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1 Introduction

Biology has gone from being a data-poor science to a data-rich one and thus
presents an exciting challenge not only for biologists but also for statisticians,
computer scientists and other quantitative workers. The prodigious and ever-
growing bounty of “-omic” data generated by technologies enabled by whole
genome DNA sequencing projects is quickly out-pacing our ability to digest and
meaningfully synthesize it. These data include transciptional, proteomic, and
phenotypic data, to name but a few.

However, recent work has shown that a biologically and statistically thought-
ful combination of different data types in either a hypothesis-driven or data-
mining framework can lead to a deeper, more comprehensive understanding of
biology. Post- genomic analysis, the interpretation and synthesis of thousands
of data points from a chemical, clinical, evolutionary, or other perspective thus
promises to be an area of great methodological and scientific development in
this century.

For many genes, something is known about their molecular and biological
function, pathway membership, physical chromosomal location, level of poly-
morphism, RNAi phenotype, disease phenotype, and rate of molecular evolu-
tion. For non-coding regions, data are often available concerning the presence
of known or putative transcription factor binding sites, levels of DNA methy-
lation or acetylation, and GC content. While freely available through public
databases, these different kinds of biological data are often unexamined with
respect to each other. One reason for this situation is a lack of conceptual and
methodological tools for their analysis. The continual release of new genomic
and proteomic datasets insures that this situation will only be exacerbated in
the coming decades. At the same time, this problem offers an unprecedented
opportunity for innovation and scientific discovery not only for biologist but for
statisticians, computer scientists, and others.

Since there is no one solution to the problem of integrating high-throughput
genomic data, and since the types of data available will undoubtedly change over
time, I will concentrate on familiarizing the reader with specific examples where
integrative post-genomic analysis has been successfully applied, and highlight



key areas of investigation that are especially fertile for future contribution. In
doing so, out of familiarity, I will use examples largely from my own work. My
goal is not a comprehensive review of the literature but an illustration of some
of the applications, challenging problems, and exciting possibilities of combining
different types of genomic data toward biological ends.

2 Case-study I — Intron evolution

To illustrate a relatively straightforward case of hypothesis-driven post-genomic
analysis that uses disparate data-types in its execution we will begin with an
example involving the evolution of gene structure [CDMH™02].

2.1 Background

Introns are intervening sections of DNA within protein-coding regions of genes
that do not encode amino-acids (Figure 1) and are primarily made up of non-
functional “junk DNA.” These sections of DNA are nonetheless transcribed
(copied) by the cell along with the protein-coding sections (known as exons)
into messenger RNA (mRNA) as one long transcript. The introns in an mRNA
transcript are subsequently cut out of the transcript (literally) and the exons
spliced together (literally) to form the usable mRNA message.
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Figure 1: Exon-intron structure of a gene

This mRNA transcript is later translated into an amino-acid chain which
then folds to make a protein. Some of the largest introns are found in the human
genome, where the total length of intron sequences in a gene often reaches tens
of thousands of nucleotides such that transcription of a single gene requires



several minutes and thousands of ATP molecules (the energy currency of the
cell).

2.2 Hypothesis

Because transcription is a slow and metabolically expensive process in eukary-
otes, it was hypothesized that, at least for highly expressed genes, transcription
of long introns, might be energetically costly. If so, in genes that are highly
expressed, it is predicted that natural selection will favor shorter introns. To
test this hypothesis requires at least two sets of data: 1) data on gene structure
detailing the sizes of exons and introns making up all the genes in a genome,
and 2) estimates of the expression level of each gene.

2.3 Methods

At the time of this study, sufficient information on both exon-intron struc-
ture and gene expression data were available only for two species: the nema-
tode Caenorhabditis elegans and human. Gene structure information for each
species was available through genome databases and consisted of coordinates
listing exon and intron boundaries. In terms of expression data, for C. elegans,
Affymetrix microarray expression data collected over development was available
that provided absolute transcript abundance measures for each gene. Unfortu-
nately, such microarray experiments were not available for human, and gene
expression was instead estimated by expressed sequence tag abundance.

