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1.1 Introduction

When there are many degrees of freedom it is sometimes less critical which signif-
icance test is carried out, as most analysis will give approximately the same result.
However, when there are few degrees of freedom the choice of which significance test
is being used can have a strong effect on the results of an analysis. Unfortunately, this
is often the case for microarray experiments, as research laboratories often perform
such experiments with only a few (say less than five) repeats,Reasons for the small
number of repeats include availability of specimens and economics. Kooperberg et
al. (2005) compared several approaches to significance testing for experiments with
a small number of oligonucleotide (one-color) arrays. In this paper we summarize
the results from that analysis, include a couple of additional methods, and describe
a similar comparison for methods of carrying out significance testing for two-color
(red-green) arrays.

The limited number of repeats, together with the large variability that even the best
microarray platforms have, make small sample comparisons unattractive. A standard
T-test for an experiment with six two-color arrays has, depending on whether other
variables are controlled for, at most five degrees of freedom. The resulting two-sided
test, withα = 0.05 and a Bonferoni correction for 10000 genes requires a T-statistic
of 20.6 or more for significance. The lack of degrees of freedom is really what drives
the extremely large significance threshold for T-statistics: the sameα and Bonferoni
correction for 20 arrays requires a T-statistic of 6.3 or more while a normal distribu-
tion only requires a Z-statistic of 4.6 or more, on the other hand reducing the number
of genes of interest on the original array from 10000 to 500 only reduces the required
T-statistic to 11.3.

Nonparametric (Wilcoxon) or permutation tests are no easy way out. For example,
for an experiment withk two-color (spotted) arrays, a P-value for a permutation
test can be no smaller than2−k; if we want a two-sided test withα = 0.05 and
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2 SMALL MICROARRAY EXPERIMENTS

a Bonferoni correction for 10000 genes, we needk to be at least 19. Reducing the
number of genes to 500 reduces the minimumk to 15. Similarly, for a one-color
(oligonucleotide) array the P-value for a permutation tests withk cases andk controls
a P-value cannot be smaller than

(
2k
k

)
; so for a two-sided test withα = 0.05 and a

Bonferoni correction for 10000 genes, we need at least2k = 22 arrays. Reducing
the number of genes to 500 reduces the minimum number of arrays to 18.

As permutation tests are not going to help us, we need to obtain a better estimate
for the residual variance to overcome the lack of repeats. There are two obvious
choices: we can combine different genes in the same experiment or we can combine
different experiments, if similar experiments were carried out. When genes are com-
bined we can either choose to combine those genes for which the general expression
level is similar as do, for example, Huang & Pan (2002) and Jain et al. (2003), or
we can choose to combine all genes. An alternative approach to obtain more power
with small experiments is to add a stabilizing constant to the estimate of the vari-
ance for each gene or to use some (Bayesian) model for the expression levels. SAM
(Tusher, Tibshirani & Chu, 2001) is a methodology that adds aconstant to the es-
timate the variance. The approaches by Baldi & Long (2001), Lönnstedt & Speed
(2002), Smyth (2004), and Cui et al. (2005) are four related (empirical) Bayesian
approaches. Wright & Simon (2002) discuss a closely relatedfrequentist approach.

In this paper we do not control for multiple comparisons. In practice, when one car-
ries out tests for many thousands of genes simultaneously, amultiple comparisons
correction or a correction of the false discovery (FDR) rateis essential. See Dudoit,
Shaffer & Boldrick (2003) for an extensive overview of multiple comparisons cor-
rections. While several of these proposals use permutationarguments to correct for
multiple comparisons, permutation typically either requires a substantial number of
replicates (that are not available in small experiments), or they require implicit as-
sumptions about similarities in the variational properties of different genes. In either
scenario, we believe that only well calibrated marginal P-values are going to yield
good multiple comparison corrected P-values.

P-values have the advantage that there are well establishedmeasures such as Type I
error and power that can be used to judge the performance of a test. The FDR (Ben-
jamini & Hochberg, 1995) does not have such a simple measure,to check whether
estimates of the FDR are accurate on a single experiment In addition, just like for
multiple comparison procedures, there are procedures to approximate the FDR from
P-values.

1.2 Methods

Most of the methods that we compare in this paper can be used either for one-color
(oligonucleotide) arrays or for two-color (spotted) arrays. We assume that the arrays
have been properly normalized; see Section 1.7 for how we normalized our arrays.
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1.2.1 Notation

Two-color spotted arrays For each gene and each two-color array we have an ex-
pression ratioxm

ijl summarizing the (log-)expression ratio between experimental con-
ditions k = 1 and k = 2 (that may be different between experiments) for gene
i = 1, . . . , n in experimentj = 1, . . . J on replicate arrayl = 1, . . . , Lj. For each
gene on each array we also have an estimate of the overall expressionxa

ijl, typically
this will be the (geometric) average of the normalized expression for both channels
of the array. Unless there is confusion we will writexijl instead ofxm

ijl for the log-
expression ratios.

Let µij be the “true” (log-)expression ratio of genei in experimentj for condition
1 relative to condition 2. Set̂µij =

∑
l xijl/Lj, s2

ij =
∑

l(xijl − µ̂ij)
2, andxa

ij =∑
l x

a
ijl/Lj.

One-color oligonucleotide arraysSimilarly, for each gene and each one-color array
we have a (log-)expressionxijkl , for experimental conditionsk = 1 andk = 2, for
genei = 1, . . . , n in experimentj = 1, . . . J on replicate arrayl = 1, . . . , Ljk.

Let µijk be the “true” mean (log-)expression level of genei in experimentj under
conditionk. Setµ̂ijk =

∑
l xijkl/Ljk ands2

ijk =
∑

l(xijkl − µ̂ijk)2.

