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CHAPTER 1

Local Pooled Error Methods for
Enhancing Statistical Power in Small

Sample Microarray Data Analysis

Jae K. Lee1, HyungJun Cho1 & Michael O’Connell2

University of Virginia1 & Insightful Inc.2

Abstract: In microarray data analysis, gene discovery based on fold-change value is
often misleading because its error variability can be dramatically different among dif-
ferent genes under different biological conditions and intensity ranges. The standard
approach is thus emerging as one based on statistical significance and hypothesis
testing for each gene’s differential expression, with careful attention paid to multi-
ple comparison issues. However, when only a small number of replicated arrays are
available, these approaches can often be underpowered and may result both in high
false positive and false negative error rates due to their inaccuratewithin-geneerror
estimation. In this chapter, we introducelocal pooled error(LPE) method for testing
two comparing conditions in a microarray study and its extension to multiple con-
dition microarray data analysisempirical Bayes heterogenous error model(HEM),
which significantly improve statistical discovery power in microarray data analysis
with limited replication by pooling and utilizing other similar genes’ error informa-
tion. The open source software packages of these LPE-based approaches are avail-
able asLPE andHEMat the Bioconductor web site (http://www.bioconductor.org);
LPE is also available through the commercial software product S+ArrayAnalyzerTM ,
based on S-PLUS(R).

1.1 Introduction

Each gene’s differential expression pattern in a microarray experiment is usually
assessed by (typically pairwise) contrasts of mean expression values among experi-
mental conditions. Such comparisons have been routinely assessed as fold changes
whereby genes with greater than two or three fold changes are selected for further
investigation. It has been frequently found that a gene showing a high fold-change
between experimental conditions might also exhibit high variability and hence its
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2 LOCAL POOLED ERROR METHODS

differential expression may not be significant. Similarly, a modest change in gene
expression may be significant if its differential expression pattern is highly repro-
ducible. A number of authors have pointed out this fundamental flaw in the fold-
change based approach (Jin et al., 2001). And, in order to assess differential ex-
pression in a way that controls both false positives and false negatives, the standard
approach is emerging as one based on statistical significance and hypothesis testing,
with careful attention paid to reliability of variance estimates and multiple compari-
son issues.

The classical two-sample t-statistic has been initially used for testing each gene’s
differential expression; the procedures such as the Westfall-Young step-down method
have been suggested to control FWER (Dudoit et al., 2002). These t-test procedures,
however, rely on reasonable estimates of reproducibility or within-gene error to be
constructed, requiring a large number of replicated arrays. When a small number of
replicates are available per condition, e.g. duplicate or triplicate, the use of naive,
within-gene estimates of variability does not provide a reliable hypothesis testing
framework. For example, a gene may have very similar differential expression values
in duplicate experiments by chance alone. This can lead to inflated signal-to-noise
ratios for genes with low but similar expression values. Furthermore, the comparison
of means can be misled by outliers with dramatically smaller or bigger expression
intensities than other replicates. As such, error estimates constructed solely within
genes may result in underpowered tests for differential expression comparisons and
also result in large numbers of false positives.

A number of approaches to improving estimates of variability and statistical tests of
differential expression have thus recently emerged. Several variance function meth-
ods have been proposed, including a simple regression estimation of local variances
(Kamb and Ramaswami, 2001) and a two-parameter variance function of mean ex-
pression intensity (Durbin et al., 2002). The variance function methods described
above borrow strength across genes in order to improve reliability of variance esti-
mates in differential expression tests. The local-pooled-error (LPE) estimation strat-
egy has also been introduced for improving such within-gene expression error esti-
mation (Lee and O’Connell, 2003; Jain et al., 2003). Especially, LPE variance esti-
mates for genes are formed by pooling and smoothing the error variability of genes
with similar expression intensities from replicated arrays. From this error pooling, the
LPE approach effectively handles many statistical artifacts in large screening analy-
sis, e.g. where a gene with low expression may have very low variance by chance and
the resulting signal-to-noise ratio is unrealistically large, or vice versa. This, in turn,
leads to a dramatically improved statistical testing framework for the discovery of
biologically-relevant differential expression patterns in a microarray study: LPE test
for comparing two contrasting conditions and empirical-Bayes heterogenous error
model (HEM) for identifying differentially expressed genes under multiple experi-
mental conditions.

We note that LPE methodology is conceptually similar to the probe information pool-
ing technique described in the next Chapter that pools the error information of the
number of changed probes in each local (differential-expression) intensity region.
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The former directly pools the error information of the original expression intensities,
whereas the latter utilizes the error information of the changed-call probe counts in
each local intensity region.

The LPE-based approaches are available as open source R software packagesLPE
andHEMin the Bioconductor project (http://www.bioconductor.org); the LPE method
is also available through the commercial software product S+ArrayAnalyzerTM ,
based on S-PLUS(R) (O’Connell, 2003).

1.2 Local Pooled Error Test

1.2.1 Method

The Local Pooled Error (LPE) method constructs error variance estimates by pool-
ing variance estimates for genes with similar expression intensities from replicated
arrays within experimental conditions (Jain et al., 2003). LPE carefully leverages
the observation that genes with similar expression intensity values often show sim-
ilar variability within each experimental condition and that error variability of (log)
expression is a decreasing (or non-increasing) function of intensity in practical mi-
croarray data. The latter is due to the fact that microarray instrumentation exhibits
common background noise that is a bigger proportion of gene expression intensity in
a low intensity region than that in a high intensity region. Figure 1.1, illustrates this
phenomenon with LPE-estimated baseline error distributions under three different
experimental conditions for a mouse immune-response microarray study described
below.