Expressed sequence tags (ESTs) are short stretches of DNA, randomly se-
quenced after reverse transcribing a pool of mRNA that is typically extracted
from a tissue or organ. Since some mRNA transcripts are more abundant than
others, these will be sequenced more often, and in turn will end up making
up the bulk of sequences in an EST database. By aligning the known DNA
sequence of a given gene with EST sequences in an EST database and count-
ing the number of significant matches, one can estimate the expression level of
that gene [BD99]. This was the approach taken in this study to estimate gene
expression level in human, using BLAST [AMS™97] for sequence alignment and
all available human EST sequences in GenBank [BKML™05].

2.4 Result

By combining information on intron size and the two types of expression data
discussed above, it was found that introns in highly expressed genes were indeed
substantially shorter than those of genes expressed at low levels in both in human
and C. elegans (Figure 2).

2.5 Discussion

In this case study, the authors had a very specific hypothesis in mind and
attempted to test its predictions using available data. No sophisticated modeling
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Figure 2: Mean expression level versus intron size in (a) H. sapiens and (b) C.
elegans



was used nor were high-level statistics necessary to obtain the biological results.
This case study shows that the evaluation of important biological hypotheses is
possible with a minimal amount of disparate genomic data (in this case, three
types) if the data are combined in a biologically and statistically thoughtful
manner. Many important biological questions remain unanswered even in the
wake of an abundance of genomic data. I hope this inspires workers outside
and on the periphery of biology to apply novel tools and fresh perspectives
to genomic investigation. The opportunity for methodological and scientific
contribution are great.

3 Case Study II — Functional genomics and
protein evolution

To illustrate a case of post-genomic analysis that is more data-mining in spirit
and that utilizes a number of different data types, we now turn to a study on
protein conservation and function [CDKHKO04]. This study is largely aimed at
answering three basic questions: “What are the slowest evolving (most con-
served) proteins in animal genomes and what do they do?” and “What are the
fastest evolving (least conserved) proteins in animal genomes and what do they
do?” And finally, “Are fast and slow evolving genes the same types of genes in
different animals?”

3.1 Background

An important question in biology is how selective forces act on the genome in
the evolution of different species. For example, does natural selection act simi-
larly on proteins across lineages as distinct as phyla? Since most multicellular
organisms contain a similar complement of genes and gene families owing, in
part, to a common cellular biology, it might be expected that natural selection
acts homogeneously across functionally similar genes in widely disparate taxa.
However, this is not certain and there are many reasons why inhomogeneous
levels of conservation across the proteome might be expected in different ani-
mals for example strong lineage-specific adaptation. To address this question we
need first to determine the rate of evolution of all genes in two different animals
and second, integrate this information with data on gene function.

3.2 Methods

Rates of evolution for two species pairs in two different animal phyla, Chor-
data (mouse/human) and Nematoda (C. elegans/C. briggsae) (Figure 3) were
estimated by the maximum likelihood method of Yang and colleagues [GY94]
[NY98]. This method calculates the estimated rate of nonsynonymous (amino-
acid changing) substitutions between proteins dy and the synonymous (non
amino-acid changing) rate of substitution dg between proteins.
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Figure 3: Evolutionary relationships and divergence times of species studied in
case study II. MY = million years.

These data were subsequently examined with respect to gene function us-
ing two complementary approaches. In the first approach, a list of the top
10% fastest and slowest evolving proteins in each species pair (in terms of
dn were compared with known gene functions from the Gene Ontology (GO)
database [ABBT00] (http://www.geneontology.org) and tested for statistical en-
richment. In the second, tissue-specific expression of all genes in the mammalian
dataset was estimated based on hits to EST sequence libraries and then rates
of evolution for genes expressed in each tissue type were calculated.

The statistical enrichment of various functional classes among slow and fast
evolving genes was evaluated using GeneMerge [CDHO03] (http://www.oeb.harvard.edu/hartl/lab/publications/
Annotated gene functions from the Gene Ontology Consortium [ABB*00] for
human and C. elegans were used as input for GeneMerge. GeneMerge related
methods will be discussed in greater depth later in the chapter.

EST data were obtained from cDNA libraries available in GenBank (http://www.ncbi.nlm.nih.gov).
More than 450,000 ESTs from 12 normal adult mouse tissues were collected and
alignments evaluated against each mouse gene using BLASTN [AMS*97]. Genes
with significant hits to ESTs were then normalized and clustered into tissue-
specific groups by means of a Self-Organizing Tree Algorithm (SOTA) [HVDO1].
Clusters represent genes that have similar expression patterns across tissues
(Figure 4). Mean divergence estimates were then calculated for each cluster
with confidence intervals estimated by means of nonparametric bootstrap re-
sampling with 1,000 replicates.