1.2.2 Significance Tests

All significance tests that we consider in this paper can be written in the form

µ̂ij

σ̃ij/
√

Lj

,

for two-color arrays and
µ̂ij1 − µ̂ij2

σ̃ij

√
1

Lj1
+ 1

Lj2

,

for one-color arrays. Herẽσij is an estimate of the variance ofxijl. The methods that
we discuss differ primarily in how the estimatẽσij is obtained. The traditional test
statistics estimatẽσij uses only the data on genei and experimentj. The approaches
that inflate the variance and those that combine genes also use data on genesi∗,
i∗ 6= i; implicitly to estimate hyper-parameters for the empirical Bayes approach
that inflates the variance, or explicitly to smooth the estimates forσ̃ij . Finally the
approaches that combine experiments use data on experiments j∗, j∗ 6= j. Most of
the methods below have a proper reference distribution, butalternatively significance
levels can be obtained using permutations (see Section 1.2.3); in fact, some of the
authors recommend permutations as the method to obtain P-values.

Below we describe the test-statistics we are including in our comparison. We provide
details for the two-color arrays, modifications for one-color arrays are indicated.
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T-statistic. The traditional T-statistic is

tij =
µ̂ij

σ̂ij/
√

Lj

,

whereσ̂2

ij = s2

ij/(Lj − 1), providedLj > 1. The reference distribution is the
T-distribution withLj − 1 degrees of freedom, and the main assumption is that
for each genei and experimentj thexijkl are independent having a normal distri-
bution with varianceσij , although the T-test is generally considered to be robust
against departures from normality.
The two-sample T-statistic is the equivalent test for one-color arrays. This statis-
tic assumes that the variance for both experimental conditions is the same. An
alternative is the Welch (1938) two-sample T-statistic that does not make that as-
sumption. In Kooperberg et al. (2005) it was shown that this approach has almost
no power for small sample sizes, and should probably be avoided for small mi-
croarray experiments.

Methods combining genes: smoothing the variance

There have been several proposals in the literature to combine the estimates of the
variance for several genes to obtain better estimates, so that the resulting test has
more degrees of freedom. Typically the assumption that is made is that genes with the
same expression level have approximately the same variance. Under this assumption
estimates for the variance can be obtained by smoothing the variance as a function of
the expression level. For one-color arrays there are methods which smooth the vari-
ances jointly and methods which smooth variances separately for both experimental
conditions.

LPE Jain et al. (2003) describe a method they call “Local Pooled Error test” (LPE).
As described in this paper, LPE only is applicable to one-color arrays. In their ap-
proach, let̂σijk be the the sample variance of thexijkl , for l = 1, . . . , Ljk. LPE
regularizes these estimates for eachj andk separately by smoothing thêσijk ver-
susµ̂ijk . The assumption being made here is that genes with the same expression
level for the same experiment and the same condition have (approximately) the
same variance. As the smoothing spline that is used effectively involves averag-
ing a large number of genes, the authors use a normal reference distribution. In our
study we have used the implementation by the authors, available in the R-package
(Ihaka & Gentleman 1996) LPE, which is available from CRAN/Bioconductor∗

Since the method averages the variance separately for two conditions, it is cur-
rently only available for one-color arrays, where both experimental conditions are
measured separately.

Loess Huang & Pan (2002) make several related proposals. The main difference
between their approach and the approach by Jain et al. (2003)is that they first
computêσij and smooth these estimates againstµ̂ij = µ̂ij1 + µ̂ij2 for one-color
experiments and againstxa

ij for two-color experiments. Their simulation results

∗ CRAN: The Comprehensive R Archive Network; seehttp://www.r-project.org.
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show that, not unexpectedly, for the null-model a normal reference distribution is
appropriate. We reimplemented their approach using aloess smoother.

Methods combining genes: (empirical-)Bayesian model forσ

Rather than smoothing the variance explicitly as a functionof the expression level,
we can include information from other genes for the analysisof a particular gene by
making assumptions about the distribution of the variance for all genes. The infor-
mation about the other genes then allows us to estimate some (hyper-)parameters,
that can be used to stabilize the variance estimate. There are a variety of such meth-
ods with different motivations: ad-hoc (e.g. SAM, Tusher, Tibshirani & Chu 2001),
using an (empirical) Bayes argument (e.g. Baldi & Long 2001,Lönnstedt & Speed
2002, Smyth 2004), a James-Stein type estimator (Cui et al. 2005), or a frequentist
approach (Wright & Simon 2003).

The first three approaches that we discuss combine the samplevarianceσ̂2

ij with
another estimateσ0ij that hasdij degrees of freedom, yielding a variance estimate
of

σ̃2

ij =
dijσ

2

0ij + (Lj − 1)σ̂2

ij

Lj + dij − 1
, (1.1)

that can be used in a T-test withLj + dij − 1 degrees of freedom. The three methods
Cyber-T, Limma, RVM use this approach; they differ primarily in the methods to
obtainσ0ij anddij .

Cyber-T The Cyber-T approach of Baldi & Long (2001) is motivated as a fully
Bayesian procedure. However as implemented in practice (see Section 5 of Baldi
& Long 2001) the test is carried out using a T-test on (for two-color arrays)Lj +
ν0 − 1 degrees of freedom, and an estimate of the variance (compare1.1) of

σ̃2

ij =
ν0σ

2

0ij + (Lj − 1)σ̂2

ij

Lj + ν0 − 1
, (1.2)

whereσ2

0ij is an estimate of the “prior variance” that is obtained as a running
average of the variance estimates of the genes in a “window” of sizew of similar
xa

ij . Thus the Cyber-T approach uses the average of a smoothed variance (like
LPE andLoess, only using another smoother) with the regular variance of the
T-statistic. A non-Bayesian interpretation of Cyber-T is thus that it combines a
smoothed estimated (as inLoess andLPE) with a traditional estimate from the
T-test.
We used the defaultsν0 = 10 and the window widthw = 101 from the R-
software available onhttp://visitor.ics.uci.edu/genex/cybert.
Note that the paper of Baldi and Long mentions another default of ν0 = 10− Lj.

