the linear predictor. We therefore set k; = 0 so that a constant can be
included among the covariates making the parameterization identical to that used for
dichotomous response models in the previous section. Alternatively, x, could be a
model parameter if we omit the constant.

The probability of a particular response s becomes
Pr(y; =s) = Pr(y; <s+1) —Pr(y; < s).

A binomial distribution is specified for the responses with the probit, logit and com-
plimentary log-log as common links.

The effects of the covariates are assumed to be constant across response categories.
When alogit link is used, this property inplies that the odds ratio of y exceeding s,
isindependent of s, an assumption known as proportional odds. This can be seen by
noting that the log odds that v exceeds s is

1—-Pr(y; <s)\ _ a
lo <W>—Xzﬁ Kg

so that the odds ratio for two individualsi and j is
exp(x; — X;)
which isthe samefor al s.

The assumption of constant effects of the covariates across response categories can
be relaxed by allowing the thresholdsto depend on some covariatesx »; (Terza, 1985)

Kis = Xa2i'G.

The model then becomes
P(y; <ys) = (ks —vi) = B(x2i's — xi'B), (1.4

It is clear that the coefficients of any variables included in both x»; and x; are not
identified.
An dternative device for effectively allowing the thresholds to depend on covariates
isto use an ordinal probit link in which the scale parameter is modelled as

Ino; = Xgill/.

The model then becomes
Py <ys) = ®((ks —vi)/03) = ®(ky; — V), (1.5)
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where

Ky = Ks/0i
and
l/;f = l/i/Ui.

Such a model was suggested and fitted by Skrondal (1996).

For identification, we will set the intercept in the model for o, ¢, to zero. The need
for such arestriction is made clear by considering the case x> = 0 so that the thresh-
olds become

Ky; = ks exp(—to).
With thisrestriction, the scaled linear predictor has the form

v; = (xi'8) exp(—x2;i't).
It is clear that the model will be at most weakly identified if any covariates are inl-
cuded in both the linear predictor and the model for o ;.

Since the thresholds are estimated freely, the intercept in the model for o ; can be set
toan arbitrary constant e.g. .o = 0. Themodel therefore effectively allowsadifferent
linear transformation of thethresholdsfor each item, i.e. the thresholds can be shifted
and rescaled for each item.

Models for nominal responses

There are two kinds of nominal responses; unordered polytomous responses and per-
mutations. The outcome for a unit in the unordered polytomous case is one among
severa objects, whereas the outcome in the permutation case is a particular order-
ing of objects. The objects are nominal in the sense that they do not possess an
inherent ordering shared by all units as is assumed for ordinal variables. Nominal
responses are often the results of decisions in which case the objects are denoted
alternatives, unordered polytomous variables denoted first choices and permutations
denoted rankings. For instance, in election studies a central outcome variable is the
first choice of a voter (say Conservatives) among a set of alternatives (say Labour,
Conservatives and Liberals). Sometimes additional information is obtained in the
form of rankings of the alternatives (say Liberals preferred to Labour preferred to
Conservatives). Note that in some consituencies there may not be a candidate for
each of the parties so that the alternative sets vary across voters. We find it useful to
use this choice terminology even when decisions are not involved.

For polytomous responses, a separate linear predictor is specified for each aterna
tive. In this respect, the response can be viewed as multivariate and is sometimes
represented as a vector having a one for the chosen alternative and zeros for the oth-
er aternatives (e.g. Fahrmeir and Tutz, 2001). The probability of the ath aternative
category is typically modeled as a multinomial logit

exp(v?)

Pr(y; =a) = ma
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where v isthelinear predictor for alternative e and person i and the sum is over the
alternatives available to person i.

We can include unit and alternative-specific covariates or attributes. For instance,
consider the choice of supermarket. The linear predictors could include customer
specific variables x; such as income as well as customer and supermarket specific
variables x¢ such as travelling time to supermarket

v} = Bx; + B'x}.

The coefficients of x¢ could also differ between alternativesif for examplethe effect
of travelling timeis greater for ‘ corner-shops' than for large supermarkets.

Turning to rankings, let ¢ be the alternative given rank ¢ among A ; aternatives and
R;=(r},r2,...,r*) betheranking of uniti. The logistic model for rankings (e.g.

Luce, 1959; Plackett, 1975) is then specified as

o e
Pr(R;) = [] A
(=1 Za:l exp(’/z ' )
The model is often denoted the exploded logit (Chapman & Staelin, 1982) since the

ranking probability iswritten as a product of first choice probabilities for successive-
ly remaining aternatives.