3.3 Results

The 10% fastest evolving genes in mammals, according to the GO annotations,
were largely involved in reproduction, immunity, and signal transduction (Ta-
ble 2), whereas transcription factors were over-represented among fast evolving
nematode proteins (Table 3).

GO Description Fraction | P-value GO ID
Immune response 100/577 | 3.77E-040 | GO:0006955
Response to pest/pathogen/parasite | 61/577 | 2.76E-023 | GO:0009613
Antimicrobial humoral response 24/577 | 4.84E-013 | GO:0019730

Response to wounding 27/577 | 2.68E-006 | GO:0009611

Innate immune response 20/577 | 0.000357 | GO:0045087
Inflammatory response 19/577 | 0.001230 | GO:0006954

Lymphocyte activation 7/577 0.008820 | GO:0046649
Pregnancy 8/577 0.009790 | GO:0007565

Table 2. Functional overrepresentation of fast evolving mammal genes.

GO Description Fraction | P-value GO ID
DNA-dependent regul. of transcription | 45/753 | 4.27E-5 | GO:0006355
Regulation of transcription 45/753 | 5.72E-5 | GO:0045449
Nucleic acid metabolism 53/753 | 0.03675 | GO:0006139

Table 3. Functional overrepresentation of fast evolving worm genes.

Corroborating these results, the EST data (Figure 4) showed that genes
co-expressed in the thymus and spleen (immune organs) in mouse evolved the
fastest among all tissues dy = 0.142. Additionally, an accelerated mean rate of
evolution was seen in genes co-expressed in the ovary and uterus dy = 0.122,
organs with a reproductive role.

In contrast, the slowest-evolving genes in both nematodes and mammals were
involved in the same basic cellular processes including protein biosynthesis, cell
growth and GTP-mediated signal transduction (Table 4,5).

GO Description Fraction | P-value GO ID
Protein metabolism 140/699 | 5.76E-10 | GO:0019538
Intracellular protein transport 44/699 | 5.89E-9 | GO:0006886

Small GTPase mediated sign. transd. 30/699 | 1.85E-7 | GO:0007264

Ubiquitin-dependent protein catabolism | 25/699 | 4.81E-6 | GO:0006511

Biosynthesis 69/699 | 0.000284 | GO:0009058
Nucleocytoplasmic transport 13/699 | 0.000461 | GO:0006913
Metabolism 265/699 | 0.001011 | GO:0008152

mRNA splicing 10/699 | 0.039416 | GO:0006371

Table 4. Functional overrepresentation of slow evolving mammal genes.



GO Description Fraction | P-value GO ID
Physiological processes 268/753 | 4.04E-12 | GO:0007582
Protein biosynthesis 48/753 | 1.82E-11 | GO:0006412
Cellular process 132/753 | 4.89E-11 | GO:0009987
Biosynthesis 63/753 | 5.25E-11 | G0O:0009058
Small GTPase mediated sign. transd. | 23/753 | 7.89E-11 | GO:0007264
Metabolism 189/753 | 2.17E-5 | GO:0008152
Protein metabolism 92/753 | 3.01E-5 | GO:0019538
mRNA splicing 5/753 0.016747 | GO:0006371

Table 5. Functional overrepresentation of slow evolving worm genes.
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Figure 4: Tissue-specific gene expression and protein divergence. Histograms
show the mean correlation coefficient for gene expressed in a cluster. Repro-
duced with permission from Cold Spring Harbor Laboratory Press [CDKHKO04].
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Thus it appears that while fast-evolving genes tend to be lineage-specific,
highly-conserved genes are the same in different types of animals and are mainly
involved in core cellular functions.

3.4 Discussion

Leaving aside the biological implications of the study we will concentrate on
the methods used to integrate the comparative and functional genomic data.
Firstly, note that a two-pronged and complementary approach was taken to
establish gene function. Database annotations are currently incomplete with
upwards of 50% of genes having unknown function, even in model organisms.
Thus, it was important in this study to complement the database annotation
data with a method using all genes, even those with unknown functions. The
EST-based tissue-specific expression analysis satisfied this goal. In general when
combing genomic data— which are often noisy or incomplete— similar strategies
of data complementation are often useful since certain data types can bolster
deficiencies in others.