Limma Smyth (2004) generalizes the approach from Lönnstedt & Speed (2002).
The main assumption in Smyth’s model is a prior distributionon the variances
σ2

ij :
1

σ2

ij

∼
1

d0js2

0j

χ2

d0j
.
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(We include the indexj for the parameters of the prior, as they may be different
for different experimentsj = 1, . . . , J .) The model also includes priors on the co-
efficients for each gene in a linear regression model, which in the two sample case
reduces to the difference between the mean expression for the two groups. Using
methods of moments estimators estimatesd0j , s2

0j , and a few other parameters are
obtained. An inflated variance

σ̃2

ij =
d0js

2

0j + (Lj − 1)σ̂2

ij

Lj + d0j − 1
, (1.3)

(compare 1.2) is used for a “moderated T-test” withd0j + Lj − 1 degrees of
freedom. Thus, a main difference between the approach of Smyth (2004) and the
approach of Baldi & Long (2001) is that Limma uses one single estimate for the
prior variance (s2

0j) for all genes and it estimates the prior degrees of freedomd0j

based on the data, while the latter uses a smooth estimate forthe prior variance
σ2

0ij , but it uses a fixed number of prior degrees of freedomν0. The approach
of Smyth (2004) is available from the Bioconductor package Limma. We used
Limma with the default options.

RVM The Random Variance Model (RVM) of Wright & Simon (2003) inflate the
variance similar to Baldi & Long (2001) and Smyth (2004), andobtain a model
similar to (1.1). They assume an inverse Gamma model forσ2, and estimate the
two parameters from this model using the method of maximum likelihood. Im-
plementation of their approach would require estimating oftwo parameters of an
F-distribution. We do not include RVM this method in our comparisons, as we
could not locate publicly available software.

Shrinking Cui & Churchill 2003 and Cui et al. 2005 develop a James-Steinshrink-
age estimatẽσ2

ij . After appropriate transformations this estimator “shrinks” the
T-test estimatêσ2

ij towards the mean variance
∑

i σ2

ij/I, where the exact amount
of shrinkage differs from gene to gene, and depends on the variability for that
gene. Easy to implement formulas are given in Cui et al. (2005). Note that the
authors of this method recommend a permutation approach (see Section 1.2.3) to
obtaining P-values. We still include this approach withoutpermutations using a
normal reference distribution, as well as using permutation P-values.

Methods combining experiments

Instead of combining different geneswithin one experiment, we can also combine
expression levels of the same genebetweenexperiments. This would potentially be
useful if we have several smaller experiments, and it is thusreasonable to assume
that for each gene the variance in each experiment is approximately the same.

Pooled-T We define the pooled T-test statistic, combining experiments, as

cij =
µ̂ij

σ̂i

√
1

Lj

,

whereσ̂2

i =
∑

j s2

ij/L andL =
∑

j(Lj − 1), providedL > 0. The reference dis-
tribution is the T-distribution withL degrees of freedom, and the main assumption
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is that thexm
ijl are independent for eachj andl, having a normal distribution with

meanµij and varianceσi.

For most of the other methods that we discussed it is, in principle also possible
to pool different experiments in obtaining a single variance estimates. As all these
methods already regularize the estimates forσ in some way, pooling typically has
no effect, and the corresponding method behaves similar to the “parent” method, as
was confirmed for theLoess approach in Kooperberg et al. (2005) and forLimma in
unpublished results.

Note that methods whose implementation allows for general design matrices (e.g.
Limma) can yield pooled estimates by setting up an appropriate design matrix and
testing appropriate contrasts.

1.2.3 Permutation P-values

Permutation of the arrays in an experiment can be an alternative to using a para-
metric reference distribution for a test statistic. Assumethat we have a two-color
experiment withL arrays, and that the test statistic for theith gene isTi. To compute
the significance ofTi we also compute the test statistics for all genes for each of the
m = 1, . . . , 2L experiments that are obtained by “flipping” the signs of thexm

il for
some of thel. (We omit the index of experimentj.) Note that one of these permuta-
tions will be the original design. LetT m

i be the test statistic for theith gene for the
mth permutation. We can use

n∑

i∗=1

2
L∑

m=1

I(Ti < T m
i∗ )/n2L

as an estimate of the P-value corresponding toTi. If L is larger than, say, 8 we may
want to sample permutations to save computing time; in this paper that is not an
issue.

These estimates will be unbiased if (i) eachTi has the same distribution under the
null-hypothesis, and (ii) no genes are differentially expressed. The first assumption
is not as severe as it appears. When a parametric distribution is used the stronger
assumption, that the distributions of eachTi under the null-hypothesis are the same
as a particular parametric distribution, is made. The second assumption is much more
severe, and it will lead to conservative P-values when in fact there are a substantial
number of differentially expressed genes (Storey & Tibshirani 2003).

For one-color (oligonucleotide) arrays we randomly rearrange theL1 arrays with the
first experimental condition and theL2 arrays with the second experimental condi-
tion, and proceed in a similar manner.
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Table 1.1 Organization of the two-color (spotted) data for our analysis. Experiments whose
code start with a D are expected to have differences between both groups, while those starting
with an S are repeats, the digit “2” refers to the two-color (spotted) array type. The arrays for
experiments D2.3 and D2.4 and those for D2.5 and D2.6 are different; experiment S2.1 are
arrays from a cell-line not used for the other experiments.

Exp. sample one sample two Lj different

S2.1 KC cell KC cell 4 no
S2.2 SAM SAM 2 no
S2.3 SAM SAM 2 no
S2.4 SAM SAM 4 no
D2.1 SAM D-recomb 304 2 yes
D2.2 SAM D-recomb 220 2 yes
D2.3 SAM D-pure 2 yes
D2.4 SAM D-pure 4 yes
D2.5 SAM E-pure 4 yes
D2.6 SAM E-pure 4 yes
D2.7 SAM F-pure 6 yes

1.3 Data

For our analysis we use two sets of data. One comes from a one-color experiment,
and is part of the data that was also used in Kooperberg et al. (2005), the other comes
from a not yet published study on Drosophila.