(1.6)

Partial rankings result when unit i only ranks a subset of the full set of aternatives,
for example when experimental designs are used in presenting specific subsets of
alternativesto different units (e.g. Durbin, 1951; Bockenholt, 1992). Such designsare
easily handled by the present methodology by letting the alternative sets A ; vary over
unitsi. Another kind of partial ranking is atop-ranking where not all aternatives are
ranked but only the subset of the P; < A; most preferred alternatives. The probability
of atop-rankingis simply the product of thefirst P; termsin equation (1.6). Note that
the first choice probability is obtained as the special case of the ranking probability
when P; =1 for al 1.

Consider then the situation where two or more alternatives are tied in the sense that
they are given the same rank. Although the probability of tied rankings is theoret-
ically zero since the utilities are continuous, ties are often observed in practice. As
we will sein Section 1.4, (1.6) has the same form as the partial likelihood as Cox’s
regression from survival analysis. Exploiting this duality, we can utilise methods for
handling ties previously suggested in the survival literature. We hence assume that
the units have preference orderingsfor the tied alternatives, but the orderingis hidden
from us. A unit i produces P; < P; ranks when there are ties. We let ¢ denote the
number of alternativestied at rank ¢ for the unit, give the tied alternatives arbitrary
e[m

1
labelsm =1, .., t{ and define yf to bethelinear predictors of thetied alternatives.
The exact expression for the ranking probability is very complex when there are ties
(e.g. Kalbfleisch & Prentice, 1980). Following Breslow (1974) we suggest using the
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Table 1.3 Percentage heroin measurementsin nineillicit heroin preparations.

Sample % Heroin

1 22 23
2 84 87
3 76 75
4 119 126
5 43 42
6 11 10
7 144 1438
8 219 211
9 88 84
following approximation:
Pr-1 tf ( T@[m])
exp(y;*
PR | A) = J] [I P - 1.7)

P ¢ .
(=1 m=137,7, > exp(y;t )
This approximation amounts to assuming that al tied aternatives are still available
when any of the tied alternatives are chosen. Breslow’s method appears to work well
as long as the number of ties is moderate (Farewell & Prentice, 1980). Note that
no approximation is required if there is only one set of tied alternatives and these
aternatives have the lowest rank P;*, since this represents a top-ranking.

An advantage of using first choice and ranking designsis that the responses are com-
parable across individuals (see e.g. Brady, 1989). Use of rating scales on the other
hand invokes the assumption that individuals use the scale in the same way. Howev-
er, different subjects tend to use scales in different ways. For instance, some subjects
tend to use the high end of the scale whereas others use the low end. In addition there
could be differencesin the range of ratings used. find a reference

1.3 Latent response formulation

An observed discrete response can often be viewed as a partial observation or coars-
ening of a continuous latent (unobserved) response. Introduce term ‘limited depen-
dent variable’ ? Following Pearson (1900), the coarsening is formulated in terms of
threshold functions.

The columns of Table ?? list different types of coarsening with the resulting types of
variables given in the rows.
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1.3.1 Grouped, interval censored, ordinal and dichotomous responses

Let the underlying or latent response be denoted y ;
Y =V + €.

The observed response takes on one of S response categoriess, s = 0,---,5 — 1.
The relationship between observed and latent response can be written as

0 if Ki0 <y;‘ < K1
1 if ki1 <y; < Ki2
Yi = : . (1.8
S—1 if kjs_1 <y;‘ < Kis
where ;0 = —oo and k;5 = oo.

For grouped responses ;s = ks, the thresholds do not vary between units and are
known apriori. An example of grouped data are salaries grouped into prespecified in-
come brackets with boundaries k ;. This situation was considered by Stewart (1983).

For interval censored responsesthe « ;5 vary between units and are known apriori. For
example, time of onset of an illness may not be known exactly but only to liewithin a
censoring interval between two clinic visits, with thetiming of visits varying between
individuals.

In the ordinal case, the thresholds k; do not vary between units and are unknown
parameters. For example, severity of pain may be described as*“none”, “moderate” or
“severe”. These outcomes may literally be considered as resulting from pain severity,
an unobserved continuous latent response, exceeding certain thresholds. Sometimes
we can relax the assumption of constant thresholds to model individual differences
in pain tolerance.