4 Toward general methods for data-combination
and exploration

Having reviewed two case-studies involving the combination of disparate data
types, we now turn to a more general discussion of methods to combine and
analyze genomic data. Data associated with genes are many and varied and
will undoubtedly grow as genomic and proteomic investigations accelerate. To
deal with this explosion of data requires 1) a clear analytical framework and 2)
the flexibility to examine new data as soon as they become available. To date,
there are very few approaches that meet both these criteria.

However, one approach that has been quite fruitful is the so-called over-
representation framework where investigators examine the overlap of particular
attributes in a sample of genes drawn from a larger set of genes, often a genome.
By far, the most common application of this approach is the examination of a
list of genes that are found to be highly expressed in, say, breast cancer tissue
versus normal breast tissue, for statistical over-representation of gene functions
within the list. There are several programs that implement this general al-
gorithm [MBR'04] (Table 6) using functions provided by the Gene Ontology
Consortium; the most commonly implemented statistic to assess overrepresen-
tation is based on the hypergeometric distribution [MBRT04].

pn) ((1-p)n
PI‘(T|TL,p, k) = M (1)
(x

The hypergeometric distribution describes the discrete probability of select-
ing r items of one kind in a sample of size k from a population of size n, where
p is equal to the proportion of r type items in the population, and sampling is



without replacement. The hypergeometric thus gives quantification of the level
of ones surprise at finding overrepresentation for a particular item in a given
sample of size k drawn from the larger population, size n. k is typically a set
of genes that are highly or lowly expressed and n is the population set, the set
from which k is drawn, usually all genes on a particular microarray. P-values
can be calculated by summing over the tail of the distribution for all less-likely
cases.

k
Z Pr(i[n, p, k) (2)

Since several to hundreds of gene attributes are usually tested for over-
representation in a given analysis, correction for multiple hypothesis testing is
important. For example, if we were to test whether a set of genes involved
in brain cancer were found disproportionately on a particular chromosome by
testing for overrepresentation on each of the 22 non-sex human chromosomes,
we would have carried out 22 separate hypothesis tests. Thus, some kind of
P-value correction must be made. The traditional Bonferroni correction is the
most popular [MBR104], but, less severe corrections, such as those based on
the False Discovery Rate (FDR) [BH95] [Sto02], are becoming more common.

Program Stat. Mult. Test. Corr.
CLENCH Hypergeometric* NA
FatiGO Fisher exact test FDR
FuncAssociate Fisher exact test P-value adjus.
FuncSpec Hypergeometric Bonferroni
GeneMerge Hypergeometric Bonferroni
GFINDer Hypergeometric* Bonferroni
GoMiner Fisher exact test NA
Gostat Fisher exact test | Holm/FDR/Yekutieli
GO Term-Finder (CPAN) | Hypergeometric Bonferroni/FDR
GOTM Hypergeometric NA
GOToolBox Hypergeometric* Bonferroni

Table 6. Overrepresentation tools that use Gene Ontology annotations;
from [MBR™04]; see references therein for associated publications). * indicates
software is capable of other statistical tests as well.

The first general-purpose implementation of the overrepresentation approach
to genomic data, GeneMerge [CDHO3] was designed with the express purpose
of combining many different types of data related to genes, and thus will be our
focus here. In GeneMerge the study set k may be genes found to be significantly
up or down-regulated in a microarray experiment or a list of genes deemed
interesting for any another reason. Genes in the sample k are associated with
particular identifiers, for example functions, processes, or states. The number of
genes with a particular identifier is . p is the fraction of genes in the population
n associated with the particular identifier under investigation.
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GeneMerge returns both descriptive information regarding the genes un-
der investigation and Bonferroni corrected and uncorrected rank scores regard-
ing overrepresentation of any number of different descriptors in a given set of
genes. Functional or categorical descriptive data is associated with genes in
gene-association files. These text files link each gene in a genome with a par-
ticular datum of information. For example, the name of a gene and its chromo-
somal location, its sensitivity to a particular small-molecule, or its identity as
over-expressed in a particular type of cancer.