The two-color experimental data that we use come from a series of spotted microar-
rays ofDrosophila melanogasterthat were grown in Suzannah Rutherford’s lab at
the Fred Hutchinson Cancer Research Center. The arrays are part of a larger set
of experiments whose results have not yet been reported. Thesubset of arrays that
we compare here include some experiments that are self-to-self hybridizations, and
some experiments where both samples are genetically different, see Table 1.1. Thus,
the experiments S2.1, S2.2, S2.3, and S2.4 are intended to establish that the tests
have the right size Type I error, and the experiments D2.1, D2.2, D2.3, D2.4, D2.5,
D2.6, and D2.7 are intended to establish the power of the tests.

For the SAM samples RNA from a large number of flies that were genetical identical,
other than some being male and some being female, was combined and the RNA
for the arrays was taken out of this large pool. For the D-recomb 304, D-recomb-
220, D-pure, E-pure, and F-pure lines for each array samplesfrom 15-30 flies that
were genetical identical, other than some being male and some being female, was
combined. In addition we included four unrelated Drosophila cell line arrays. We
organized the experiments so that all experiments are “dye swapped”: i.e. half of the
arrays have sample one on the red channel, the other half havesample two on the red
channel. There are 13,440 spots (genes) on each array.
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Table 1.2Organization of the one-color (Affymetrix) data for our analysis. HD: Huntington’s
Disease mouse, WT: wildtype mouse. Experiments whose code start with a D are expected to
have differences between both groups, while those startingwith an S are repeats, the digit “1”
refers to the one-color (Affymetrix) array type.

Exp. Tissue Mouse Group 1 Group 2Lj1 Lj2 different

S1.1 cerebellum DRPLA 26Q HD HD 2 2 no
S1.2 cerebellum DRPLA 26Q WT WT 2 2 no
S1.3 cerebellum YAC HD HD 3 2 no
S1.4 cerebellum YAC WT WT 3 2 no
D1.1 cerebellum DRPLA 65Q HD WT 4 4 yes
D1.2 cerebellum R6/2 12 weeks HD WT 2 2 yes
D1.3 cerebellum N171 HD WT 4 4 yes

One-color experimental data was obtained using AffymetrixMu 11K-A microarrays
generated for a series of experiments on Huntington’s Disease mouse models. The
results of these experiments were reported as a series of related papers (Chan et al.
2002; Luthi-Carter et al. 2002a; Luthi-Carter et al. 2002b). For this analysis we com-
pare cerebellar gene expression in similarly aged mice carrying a wildtype or mutant
form of the Huntington’s gene. Every comparison reported inChan et al. (2002),
Luthi-Carter et al. (2002a), and Luthi-Carter et al. (2002b) showed some differen-
tially expressed genes, although the amount of differentiation differed considerably
between the experiments. For each of the experiments both groups had between 2 and
5 mice. Thus, all our repeats use different samples (sometimes referred to as “biolog-
ical repeats”) and are not repeat arrays using the same samples (sometimes refereed
to as “technical repeats”), that could be expected to vary less. There are 6,595 probe
sets (genes) on each array.

The experiments listed in Table 1.2 are the seven experiments comparing cerebellar
tissue used in Kooperberg et al. (2005); the six experimentsusing striatum tissue used
in that paper are not used here. As for the two-color experiments, some experiments
are intended to establish that the tests have the right size and others are intended to
establish the power of the tests.

1.4 Results

We analyze the experiments listed in Section 1.3 using the analysis methods de-
scribed in Section 1.2.2. For the experiments where both groups are different (D2.x
and D1.x) we prefer methods with the largest percentage of significant genes (the
largest power), provided that the method does have the correct percentage of signif-
icant genes in the experiments where both groups are the same(S2.x and S1.x): at
mostα% significant genes when tested at significance levelα.
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Typically we show results forα = 1% andα = 0.01%. For the two-color arrays there
are approximately 11,000 genes after removal of spots (genes) that were too close to
background (see Section 1.7) . Assuming independence of genes a 95% confidence
interval for the percentage of significance genes based uponthe binomial distribution
is between 0.8 and 1.2% atα = 1% and between 0 and 0.03% atα = 0.01%. For the
one-color arrays there are 6,595 genes, thus these confidence intervals are slightly
larger (0.75 through 1.25% atα = 1% and 0 and 0.045% atα = 0.01%). When we
average four experiments and (incorrect) assume independence for both array types
we expect between about 0.9 and 1.1% significant genes atα = 1% and between 0
and 0.025% atα = 0.01% for both array types.

1.4.1 Bandwidth selection for smoothers

Three methods (Cyber-T, LPE, andLoess) require the choice of a bandwidth or
smoothing parameter. ForLPE andLoess this determines over how many genes the
variance is “averaged”. ForCyber-T the averaged variance is combined with the
variance for the individual genes.

In Table 1.3 we summarize the results for the two-color experiment for theLoess
approach. The parameterspan for the loess() function in R is approximately
linear in the bandwidth for a local linear smoother. From this table we note that the
bandwidth has very little influence on the results. The explanation for this is that
even for the smallest bandwidth the variances of several dozen genes are effectively
averaged. Smaller values ofspan are not useful, as they will increasingly lead to
numerical problems in regions where there is less data.

We note that for all four choices ofspan and for all S2.x experiments atα = 0.01%
and for two of the four of these experiments atα = 1% the percentage of genes that
are called significant is much too large. The same was concluded in Kooperberg et
al. (2005) for the one-color arrays.

In the remainder of our comparisons we use aspan of 0.1, which yielded the lowest
average number of significant results for bothα = 1% andα = 0.01% for the four
S2.x experiments. As the influence of the bandwidth appears minimal, we will use
Cyber-T andLPE with their default values.

1.4.2 Comparison of methods

In Tables 1.4 and 1.5 we show the results for seven of the methods described in
Section 1.2.2 when applied to the two-color and one-color data described in Section
1.3, respectively. Results for theLPE method are not available for the two-color
data. Cui et al. 2005 recommends permutations to obtain P-values for theShrinking
approach, as in Tables 1.6 and 1.7 and Figure 1.3 and 1.4. In Tables 1.4 and 1.5 and
Figure 1.1 and 1.2 we use a normal reference distribution; which distribution is used
has a substantial impact on the results.
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Table 1.3 Performance of theLoess approach for various values of the bandwidth (span)
parameter for the two-color experiments. We report the percentage of genes that are called
differentially expressed at levelsα = 1% andα = 0.01%. Ideally the four S2.x experiments
would haveα differentially expressed genes, while the seven D2.x wouldhave many such
genes.