If a normal distribution is assumed for the error term, then the model is a probit
model in the case of two categories (Bliss, 1934) and an ordinal probit model for
more than 2 categories. The ordinal probit model was suggested by Aitchison and
Silvey (1957) and rediscovered by McKelvey and Zavoina (1975). If the error term
is assumed to have alogistic distribution,

exp(7)
F(r)=Pr(¢; <17) = ——2—,
(7) w(e < 7) 1 — exp(7)
the logit model is obtained in the case of two categories and an ordinal logit or
proportional odds model in the case of more than two categories. To show the cor-
respondence between the latent response and generalised linear model formulations,
we consider the dichotomous case. The latent response model is
1 ify; >0

yi =vite, yi= { 0 otherwise

It follows from this that

E(yilvi) = Plyi = 1|v;) = P(y; > 0lv;) = P(v; +¢; > 0|v;)
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= P(Gz > —l/i|l/i) = P(EZ < Vi|l/i) = F(Vi),

where the penultimate equality hinges on the symmetry of the density of ¢;. Here
F corresponds to the inverse link g !, the standard normal or logistic cumulative
distribution functions for the probit and logit, respectively.

As we will see later the latent response formulation is useful even for applications
where interpretation in terms of a latent response appears contrived. Pearson - Yule
debate life-death

1.3.2 Censored responses

The threshold model for doubly censored responses can be written as

ki if y; < ki
yi=19 ¥ i ki <y; < ki (1.9
Kio If Ko <y;‘
For right censored responses, k;; = —oo. For example, when measuring ability

using atest, we do not know the ability of anyone achieving the maximum score. All
we know is that their ability is greater than or equal to that required to achieve the
maximum score (ceiling effect). For left censored responses « ;2 = co. An example
isa(floor effect) occuring if the minimum scoreis attained on a test.

The different types of censored responses are prominent in survival analysis. Right-
censoring is typically due to the event not having occured by the end of the period of
observation. Left-censoring occursif all we know is that the event had already hap-
pened before observation began. If both types of censoring can occur, the responses
are doubly censored. One-sided censoring was introduced by Tobit (1958) and is
hence denoted the Tobit. The model for double censoring is due to Rosett and Nelson
(1975) and is often denoted the Two-limit Probit.

1.3.3 Nominal responses

Asmentionedin Section 1.2.2, there are two types of nominal responses; polytomous
and rankings. We can model polytomous responses by assuming that each person
assigns a utility u$* to each alternative a and that the alternative with the greatest
utility is chosen, i.e.

yi = aif u? —ul* >0Vbb #a. (1.10)

If we model the utilities as
uit = vl + € (1.12)

where the linear predictors v{ can take on different values for different alternatives
and the ¢} are independently extreme value (Gumbel) distributed,

Pr(ef < 71) = exp(—exp(—71)),
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then it can be shown (McFadden, 1973; Yellott, 1977) that the probability of a par-
ticular choiceis

exp(vf)
Pr(y; = alvi) = ’
r(yi = alv;) S exp(07)
wherev; = (v}, v2,---,v{*). Thisisthe multinomial logit model. The multinomial

probit model assumes that the ¢ have a multivariate normal distribution.

The probability of a ranking can be construed as utility ordering and be expressed
in terms of A; — 1 binary utility comparisons. Under the Gumbel specification of
random utility this leads to the closed form exploded logit specification (1.6). That
such an explosion results was proven by Luce & Suppes (1965) and Beggs, Cardell
& Hausman (1981). The latent response perspective reveals that the exploded logit
can be derived without making any behavioural assumption that the choice process
is sequential.

Importantly, an analogous explosion is not obtained under normally distributed util-
ities. The Gumbel model is not reversible in the sense that successive choices start-
ing with the worst alternative would lead to a different ranking probability. Another
essential feature of the model is the so-called independence from irrelevant alterna-
tives, which we will discussin Section ??. indexlatent response formulation—)

1.4 Modeling durationsor survival

The outcome of interest is often time to some event. In medicine, the architypal ex-
ampleis survival time from the onset of a condition or treatment to death. In studies
of the reliability of products or components, for instance light bulbs, lifetime to fail-
ureisoften investigated. Instead of using such application specific terms, economists
usually refer to durationsto events. Generally, we will adhereto this terminology but
occasionally we lapse by referring to survival or failure times.

There are two distinguishing features of duration data: durations are always nonneg-
ative and some durations are typically not known because the event has not occurred
before the end of the study period. All that is known is that the duration exceeds
the period of observation so that it is right-censored. These features imply that one
cannot simply apply standard models for continuous responses.

The duration models to be considered are usually not defined as generalized linear
models. However, it turns out that generalized linear models can often be adapted to
yield likelihoods that are proportional to those implied by duration models.