The use of overrepresentation techniques has been quite useful when applied
to microarray data using GO gene functions (for example [RCDMHO03] [PMM*02]
and many, many more) and genetic pathway membership (for example [CTHOO]
and many, many more). Interestingly however, this method has been less often
used for data exploration and hypothesis testing of more diverse gene-association
data, for example, mutation phenotypes, microarray expression outcomes, and
genetic interactions. A partial list of gene-association data potentially useful
for different genomic analyses is given in Table 7. Unfortunately, most software
implementations do not allow users to generate and utilize a wide range of gene-
association data. One advantage of GeneMerge over other similar programs is
that its gene-association files are simply tab-delimited text files that can be
prepared using any spreadsheet program.

Gene-association Data

knock-out phenotype

disease phenotype

polymorphic / non-polymorphic locus
local recombination rate

expression phenotype under influence of chemical X
publication mention

transcription factor binding sites
protein-protein network connectivity (degree)
viability /inviability if deleted
acetylated under condition X

GC content

sex-specific expression

tissue-specific expression

has ortholog in clade X

rate of molecular evolution

genetic interactions with other genes
over /under-expressed in experiment X
alternatively spliced

RNAI phenotype

expressed in anatomical region X

Table 7. A partial list of gene-association data.

To illustrate how the overrepresentation approach can be applied to data
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beyond the traditional microarray expression/GO function paradigm, two ex-
amples are given below. These are followed by a discussion of the limitations
and possible extensions of the method as well as potential new approaches for
the combination and examination of disparate genomic data.

4.1 Overrepresentation methods — beyond microarray data

To illustrate the flexibility of overrepresentation techniques as applied to ge-
nomic data, I will present two unpublished examples, one involving a population
genomics question and another involving literature mining.

4.1.1 Population genomics

Recent analysis of genomic data suggests that protein evolution is related to
protein effects on organism fitness; specifically, it has been shown that proteins
that cause lowered fitness when deleted in yeast, so called “non-dispensable”
genes, tend to evolve more slowly [HF01]. While amino acid substitution rates
tend to be higher in dispensable genes over long evolutionary distances [HF01],
it is not known whether in natural populations these genes also tend to be more
polymorphic, that is, show more inter-individual variation. Given that selec-
tion against deleterious mutations is also expected to operate at the population
level, coupled with the observation that variation among natural populations is
ultimately transformed into variation among species, we may predict that dis-
pensable genes will be more polymorphic within populations. In other words,
non-essential genes will show more variation than essential genes in a population.

Polymorphic genes were identified using genomic hybridizations to Affymetrix
arrays containing 126,645 unique 25mer yeast probes among 14 strains of labo-
ratory and wild yeast [WCDO™T03]. These arrays are sensitive to the detection
of single nucleotide polymorphisms. Unfortunately, distinction between synony-
mous and nonsynonymous substitutions is not possible with these arrays. Genes
with at least one detected polymorphism among the 14 strains were considered
polymorphic. Genes with no polymorphism were considered non-polymorphic.
Among the 2991 genes probed on the chip, 1874 (63%) were polymorphic by this
criterion. To create a deletion viability gene association file, lists of genes that
result in inviablity or are viable when deleted were obtained from the Saccha-
romyces Genome Database (http://genome-www.stanford.edu/Saccharomyces))
based on the data of [WSAT99] and [GCNT02]. 4713 genes were listed as hav-
ing a deletion viable phenotype and 1115 genes an inviable deletion phenotype.
413 genes had no data available concerning deletion phenotype. The hypothesis
that population level polymorphism is more likely to occur in dispensable genes
appears to be supported by the data.

Among S. cerevisiae genes categorized as polymorphic, more are viable upon
deletion than is expected by chance. Of the 1874 genes categorized as polymor-
phic, 1454 (77%) were deletion viable, representing an enrichment in this class
of genes (P < 0.006) (Table 8).
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Description Fraction | P-value | corr. P-value 1D
deletion inviable | 336/1874 | 0.3880 0.7760 del_inv
deletion viable | 1454/1874 | 0.0025 0.0051 del_via

Table 8. Polymorphism and deletion viability in yeast.

Thus selection against deleterious mutations in potentially more important
genes appears to result in visibly lower levels of polymorphism at the population
level. While this result is preliminary, it provides one example of how overrep-
resentation approaches can be used to explore genomic hypotheses efficiently in
data beyond the microarray/GO function paradigm.