α = 1% α = 0.01%
span 10 1 0.1 0.01 10 1 0.1 0.01

S2.1 1.1 1.1 0.7 0.7 0.340 0.306 0.198 0.159
S2.2 7.8 7.0 5.8 6.6 2.884 2.507 1.528 1.915
S2.3 2.2 2.1 2.0 2.0 0.984 0.922 0.982 0.942
S2.4 0.7 0.6 0.6 0.6 0.262 0.262 0.230 0.212

S2-ave 3.0 2.7 2.3 2.5 1.118 0.999 0.735 0.807

D2.1 25.8 25.9 26.8 27.1 11.941 11.994 12.698 12.827
D2.2 31.7 31.8 32.3 32.9 16.817 17.000 17.682 18.300
D2.3 53.5 53.6 53.8 53.8 38.170 38.354 38.368 38.457
D2.4 54.3 54.4 54.4 54.7 37.709 37.858 37.774 38.043
D2.5 43.3 43.5 43.5 44.2 28.006 28.190 28.225 28.574
D2.6 73.0 73.2 76.5 76.6 62.230 62.431 66.313 66.501
D2.7 62.1 62.3 64.3 64.3 47.863 48.003 50.124 50.471

D2-ave 49.1 49.2 50.2 50.5 34.677 34.833 35.883 36.168

In Figure 1.1 we give a graphical display of how well these methods adhere to the
significance levels, and in Figure 1.2 we display power. These figures are probability-
probability plots on a logit-scale. That is, for a particular method and a particular
experiment letpi be the two-sided (sometimes called signed) P-values. That is, if pi is
close to 0 there is evidence of under-expression and ifpi is close to 1 there is evidence
of over-expression of group one relative to group two. We nowcombine allpi for a
group of experiments and sort them. Assume that we haveN P-values. We plot the
sorted P-values (horizontal) against(1, . . . , n)/(N + 1). When the experiments that
we consider are self-versus-self comparisons we would likethese plots to follow
the identity line, as that implies that the significance levels are “unbiased”. Curves
that flatten out are particularly worrisome, as they suggestsignificantly differentially
expressed genes that are in fact false positives. Curves that are more vertical than
the identity line suggest statistics that are too conservative: something that is not a
concern when there is in fact no difference, but would likelyhurt us when we use the
same method to analyze data where some genes are differentially expressed. Second,
for groups of experiments where there is a difference between both samples we want
the most horizontal curves, among the methods that did not generate a substantial
number of false positives for the repeat experiments.

From Figure 1.1 we see that theLoess andLPE approach identify substantially more
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Figure 1.1 Performance of the various approaches to significance testing using an explicit
reference distribution for small microarray experiments for the combined two-color and one-
color self-versus-self experiments. For unbiased methodsthe curves should follow the identity
line.
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differentially expressed genes than the nominal levels forthe experiments where in
fact the two samples being compared are repeats. TheCyber-T approach shows a
mild number of increases, and none of the other approaches shows serious bias. For
both groups of experiments a normal reference distributionfor the Shrinking ap-
proach appears too conservative.

Table 1.4 elaborates on this. At a significance level ofα = 1% only theLoess method
shows a substantial bias, and it does that for five out of eightdata sets. For microarray
experiments the more stringent levelα = 0.01% is very relevant, as multiple com-
parisons corrections often will imply selecting genes at low significance levels. We
note that theLoess again shows substantial bias. TheLPE approach also indicates
ten times more significant genes than the nominal value; thisbias is present for three
of the four data sets. At this significance level theCyber-T method shows a modest
bias; in particular we notice that the bias is only substantial for one dataset (two-
color experiment S2.2). The excess percentage of significant genes for thePooled-T
approach is minimal, and could just be due to chance.

From Figure 1.2 we note that for all methods far more genes areidentified as differ-
entially expressed by the two-color experiments than by theone-color experiments,
as the curves for the two-color experiments are much more horizontal than those
for the one color experiments. This is largely an effect of the actual data used, as
the two-color Drosophila experiments involved substantially altered flies, while the
differences between the mice involved in the one-color Huntington’s disease exper-
iments are much more subtle. We do note from this figure thoughthat the ordering
of the methods is largely unchanged, suggesting that since our conclusions remain
the same for two dramatically different experiments (different technologies, different
amounts of differential genes) they are likely fairly robust and may well generalize
to many other situations.

For both the two-color and the one-color experiments theLoess approach is the most
powerful. This is not a surprise, since the method does not maintain significance
levels for the experiments where both samples are repeats. Similarly, we are not
surprised that theLPE method is quite powerful for the one-color experiments. This
method also did not maintain significance levels for the experiments where both sam-
ples are repeats. Among the remaining methods, we note that thePooled-T approach
performs best for the two-color experiments, followed by the Cyber-T andLimma
approach, while for the one-color experiments theCyber-T andLimma approach
seem slightly more powerful than thePooled-T approach.

Table 1.5 confirms all these conclusions. Interestingly forthe D2.x (two-color) ex-
periments we notice that for those experiments with two arrays (D2.1, D2.2, and
D2.3) thePooled-T approach is particularly more powerful. Maybe this is not sur-
prising: the borrowing of degrees of freedom between experiments, as thePooled-T
approach is doing, is particularly useful when the number ofdegrees of freedom is
small.
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Table 1.4Percentage of differentially expressed genes using various approaches to signifi-
cance testing using an explicit reference distribution forsmall microarray experiments for the
individual two-color and one-color self-versus-self experiments at significance levelsα = 1%

andα = 0.01%. For unbiased methods the percentage of differentially expressed genes should
be close toα.