Durations are either considered in continuous or discrete time, and these cases will
be discussed in the two subsequent sections.

In this section we confine the discussion to so called absorbing events or states where
the unit can only experience the event once. Treatment of multiple events, such as
recurring headaches, is deferred to Chapter ?? since the dependence among events
for the same unit must be accommodated.
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1.4.1 Continuoustime

Let the density function for the duration T'; of unit i be denoted f;(¢) and the cu-
mulative density function F;(¢). The survival function, the probability that duration
exceeds ¢, isthen defined as S;(t) = 1 — F;(t). The hazard, sometimes also called
the incidence rate or instantaneousrisk, is defined as

hi(t) = lim {P(t sTi< tA+ AL > 1) } . (112)

A—0

Somewhat loosely, this isthe ‘risk’ of an event at time ¢ for unit ¢ given that it has
not yet occured, or that unit 7 is still “at risk’. It follows from these definitions that

fi(t)
() = _ 1.1
0 =50 (113
Accelerated failure time models
Accelerated failure time models can be expressed as
InTi = V; + €;. (114)

It follows from this model that the ratio of the durations for two subjects 7 and ¢’
becomes

InT; = v; +e. (1.15)

Proportional hazards models

We assume that the hazards of any two units are proportional and can be modelled as
hit) = h°(t) exp(vi), (1.16)

where h°(t) is the ‘baseling hazard, the hazard when al covariates are zero (the
linear predictor does not include a constant).

If aunitis observed fromtimet, and fails or is censored at time ¢ as indicated by §;
whichis 1 if the unit failed and O otherwise, the unit’s contribution to the likelihood
is
t
l; = hi(t)% exp(— / hi(T)dT) (1.17)

to

An exponential model assumes that the baseline hazard is constant. This property
is relaxed in the piecewise exponential model where the baseline hazard function
is assumed to be piecewise constant, with h?(T) = hg forts_y < T < tg, s =
1,2,...Sandinterva lengthsys = t; — ts_1.

Interestingly, it turns out that the likelihood of the proportional hazards model is
proportional to that of a Poisson model when the data are expanded appropriately.
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Let §; = exp(v;). Clayton (1988) shows that for a unit that was censored or failed in
the kth interval, the unit’s contribution to the likelihood becomes

k
li = (hi6;)" exp(= Y _ hsbiys) (1.18)
s=1

and this can be rewritten as
k
Li = [[ (heti)" exp(—h.biy.) (119
s=1

where d;s = 0 for s < k and d;, = d;. Thisis proportiona to the contribution
to the likelihood of k independent Poisson processes with means h ;0;y,. Therefore,
by representing each unit by a number of observations (or ‘risk sets') equal to the
number of time interval s preceding that unit’s failure (or censoring) time, the model

may be fitted by Poisson regression using d;, as the dependent variable, log(ys) as
an offset and dummiesfor the time intervals as explanatory variables. Explicitly,

d;s ~ Poisson(pu;s),

where
In(,uis) = In(ys) + |n(hs) + v;.
Add a small table to show the expansion.

=

. [|z|dF(z) < oo foral F € F,
2. foreachm € Rthereisan F € F with [ zdF(z) = m, and
3 ifF,GeF,thenAF+(1-X)Ge Ffor0<A<1.

1. [|z|dF(z) < o fordl F € F,
2. foreachm € Rthereisan F € F with [ zdF(z) = m, and
B fF,GeFthen\F+(1-MN)G e Ffor0< A< 1.

1. [|z|dF(z) < o fordl F € F,
2. foreachm € Rthereisan F € F with [ zdF(z) = m, and
B fF,GeFthen\F+(1-M)G e Ffor0< A< 1.

1. [|z|dF(z) < o fordl F € F,
2. foreachm € Rthereisan F € F with [ zdF(z) = m, and
B ifF,Ge F,then\F+(1-))G e Ffor0< <1,

1. [|z|dF(z) < o fordl F € F,
2. foreachm € Rthereisan F € F with [ zdF(z) = m, and
B fF,Ge F,then\F+(1-)XG e Ffor0< <1,
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[ |z|dF(z) < oo foral F € F,
2. foreachm € Rthereisan F € F with [ zdF(z) = m, and
B ifF,Ge F,then\F+(1-)G e Ffor0< A< 1.

=

1. [|z|dF(z) < cfordl F € F,
2. foreachm € Rthereisan F € F with [ zdF(z) = m, and
B fF,Ge F,then\F+(1—-))G e Ffor0< A< 1.