4.1.2 Literature mining

Using word frequency to extract meaning from a corpus of literature is a main-
stay of text-mining techniques. In terms of genomic analysis, for example,
Jenssen and colleagues [JLKHO1] used the frequency of co-occurrence of gene
names in scientific abstracts to generate a gene-to-gene co-citation network that
can be used in the analysis of microarray data. Conversely, others have used
literature-mining techniques to asses whether clusters of particular genes share
a common biological function [RSA02]. Since literature also constitutes a type
of gene-association data, albeit of a more complex kind, it is possible to use
overrepresentation-based approaches to mine literature as well.

One example of this strategy uses abstracts from scientific publications and
extracted keywords to look for overrepresentation of keywords among publica-
tions associated with gene lists (Hong, Liu, Wong, Castillo-Davis, unpublished).
In this work, approximately 10 million literature abstracts associated with all
genes under analysis were extracted from PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi)
and filtered for keywords by excluding all non-technical words using a generic
dictionary word list. Next, the overrepresentation of keywords in papers associ-
ated with the sample set of genes versus the population set was assessed using
the hypergeometric distribution. This simple approach was effective when used
to examine a set of genes with known enrichment in developmental functions in
human (Table 9). This literature-based method generated much more detailed
information on gene function and biological sub-processes, than, for instance,
GO annotations (data not shown). These included specific gene names (BMP,
NOTCH, MYC, NOGGIN), functional regions (enhancer, homeobox), and po-
tentially interesting disease relationships (Parkinsonism).
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Keyword P-value

hif 6.14E-63
myc 8.86E-36
parkin 3.59E-33
gata 1.11E-20
bmp 2.71E-19
morphogenetic | 2.46E-17
notch 2.46E-17
eph 3.18E-17
ephrin 8.99E-16

transcription 1.82E-15
malformation 3.90E-15
parkinsonism 8.12E-14

twist 3.96E-12
homeodomain | 1.22E-10
hox 1.31E-10
differentiation | 1.47E-09
noggin 1.64E-09
developmental | 3.90E-09
homeobox 9.25E-09
enhancer 1.44E-08

morphogenesis | 5.86E-08

Table 9. Literature-based over-representation results for developmental genes.

Different implementations of literature-based overrepresentation methods
along these lines and others [MKS04] are likely to be increasingly useful for
extracting biological meaning from genomic data.

5 Limitations and possible solutions

A major drawback of most over-representation methods is the discretization of
data into binary categories. In case study II for example, a decision had to be
made about what constituted slow and fast evolving genes. The authors chose
to test for functional overrepresentation among the 10% slowest and then the
10% fastest evolving genes. While the results of the study were not particularly
sensitive to the 10% cut-off (data not shown) such a cut-off may not be desired
in other contexts. For example, for other purposes it might be interesting to
comprehensively examine the relationship between evolutionary rate and gene
function. One could choose a priori a set of biological functions and some level
of granularity in the GO hierarchy and then calculate rates of evolution of genes
in each category. Going a step further one could calculate rates of evolution for
genes in every functional category at all levels in the GO hierarchy. While
informative, note that interrogation of the data in this manner has moved us
from a hypothesis-testing mode to a data-mining mode.
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The visualization of the results of such a comprehensive analysis also present
a difficult problem. How can one visualize the discrete and structured functional
relationships inherent in the GO hierarchy and the continuous evolutionary rate
information or other such variables, perhaps several, all at the same time? A
bubble graph illustrated in Figure 5 is one possible solution. In this figure,
each node represents a particular GO function and edges connect functions
in accordance with relationships of the GO function tree (a so-called directed
acyclic graph, or DAG). The size of each node indicates the mean rate of amino-
acid substitution (dy) for genes within the node— that is, the rate of evolution
of genes with a particular function. In this hypothetical example, genes with
known transcription factor (TF) activity exhibit a faster rate of evolution than
other types genes.
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Figure 5: Bubble graph representation of the relationship between a continuous
variate (rate of evolution, dy) and a graphical structure (the GO functional
hierarchy).
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Note that the number of genes within each node may be different and genes
may belong to multiple nodes. Thus, while we have improved our understanding
of relationship between evolutionary rate and gene function in the data, we have
done so at the expense of statistical power; all possible relationships between
evolutionary rate and function have been explored. Such trade-offs are likely to
be common and must be weighed by the aims of the study, specifically, whether
the ultimate goal is hypothesis-testing or data-mining.