α = 1% T-test Limma Shrinking Cyber-T Loess LPE Pooled-T

S2.1 0.2 0.1 0.0 0.1 0.7 NA 0.3
S2.2 1.1 0.1 0.0 2.3 5.8 NA 0.3
S2.3 0.6 0.2 0.0 0.3 2.0 NA 0.4
S2.4 0.2 0.1 0.0 0.0 0.6 NA 0.1

S2-ave 0.5 0.1 0.0 0.7 2.3 NA 0.3

S1.1 0.4 0.2 0.0 0.4 0.7 0.4 0.0
S1.2 0.6 0.3 0.0 1.4 2.7 1.1 0.2
S1.3 0.8 0.1 0.0 0.3 3.9 0.3 3.2
S1.4 0.3 0.0 0.0 0.1 2.6 0.1 1.3

S1-ave 0.5 0.2 0.0 0.6 2.5 0.5 1.2

α = 0.01% T-test Limma Shrinking Cyber-T Loess LPE Pooled-T

S2.1 0.000 0.000 0.000 0.000 0.198 NA 0.017
S2.2 0.009 0.000 0.000 0.277 1.528 NA 0.061
S2.3 0.018 0.000 0.000 0.000 0.982 NA 0.009
S2.4 0.000 0.000 0.000 0.000 0.230 NA 0.009

S2-ave 0.007 0.000 0.000 0.069 0.735 NA 0.024

S1.1 0.015 0.030 0.000 0.061 0.197 0.106 0.000
S1.2 0.000 0.000 0.000 0.045 0.697 0.243 0.000
S1.3 0.000 0.000 0.000 0.015 0.500 0.061 0.091
S1.4 0.000 0.000 0.000 0.000 0.728 0.000 0.000

S1-ave 0.004 0.008 0.000 0.030 0.531 0.102 0.023
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Table 1.5Percentage of differentially expressed genes using various approaches to signifi-
cance testing using an explicits reference distribution for small microarray experiments for
the individual two-color and one-color experiments that involve different samples at signifi-
cance levelsα = 1% andα = 0.01%. The larger the percentage of differentially expressed
genes, the more powerful a method is.

α = 1% T-test Limma Shrinking Cyber-T Loess LPE Pooled-T

D2.1 1.9 12.1 0.0 15.8 26.8 NA 30.9
D2.2 2.3 16.0 0.0 21.9 32.3 NA 28.9
D2.3 4.0 34.8 0.0 43.6 53.8 NA 48.2
D2.4 31.0 44.8 22.6 45.5 54.4 NA 62.7
D2.5 20.9 31.6 13.1 35.1 43.5 NA 52.4
D2.6 53.6 66.5 46.3 66.9 76.5 NA 58.6
D2.7 51.8 57.6 46.9 55.9 64.3 NA 56.3

D2-ave 23.7 37.6 18.4 40.7 50.2 NA 48.3

D1.1 2.6 3.4 2.0 4.0 6.4 2.7 3.3
D1.2 1.2 5.3 0.1 5.6 6.7 5.0 1.5
D1.3 1.6 1.6 1.0 1.6 3.0 0.9 0.8

D1-ave 1.8 3.4 1.1 3.7 5.4 2.9 1.9

α = 0.01% T-test Limma Shrinking Cyber-T Loess LPE Pooled-T

D2.1 0.009 0.864 0.000 2.148 12.698 NA 10.835
D2.2 0.026 1.219 0.000 5.051 17.682 NA 11.928
D2.3 0.027 7.699 0.000 19.441 38.368 NA 26.722
D2.4 1.994 15.378 0.296 21.732 37.774 NA 44.632
D2.5 1.083 4.752 0.201 10.856 28.225 NA 31.806
D2.6 7.729 39.769 2.858 47.705 66.313 NA 40.295
D2.7 17.023 29.986 11.971 34.357 50.124 NA 38.347

D2-ave 3.984 14.238 2.189 20.184 35.883 NA 29.224

D1.1 0.121 0.349 0.030 1.046 2.593 0.788 0.516
D1.2 0.000 2.153 0.000 1.668 2.835 2.092 0.243
D1.3 0.106 0.243 0.061 0.379 1.410 0.288 0.182

D1-ave 0.076 0.915 0.030 1.031 2.280 1.056 0.313
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1.4.3 Permutation P-values

As detailed in Section 1.2.3, an alternative approach to obtaining P-values is a per-
mutation approach in which the test statistics for all genesare combined. In Figure
1.3 we give a graphical display of how well each of the methodsadhere to the sig-
nificance levels when P-values are determined using such an approach, and in Fig-
ure 1.4 we display power for these situations. We do not show permutation results
for thePooled-T approach: since this procedure combines arrays from different ex-
periments a permutation procedure is less standard, besides that the results using a
T-distribution already give satisfactory results.

The displays in Figures 1.3 and 1.4 are organized similar to Figures 1.1 and 1.2. We
notice that the permutation approach for computing P-values yields approximately
unbiased results for all approaches as all curves in Figure 1.3 follow the diagonal.
However, as expected, the permutation approach reduces power for any of the ap-
proaches using randomization. In Figure 1.4 we note that theprocedures based on
permutation are considerably less powerful than the procedures that do not use per-
mutation (as shown in Figure 1.2). In particular, we notice that the curves in Figure
1.4 all stay within a “band” of the diagonal. This is in fact a consequence of using
the permutation approach with a small number of repeats: irrespective of the actual
number of differentially expressed genes, there is a maximum number of genes that
can be differentially expressed at any particular significance level thanks to the ex-
perimental design. This is explained in detail below in the discussion of Table 1.7.