1. [|z|dF(z) < cfordl F € F,
2. foreachm € Rthereisan F € F with [ zdF(z) = m, and
B fF,Ge F,then\F+(1-)G e Ffor0< A< 1.

1. [|z|dF(z) < o fordl F € F,
2. foreachm € Rthereisan F € F with [ zdF(z) = m, and
B ifF,Ge F,then\F+(1-)G e Ffor0< A< 1.

1. [|z|dF(z) < o fordl F € F,
2. foreachm € Rthereisan F € F with [ zdF(z) = m, and
B fF,Ge F,then\F+(1-)G e Ffor0< A< 1.

Therefore, one approach to survival modelling is to divide the follow-up period into
intervals over which the hazard can be assumed to be constant and use Poisson re-
gression. Another approach is to define as many intervals as there are unique failure
times with each interval starting at (just after) a unique failure time and ending at
(just after) the next largest unique failure time. This corresponds to the famous Cox
proportional hazards model since a‘saturated’ or nonparametric model with a sepa-
rate constant for each risk set explain somewhereis used for the baseline hazard. The
famous partial likelihood of Cox’sregression is obtained by eliminating the baseline
hazard using the profile likelihood approach (johansen, 1980) giving

H exp(v;)

> exp(v;).

think about notation

1.4.2 Discretetime

In practice, durations are often observed discretely. This could be due to interva
censoring or dueto the opportunitiesfor the events arising at discrete asin the number
of electionsto victory ?.
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Proportional odds model

The proportional odds model introduced in Section 1.2.2 can be used in modelling
discrete time durations.

For uncensored durations, the probability that 7" isless than t ; becomes

exp(B'x; + k)
Py, =P(T; < t,) = 1.20
(Ti <ts) 1+ exp(B'x; + ks) (1.20)
and the probability that the survival timeliesinthe kthinterval t sy < T; < t5 is

Pr(tsfl < T; < ts) = P(Tz < ts) - P(Tl < tsfl) (121)

with P(T; < tg) = 0 and P(T; < ;) = 1. In the absence of censoring, thisis the
likelihood contribution of all observationswhose survival timesliein the sthinterval.
For observations that are censored after the sth interval, the likelihood contribution
is1— P;. The proportional odds model has been used for discrete survival time data
by Bennett, Ezzet and Whitehead and Hekeker.

The proportional odds model can also be interpreted as a linear model for an under-
lying or latent continuous responsey *,

vy =PB'x+e (1.22)

where e hasalogistic distribution. (If astandard normal distributionis assumed for e,
the ordinal probit model is obtained.) The event occursin the kth interval if k sy <
y* < K, 1.8,

Pr(T < ts) =Pr(y* < ks). (1.23)
The latent response y* can therefore be thought of as a monotonic transformation of
T sothat y* = ks correspondsto T = t. By constraining the threshold parameters
ks to be equally spaced, the appropriateness of the linear regression model in (1.22)
for the (untransformed) continuous time can be assessed. accelerated failure time
model for latent response?

Models based on the discrete time hazard

The discrete time hazard h ; for the sth interval is defined as the probability that the

event occursin the sth interval given that it has not already occurred,
Pr(ts_1 <Ti; <t
hi(s) =Pr(ts—1 <T; < ts|T; > to—1) = ;;(%2_2 t:q) s)- (1.24)

Thelikelihood contribution of someonewhose survival timeliesin the sthinterval is

s—1

hi(s) [T = ha(0)] = H R0 — hy (D)%Y withye =1 (1.25)
=1 =1

where y;; is an indicator variable that is equal to 1 if the event occurred in the ith
interval and equal to O otherwise, i.e. y; = Owhenl < sandy; = 1 whenl = s.
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The likelihood contribution of someone who was censored after the kth interval has
the same form with
k s

[T = h:@1 =[] r@¥[1 = ha(@]* ¥ with y,s = 0. (1.26)

=1 =1
The likelihood contributions of both censored and non-censored observations are
just the likelihood contributions of s independent binary responsesy 5,1 = 1,---, s
with Bernouilli probabilities h;(1). Therefore, by expanding the datato s records per
person and constructing the indicator variable y ;;, discrete time survival models can
be written as generalized linear modelsfor binary responses. One possibility isto use
logistic regression with a separate constant for each interval,

log lﬁli](llz)(l) =V; + K. (1.27)
Note that this model is often referred to as a proportional odds model. However,
whereas proportionality here applies to the conditional odds of the event happening
in an interval given that it has not aready happened, proportionality in the previous
section applied to the odds of the event happening in a given interval or earlier. An-
other term for this model is the continuation ratio logit model or the logistic model
for discrete time survival data. Continuatuion ratio models are useful for sequential
processes in which stages (such as education attainment levels) cannot be skipped
and interest focuses on the odds of (not) continuing beyond a stage given that the
stage has been reached. See Jenkins and Singer and Willett for introductions to the
model. mention non-proportionality can be introduced as interactions.