While some gene attributes are discrete, such as on which chromosome a
gene resides, others are continuous, such as the expression level of a gene in
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a particular tissue or its relative level of evolutionary conservation. In these
cases the usefulness of categorical statistical tests such as those based on the
hypergeometric distribution are called into question. Suppose, for example, that
instead of rigidly assigning gene function in a boolean manner, one could assign
probabilities concerning gene function to genes. How might one design a test for
overrepresentation in this case? While regression-based techniques have been
applied on a case-by-case basis to particular problems (for instance [LBLO02]
there is as of yet no general algorithm available for the interrogation and com-
parison of disparate data types with continuous values or with a mixture of
continuous and categorical values.

The development of such a framework will be challenging, in particular be-
cause the categorical structure of some types of biological data can be complex,
such as the GO DAG. Interestingly however, directed and undirected graphs
are often extremely natural representations of gene functions and gene inter-
actions, for example, protein-protein interaction networks [UGCT00] [ICO™01]
[LABT04] [GBB103] and metabolic and developmental pathways [KGKN02].
The addition of weights to graph edges or variance measurements for individual
nodes will only increase the complexity of analyzing such data. The development
of statistical tests and data-exploration methods, perhaps akin to overrepresen-
tation techniques, will be critical in exploiting these types of data.

Equally important in the analysis of disparate genomic data is data visual-
ization. How best to visualize several dimensions of the data simultaneously,
some of which may have complex structures? Some overrepresentation-based
tools have begun to address this issue by creating dynamic output that maps,
for instance, overrepresentation P-values onto the GO hierarchy, for example,
the“GO Term Finder” of the Saccharomyces Genome Database [BWGT04] (Fig-
ure 6, or the up- or down-regulation of genes onto a metabolic pathway using the
KEGG database [KGKNO02], for example, Pathway Processor [GTHC02]. Un-
fortunately, these visualization solutions are species- or gene-association-specific
and have not yet been generalized.

A particularly important challenge will be the analysis of high-throughput
phenotypic data in combination with genomic data. Phenotypic data, including
anatomical sections [OMUBo0R90], three-dimensional CT scans, and MR images
have even more complex structures than graphs and network diagrams. In-
corporating genomic and proteomic data with the mixture of continuous and
discontinuous spatial information inherent in morphological data will be chal-
lenging. Flexible visualization and statistical techniques that allow for the input
and processing of standardized structural information (in the form of graphs,
network diagrams, or 3-dimensional volumes) along with the requisite gene lists
and relevant gene-association data is desperately needed. Contribution from
many different disciplines, including computer imaging, scientific visualization,
and biostatistics, especially areas related to morphometrics, will be required to
achieve a comprehensive understanding of how genotype and organism pheno-
type are related.

16



<=le-10 1e-10 to 1e-5 [JHESE Eo desel| 1e-6 to 1e-d [HESANEENIEZEN 30,01

molecular_function

I ——

IR

\

\

RMA splicing
factor —_— _— —
activitu, shoRNA binding 85 rRNA binding rEMA kinding

tranzesterification
nechanism

Figure 6: Partial graphical output of the SGD GoTermFinder [BWG™04].

6 Summary

Despite an abundance of genomic, proteomic, and increasingly, gross phenotypic
data, many straightforward biological questions remain difficult to answer due
to the complex and varied nature of these data. As we have seen, overrepresenta-
tion techniques and related methods, when applied creatively and critically, hold
some promise in helping shed light on this tangled surfeit of biological informa-
tion. In particular, the use of more and varied gene-association data with these
methods promises to be quite powerful for data-mining and cursory hypothe-
sis testing applications. At the same time, the limitations of these approaches
are many; highly structured data in the form of gene networks, morphologi-
cal data, protein-protein interactions, and simply the growing dimensionality of
biological measurements in genome-wide studies strain the conceptual and sta-
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tistical limits of the overrepresentation framework. Many challenges remain in
assimilating complex biological data structures into current statistical and data-
mining approaches. Data visualization will be an additional challenge. Progress
will likely require heavy cross-disciplinary collaboration amongst statisticians,
biologists, and computer scientists, among others. The expansion and appli-
cation of statistical and graphical approaches to the analysis of genomic data
presents numerous, rich opportunities for intellectual contribution. With luck,
these advances will help expedite the larger goal of deciphering nature’s pro-
found complexity.
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