Tables 1.6 and 1.7 for the permutation based procedures are organized similar to Ta-
bles 1.4 and 1.5 for the procedures using a reference distribution. From these tables
we draw the same conclusions as from Figures 1.3 and 1.4: while the permutation
approach does control the significance levelα appropriately, it limits the power. We
note from these tables that no methods and no data sets are exceptions. The part
of Table 1.7 for the two-color (D2.x) experiments with different samples clearly il-
lustrate an artifact of the permutation approach. As we haveseen before, the D2.x
experiments have very many differentially expressed genes(see Table 1.5). But in
Table 1.7 there seems to be a cap: at a significance level ofα = 1% for experi-
ments D2.1, D2.2, and D2.3 all methods suggest at most 2% differentially expressed
genes, for experiments D2.4, D2.5, and D2.6 all methods suggest at most 8% differ-
entially expressed genes, and for experiments D2.7 all methods suggest at most 32%
differentially expressed genes. Let’s focuss on experimant D2.4. This is an experi-
ment with 4 arrays. There are thus at most24 = 16 permutations from “flipping”
the arrays. Since each permutation arises twice (when all arrays are flipped relative
to the first analysis), only 8 of these permutations are unique. Assume that for this
experiment 40% of the genes are differentially expressed (as Table 1.5 suggest), and
these 40% of the genes have very large test-statistics. There are about 10,000 genes
on these arrays, thus 4,000 test-statistics are large, say larger thanA. Now assume
that among the 7 other permutations none of the test-statistics are larger thanA. Then
out of 8 × 10, 000 = 80, 000 test-statistics 4,000 are larger thanA. However, at the
α = 1% level at most0.01 × 80, 000 = 800 can be called significant atα = 1%.
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Figure 1.3 Performance of the various approaches to significance testing using a permutation
approach rather than a reference distribution for small microarray experiments for the com-
bined two-color and one-color self-versus-self experiments. For unbiased methods the curves
should follow the identity line.
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Table 1.6Percentage of differentially expressed genes using various approaches to signifi-
cance testing using a permutation approach rather than a reference distribution for small mi-
croarray experiments for the individual two-color and one-color self-versus-self experiments
at significance levelsα = 1% and α = 0.01%. For unbiased methods the percentage of
differentially expressed genes should be close toα.

α = 1% T-test Limma Shrinking Cyber-T Loess LPE
permuted permuted permuted permuted permuted permuted

S2.1 0.1 0.0 0.0 0.0 0.0 NA
S2.2 1.0 0.0 0.2 0.4 0.6 NA
S2.3 0.6 0.1 0.1 0.0 0.4 NA
S2.4 0.2 0.1 0.1 0.0 0.2 NA

S2-ave 0.5 0.1 0.1 0.1 0.3 NA

S1.1 0.3 0.1 0.1 0.1 0.1 0.1
S1.2 0.6 0.4 0.4 0.3 0.4 0.4
S1.3 1.1 0.5 0.4 0.2 0.5 0.5
S1.4 0.3 0.1 0.1 0.1 0.4 0.2

S1-ave 0.6 0.2 0.2 0.1 0.4 0.3

α = 0.01% T-test Limma Shrinking Cyber-T Loess LPE
permuted permuted permuted permuted permuted permuted

S2.1 0.000 0.000 0.000 0.000 0.000 NA
S2.2 0.000 0.000 0.000 0.000 0.000 NA
S2.3 0.017 0.000 0.000 0.000 0.000 NA
S2.4 0.000 0.000 0.008 0.000 0.000 NA

S2-ave 0.004 0.000 0.002 0.000 0.000 NA

S1.1 0.000 0.000 0.000 0.000 0.000 0.000
S1.2 0.000 0.000 0.000 0.000 0.000 0.000
S1.3 0.000 0.000 0.000 0.015 0.000 0.015
S1.4 0.000 0.000 0.000 0.000 0.000 0.000

S1-ave 0.000 0.000 0.000 0.004 0.000 0.004
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Table 1.7Percentage of differentially expressed genes using various approaches to signifi-
cance testing using a permutation approach rather than a reference distribution for small
microarray experiments for the individual two-color and one-color experiments that involve
different samples at significance levelsα = 1% andα = 0.01%. The larger the percentage of
differentially expressed genes, the more powerful a methodis.

α = 1% T-test Limma Shrinking Cyber-T Loess LPE
permuted permuted permuted permuted permuted permuted

D2.1 1.6 2.0 1.8 2.0 2.0 NA
D2.2 1.5 2.0 2.0 2.0 2.0 NA
D2.3 1.9 2.0 2.0 2.0 2.0 NA
D2.4 7.7 8.0 8.0 8.0 8.0 NA
D2.5 7.4 8.0 8.0 7.9 7.5 NA
D2.6 8.0 8.0 8.0 8.0 0.0 NA
D2.7 30.5 31.8 30.5 31.8 24.8 NA

D2-ave 8.4 8.8 8.6 8.8 7.8

D1.1 2.8 3.8 3.8 3.6 2.8 2.8
D1.2 1.2 3.0 2.6 2.7 2.7 2.7
D1.3 1.9 1.8 1.8 1.4 1.3 1.0

D1-ave 2.0 2.9 2.7 2.6 2.3 2.1

α = 0.01% T-test Limma Shrinking Cyber-T Loess LPE
permuted permuted permuted permuted permuted permuted

D2.1 0.008 0.008 0.008 0.008 0.017 NA
D2.2 0.017 0.017 0.017 0.017 0.026 NA
D2.3 0.009 0.008 0.000 0.009 0.018 NA
D2.4 0.068 0.076 0.076 0.068 0.079 NA
D2.5 0.075 0.083 0.059 0.084 0.079 NA
D2.6 0.075 0.075 0.075 0.025 0.068 NA
D2.7 0.308 0.315 0.283 0.308 0.314 NA

D2-ave 0.080 0.083 0.074 0.074 0.086 NA

D1.1 0.121 0.258 0.212 0.243 0.106 0.030
D1.2 0.000 0.000 0.015 0.015 0.015 0.015
D1.3 0.136 0.243 0.258 0.212 0.121 0.045

D1-ave 0.086 0.167 0.162 0.157 0.081 0.030
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Which is 8%, rather than the 40% that are differentially expressed, of all the genes on
the array. (In fact the percentage is slightly lower as a few rare permuted genes also
have large statistics.) We could choose to ignore the “original” permutation in getting
the percentiles of the permutation distribution, but this would violate the assumptions
of exchangeability under the null-hypothesis of no differential expression. When the
number of arrays increases, or when the number of differentially expressed genes is
much smaller, this artifact clearly disappears.