If a Cox proportional hazards model is assumed for the unobserved continuous sur-
vival times and the observed discrete survival times are treated asinterval censored, it
can be shown that the likelihood contributions are equal to those in (1.25) and (1.26)
if acomplementary log-log link is used for the discrete time hazard , i.e.

log(—log[l — h;(1)]) = vi + k1. (1.28)

15 Summary

We have introduced a wide range of responce processes, including dichotomous,
grouped, censored, ordinal, polytomous, ranking, counts, and continuous and dis-
crete time durations. Most of the processes can more or less directly be expressed as
generalised linear models, and many as latent response models. The models for the
response processes will serve as building blocks for the more general models intro-
duced later. Furthermore, the application chapters are structured according to type of
response process.
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CHAPTER 2

Genera model framework

Alexande James Dumasian
University of Detroit

2.1 Introduction

The general model framework unifies and generalises multilevel, structural equation
and longitudinal models. All the response processes described in Chapter 2 are ac-
commodated. The latent structure is generalised to combine random coefficients and
factorsin the same model and allow latent variables of both kindsto vary at different
levels. We will also relax the assumption of multivariate normality of the latent vari-
ables by using other continuous distributions or discrete distributions. Latent class
models are also accommodated.

Wefirst unify conventional random coefficient and factor models and then introduce
the general model framework which consists of three parts:

¢ the response model,
e the structural model for the latent variables and
e thedistribution of the latent variables.

2.2 Unifying random coefficient and factor models

Random coefficient and structural equation models are more similar than generally
acknowledged. Recall the random coefficient model from eguation (?7?)

Y, :X]‘,B-FZjuj + €; (2.1)
and the measurement part of the structural equation model in equation (??)
y; = v+ Kx;)+An; +¢; (2.2

where some subscripts and superscripts have been omitted. In the random coefficient
model y ; representsthe vector of responsesfor thelevel 1 unitswithinthe jthlevel 2
unit and in the measurement model the responses on the items. Although different in
interpretation, these models have a similar structure. Both have an error term e ;, the

19
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random effects u; correspond to the factorsn ; and the design matrix for the random
effects Z; corresponds to the factor loading matrix A. The main difference is that
Z; is a known matrix of covariates whereas A is an unknown parameter matrix.
While Z; can differ between level 2 units, A is constant. The fixed parts X ;5 and
(v + Kx;) serve the same purpose. In the case of a single covariate, the terms for
the ith row are 3o + z;; 8 and v; + k;x;, respectively. Whereas the former assumes
constant effects and varying covariates, the latter assumes (non-randomly) varying
effects and constant covariates. However, this differenceis superficial since dummy
variables for the 7 can be used to alow coefficients to depend on 7 in the random
coefficient model and different covariates used for different i to represent a varying
covariate in the measurement model.

To facilitate the subsequent development, we will refer to the elementary observa-
tions ¢ as level 1 units whether they are the lowest level unitsin a multilevel setting
or items in a measurement model. Furthermore, we will refer to both factors and
random effects as latent variables, denoted ;. Z; and A will henceforth be called
the structure matrix and denoted A ;. The model! relating responses to factors and/or
random coefficientswill be called a response model and can then be written as

Y; = Xj,B + Aj’l’]j + €; (2.3)

where A ; can contain both variables and parameters.

We can make the form of A ;n; explicit by writing it as

M
Ajnj = Z Nmj Z mj Am

m=1

where n;,, is the mth latent variable, Z,,; is ann; x p,, (design) matrix of fixed
constants and \,,, are p,, parameters associated with the mth latent variable. Here
the product Z ,,,; A, representsthe mth column of A ;. Notethat A, istherefore not
avector in the matrix A ;. The mth latent variable is a factor if Z,,; is amatrix of
zeros and ones. This can be seen by considering a two factor model as an example:

A 0 100 0 0

dor 0 , 010 [An 00|,
A31 0 |:n1],:|:771j 0 0 1 A1 + n2; 0 0 |:>\42 :|
0 A | L7 000 A31J 10 52
0 s 000 0 1

(2.9
Here the \,,, contain the unique non-zero factor loadings for the mth factor and the
roleof Z,,; isto assign the correct factor loadings to the correct items.
The modé in (2.3) can now be written as

y;, =X;B+ anjzmj)\m +€;



RESPONSE MODEL 21

and the ith row becomes

M
Yij = Xij' B+ Z NmjZmij' Am + €ij, (2.5

m=1

where x;; isthe ith row of X; and z,,,;; istheith row of Z ;.

The mth latent variable is a random coefficient if p,,, = 1 o that z,,;; is a scalar
with corresponding parameter A,,, = 1. Equation (2.5) then becomes

M
Yij = Xij' B+ Z NmjZmij + €ij-

m=1

2.3 Response mode

Conditional on the latent and explanatory variables, the response model is a gener-
alised linear model specified viaalinear predictor, alink and a distribution from the
exponentia family. Any of the conditional densities for a generalized linear model
can be specified for the responses, including the extensions introduced in Chapter 1.
Models for scale parameters and thresholds may also be specified. We will express
the linear predictor in two different ways; using the generalized factor model (GF)
formulation and the generalized random coefficient (GRC) formulation.

2.3.1 Linear predictor in GF formulation

The model in (2.3) can be defined by writing the linear predictors for the responses
on unit j as

v; = Xj,@ + Ajnja (2.6)
speficying an identity link and a normal density of the y ; given v;. We can now
generalisethe model to L levelsas

L
vie=XeB+ > A0, 2.7)
=2

where vy, isthe vector of linear predictorsfor all unitsin aparticular level L unit k.

2.3.2 Linear predictor in GRC formulation

Thelinear predictor of themodel in (2.5) is

M
Vij = XijI:B + Z nmjzmij,Am- (28)

m=1
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This can be extended to L levelsas

L M
v=x'8+ Z Z nﬁfl)z%)’)\%), (2.9
=2 m=1

where M; isthe number of latent variablesat level [ and we have omitted observation
subscripts to ssimplify notation.

2.4 Structural model for thelatent variables

The structural model for the latent variables has the form
n=Bn+Tw+(, (2.10)

where B isan M x M matrix, M = ), M;, w isavector of ) covariates, I is an
M x () design matrix and ¢ isavector of M errorsor disturbances. Note that (2.10)
resembles one level structural equation models (Muthén, 1984). The important dif-
ferenceisthat latent variablesvary at different levelsin our framework. Each element
of ¢ varies at the same level as the corresponding element of u.

We restrict the form of the regressions of latent variables on other latent variablesin
two ways.

1. The regressions among latent variables at a particular level are recursive
2. Higher level latent variables cannot be regressed on lower level latent variables

By the first restriction we mean that, assuming that the elements of n (!) are suitably
permuted, the expression for nj(\l}l can be substituted into the expression for 775” to

775\[4),_1a the expression for 77](\2_1 can then be substituted into the regression for 779)

to ng’}l_Q, etc., until all %) are eliminated from the right-hand side of the equation.
Substituting the final expressionsinto equation (2.6) or (2.8) then yields the reduced
form where the only latent variables remaining are the . An implication of the first
restriction isthat we cannot have simultaneous effectswith a particular latent variable
regressed on another and vice versa. The two restrictions together imply that the
matrix B is upper diagona (if the elements of 1! are permuted appropriately),
since the elements of n = (', .-, M"Y are arranged in increasing order of 1.
Restrictions similar to thefirst also apply to I'w. Latent variables cannot be regressed
on observed variables varying at alower level. give a hypothetical example and path
diagramfor a multilevel SEM

2.5 Distribution of the latent variables
The structure of the latent variables is specified by the number of levels L and the

number of latent variables M, at each level. Here aparticular level may coincidewith
alevel of clustering in the hierarchical dataset, for example, when a latent variable
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‘at the school level’ varies between schools. However, there will often not be a direct
correspondence between the levels of the model and the levels of the data hierarchy.
For the models, we define ‘level’, ‘unit at alevel’ and ‘latent variable at alevel’ as
follows:

1. A unit at level 1isan elementary unit of observation,
2. aunit k at level [ isacluster of elementary observations,

3. if I > 1, these elementary observations form ng_l) Subsets of observations, rep-
resenting unitsat level [ — 1,

4. alatent variable at level [ varies between the units at level [ but not within the
units,

5. theunitsat level | are conditionally independent given the latent variables at level
[ + 1 and above.