1.5 Discussion

The choice of significance test in microarray experiments with low replication can
dramatically influence the results. For both one-color and two-color arrays we set
up our experiments so that we could both judge which approaches yield approxi-
mately unbiased P-values when the experimental conditionsare identical, and which
approaches are most powerful when both conditions differ. We focused on P-values,
rather than for example the FDR, as we believe that a “good” P-value will yield a
“good” multiple comparisons correction, and a multiple comparisons adjustment by
itself can not save a procedure that yields badly calibratedP-values.

The two groups of experiments that we considered differed inanother aspect be-
sides technology: our one-color experiments had a modest number of differentially
expressed genes, while our two-color experiments had many such genes. Given the
difference between the two groups of experiments the similarity in results was strik-
ing.

Our main conclusions are:

• The T-test has almost no power when the sample size is small. When there are
less than, say, six repeat arrays some of the alternative solutions are much more
powerful. Kooperberg et al. (2005) concluded that the lack of power is even more
extreme for the Welch statistic.

• Combining an estimate of the overall variance with an estimate of the individual
variance, such as is done forLimma (Smyth 2004) andCyber-T (Baldi & Long
2001) appear very effective. Apparently such a regularization reduces the noise
in the variance estimates effectively. Because of the similarity of the results for
these two approach, and the much worse results for the smoothing approaches,
we hypothesize that for theCyber-T approach the running average estimate of
σ0ij is effectively estimating an overall variance, rather thana local variance. In
our experimentsLimma performed slightly better thanCyber-T.

• An approach which borrows degrees of freedom from other experimentsPooled-
T, first proposed in Kooperberg et al. (2005), performs equally well as theLimma
andCyber-T approach. In fact, when the sample size is real small (n = 2) it
seems to perform slightly better. Obviously for this approach the main question
is “what to combine”. In Kooperberg et al. (2005) a small simulation study was
carried out suggesting that there can be a reasonable amountof experiment-to-
experiment variation without seriously inflating the type-1 error. The fact that we
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can without much problem combine cell-line experiments with RNA harvested
from fruit-flies (as was done for the two-color experiments in this paper) confirms
that conclusion.

• Methods which solely use a smoothed estimate of the variance, such as theLPE
approach (Jain et al. 2003) and theLoess approach (inspired by Huang & Pan
2002) can give severely biased results by inflating the percentage of significant
genes well beyond a pre-specified levelα, when in fact there are no differences
between the two samples. For theLoess approach this was evident atα = 1% and
α = 0.01%, for theLPE approach it was only evident atα = 0.01%. However,
since for microarray experiments often multiple comparisons corrections are car-
ried out very small significance levels are in fact used, we would want to avoid
methods that solely use smoothing approaches. A reason for the bias because of
smoothing the variance may be due to the fact that with the normalization meth-
ods developed in recent years (see Section 1.7) the relationbetween variance and
expression level has been considerably reduced.
In particular, in Figure 1.5 for an individual two-color array and one of the two-
color experiments and in Figure 1.6 for one of the one-color experiments we show
the relation between the difference between the two signals(left side of Figure
1.5) or the variance and the average signal (other panels). As can be seen, the re-
lation between average signal and variance is minimal, and in fact the correlation
between the variance from one experiment to the next experiment for the same
gene is much larger than the correlations in these figures (data not shown). Thus,
locally averaging the variances will sometimes yield variances that are too large
and sometimes yield variances that are too small. When the variance is too small
there is a substantial chance of incorrectly identifying a gene as differentially ex-
pressed.

• A permutation approach to obtaining P-values severely reduces the number of
genes that are identified as differentially expressed for experiments with a lot of
differential expression. This limits our conclusions about theShrinking approach
(Cui et al. 2005), as for this approach it is the only suggested method to obtain
P-values.

All approaches that we studied are either available in R-packages available from
CRAN or Bioconductor, or are easily implemented in R code.

1.6 References

P. Baldi and A. D. Long, “A Bayesian framework for the analysis of microarray expression
data: regularized t-test and statistical inferences of gene changes”, Bioinformatics, 17, 509–
519, 2001.

Y. Benjamini and T. Hochberg, “Controlling the false discovery rate: a practical and powerful
approach to multiple testing”, Journal of the Royal Statistical Society series B, 57, 289–300,
1995.

E. Y. Chan, R. Luthi-Carter, A. Strand, S. M. Solana, S. A. Hanson, M. M. DeJohn, C. Kooper-
berg, K. O. Chase, A. B. Young, B. R. Leavitt, J. J. Cha, N. Aronin, M. R. Hayden, and J. M.



22 SMALL MICROARRAY EXPERIMENTS

6 8 10 12 14 16

−
4

−
2

0
2

4
6

Array 3 of Experiment D2.6

log−average both channels

ra
tio

 b
ot

h 
ch

an
ne

ls

6 8 10 12 14

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Complete experiment D2.6

log−average signal all arrays

S
D

 e
xp

re
ss

io
n 

ra
tio

s
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expression ratio for all arrays from that experiment.
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1.7 Appendix: Normalization of arrays

Two-color arrays For the two-color arrays we first excluded all spots with a log
base 2 expression of less than 5, and spots whose background level was higher than
the foreground level for either channel. This excludes about 11.5% of the spots, pri-
marily spots that do not hybridize well. In particular of the13,440 spots on our ar-
rays, 1,296 were excluded on all 36 arrays: of the remaining spots only about 2%
were excluded. We then subtracted the background and used a print-tip loess correc-
tion using the Limma functionnormalizeWithinArrays()with defaults. Any
spot that had at least two estimates for a particular experiment was included in our
analysis. We employed various graphical QC tools, and felt that all arrays were of
good quality.

One-color arrays For all methods we analyzed gene expressions that were nor-
malized by the RMA algorithm of Irizarry et al. (2003). We also carried out the same
analysis using the log of the MAS5 Average Difference summary and obtained essen-
tially the same results. For RMA we normalized all arrays simultaneously; however
when we analyzed each of the experiments separately, the results were again essen-
tially the same. We employed various graphical QC tools, andfelt that all arrays were
of good quality.
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