Here the basic assumption is that latent variables ¢ at the same level may be mu-
tually correlated, whereas latent variables at different levels are independent. In the
following subsections we describe different specifications of the distribution of ¢.

2.5.1 Continuouslatent variables

When the latent variables are continuous, the models are often referred to as latent
trait models. The predominant distributional assumption in this case is multivariate
normality with mean zero and covariance matrix ¥ (V) at level I. Importantly, the
likelihood cannot be expressed in closed form in this case unless the responses are
conditionally normally distributed. However, closed form expressions exist for some
combinations of latent variable and response distributionsin the case of simple ran-
dom intercept models. Examplesinclude conditionally Poisson distributed responses
combined with alog-gammadistribution for the random intercept, and conditionally
binomially distributed responses compared with abeta distribution for the random in-
tercept. If there are no within-cluster covariates?, these combinations correspond to
the negative binomial and beta-binomial model s respectively. (Heckman and Willis?)
?Bayesian nonparametric prior

check out terms conjugate etc. and refer to Bayesian books Hougaard In order to
avoid making strong assumptions about the distribution of the latent variables, flexi-
ble parametric distributions can be used such asfinite mixtures of multivariate normal
distributions (Magder and Zeger, 1996). Another approach isto use a truncated Her-
mite series expansion as suggested by Gallant and Nychka (1987) and Davidian and
Gallant (1992).

2.5.2 Discrete latent variables

We consider three types of models with discrete latent variables:
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e Semiparametetric mixture models
e Latent class models

— Ordered latent class models
— Unordered or conventional latent class models

None of these models has previously been considered in multilevel settings with
more than two levels. While the semiparametric mixture model can easily be extend-
ed to an arbitrary number of levels, we will confine our discussion of the latent class
models to the two level case.

Consider a unidimensional latent variable. If oneis unwilling to make any distribu-
tional assumptions regarding the latent variables, a semiparametric approach can be
acopted. Under certain conditions (Laird, 1978; Lindsay et al., 1991 , ??), the non-
parametric cumulative distribution function of the latent variable is a step function
with the number of steps, their location and size determined to maximize the like-
lihood. The latent variables therefore have a discrete distribution having non-zero
probabilities, at afinite number of points, e,.,» = 1, -- -, R often known as masses
asillustrated in Figure 2.1. For a multivariate latent variables with M/ elements, the
masses are located at points e, in M dimensions. This approach is known is non-
parametric maximum likelihood (NPML) and the models are also known as semi-
parametric mixture models. Review of maximum likelihood theory can be found in
... In some cases, the |ocations are fixed apriori (Mislevy, 1984; Heinen, 1996).

put in a diagram of spikes and cdf Considering the two level case, the same type of
model can be used if the population is believed to consist of latent classes ¢ whose
members have identical values e, of the latent variables. The number of classes C
would in this case be determined either apriori or using model selection criteria. The
latent classes arein this case ordered along each latent dimension. For example, if the
response model is a unidimensional factor model, the classes are ordered according
to the magnitude of the factor. Thisisin contrast to unordered or conventional latent
class models which alow factor loadings to differ between classes so that is not
meaningful to compare the magnitude of the factor between classes.

In a conventional latent class model, the vector of linear predictors for the jth level
2 unitin the cth latent classis given by

v.=X;B8.+APn?, (2.12)

Equivalently, the linear predictor for the sth level one unit belonging to the jth level
2 unitin class ¢ can be written as
M
ve =xi;'B.+ Y 022 (2.12)
m=1
The probability of belonging to a particular class can itself depend on covariates
through a multinomial logit

exp(gc'vj)

Moi = —————— =2 |
73 exp(e4'v5)



SUMMARY 25

0.4

0.3

probability

0.2

0.1

T T T T T
-1.0 -0.5 0.0 0.5 1.0

location

1.0

0.8

cumulative probability
0.4 0.6

0.2

T T T
-1.0 -0.5 0.0 0.5 1.0

location

Figure 2.1 Discrete distribution.

The multinomial logit parameterization is useful even if the class membership does
not depend on covariates since it enforcesthe restriction that the probabilities sum to
one.

2.5.3 Mixed continuous and discrete latent variables

mention finite mixture again

2.6 Summary

We have introduced a general model framework unifying multilevel, structural e
guation and longitudinal models. The framework accommodates factors and random
coefficients at different levels, regression structures among them and a wide range of
response processes, and flexible specifications of latent variable distributions.

For further reading a must is multsem paper for advanced reading and GLLAMM
book for introduction.
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