To take into account heterogeneous error variability across different intensity ranges
described above, the LPE method is applied as follows (refer to Jain et al. (2003) for
a more detailed technical description). For oligo array data, lety1ik

andy2ik
be the

observed expression intensities at genei for replicatek under two conditions. For du-
plicate arrays,k = 1, 2, . . . plots ofA = log2(y1ik

y2ik
)/2 vs.M = log2(y1ik

/y2ik
)

can facilitate the investigation of between-duplicate variability in terms of overall in-
tensity. The M versus A plot (M v A or Bland-Altman plot), provides a very raw look
at the data and is useful in detecting outliers and patterns of intensity variation as a
function of mean intensity (Dudoit et al., 2002). At each of the local intensity regions
of the M v A plot under a particular biological condition, the unbiased estimate of the
local variance is obtained. A cubic spline is then fit to these local variance estimates
to obtain a smooth variance function. The optimal choice of the effective degree of
freedomdfλ of the fitted smoothing spline is obtained by minimizing the expected
squared prediction error or generalized cross validation error (GCV). This two-stage
error estimation approach—estimation of error of M within quantiles and then non-
parametric smoothing on these estimates is used because direct non-parametric esti-
mation often leads to unrealistic (small or large) estimates of error when only a small
number of observations are available at a fixed-width intensity range.

Based on the LPE estimation above, statistical significance of the LPE-based test is
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Figure 1.1 Log intensity ratiolog2(y1ik
/y2ik

) (M) as a function of average gene expression
log2

√
y1ik

y2ik
(A). Top row of panels (a), (b) and (c) represent local pooled error (LPE) for

näıve, 48 hour activated, and T-cell clone D4 conditions respectively for the mouse immune
response microarray study reported by Jain et al. (2003). Variance estimates in percentile in-
tervals are shown as points, and smoothed curve superimposing these points is also shown.
Bottom row of panels represents the corresponding M vs A graph. The horizontal line repre-
sents identical expression between replicates.

evaluated as follows. First, each gene’s medians under the two compared conditions
are calculated to avoid artifacts from outliers. The approximate normality of medians
can be assumed with a small number of replicates based on the fact that the individual
log-intensity values within a local intensity range follow a normal distribution; see
the supplementary data in Jain et al. (2003). The LPE statistic for the median (log-
intensity) difference z is then calculated as:

z = (µ̂1 − µ̂2)/σ̂pooled (1.1)

where µ̂1 and µ̂2 are the median intensities in two comparing array experimen-
tal conditionsY1 andY2, and σ̂pooled is the pooled standard error,[σ̂2

1(µ̂1)/n1 +
σ̂2

2(µ̂2)/n2]1/2 from the LPE-estimated baseline variances ofσ̂2
1 and σ̂2

2 . The LPE
approach shows a significantly better performance than two-sample t-test, SAM,
and Westfall-Young’s permutation tests, especially when the number of replicates is
smaller than ten. In a simulation study from a Gaussian distribution without extreme
outliers, the LPE method showed a significant improvement of statistical power with
three and five replicates, as reported in Jain et al. (2003).
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1.2.2 Example: Micorarray Study of T-cell Immune Responses

Cytotoxic T cells play a central role in the pathophysiology of many inflammatory
lung diseases wherein they accumulate in the alveolar space and/or in the intersti-
tium. A microarray study was performed to investigate the role of T cells among three
different immune exposure populations: naı̈ve (no exposure), 48-hour activated, and
CD8+ T cell clone D4 (long-term mild exposure), using triplicate microarrays of
Affymetrix R© murine chip, MG-U74A with 12,488 genes (Jain et al., 2003). Sig-
nal intensity values were obtained from the Affymetrix’s MicroArray Suite software
(MAS 5.0). Many genes exhibiting significant differential expression patterns were
identified by the LPE test. The LPE method identified genes that are well-known in
the literature for their mouse immune response function. Other hypothesis testing
methods, such as the Westfall-Young procedure and the two-sample t-test, were not
able to identify some of these genes.

In order to examine the relationship between the LPE p-values and fold change val-
ues more systematically, a scatter plot (or volcano plot) of each gene’s LPE p-values
vs. fold change comparing the naı̈ve and the CD8+ T-cell D4 clone conditions is
shown in Figure 1.2. The two horizontal lines represent two fold changes in both
directions and the vertical line the Bonferroni-adjusted LPE p-value 0.05. The num-
bers of genes in each sector of the left panel are also shown. Note that the two RNA
samples—näıve and CD8+ T-cell clone are biologically quite heterogeneous, and
a large number of differentially expressed genes were identified both by LPE test
and fold change. In this figure a weak correlation is found between significant dif-
ferential expression and fold change. This suggests differential-expression discovery
based on fold-change alone is misleading because a large number of insignificant
genes are identified with high fold-changes in the low intensity region as displayed
with the blue color in Figure 1.2(b).

1.2.3 Resampling-Based FDR Estimation for LPE Tests

An extremely large number of e.g.>40K genes can be represented on a microar-
ray, and as such, comparisons between experimental conditions for all genes must
be take false positive error rate and multiple comparison issues into account. In or-
der to control the false-positive rate, traditional statistical methods often control the
family-wise error rate (FWER), the probability of incorrectly accepting at least one
false-positive hypothesis (or type-I error) among all hypotheses. For example, the
commonly-used Bonferroni correction divides the type I errorα by the total num-
ber of hypotheses for the test of each gene’s differential expression, assuming the
hypotheses under consideration are independent (Dudoit et al., 2002). However, this
independence assumption is unlikely to be true in microarray data, as functions of
many genes are interrelated in varying degrees. Moreover, the methods controlling
FWER are frequently found to be too conservative to identify many important genes
in biological applications. Several authors (e.g., Sidak, WestFall and Young) have
developed step-down procedures that apply the severe Bonferroni correction only to
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Figure 1.2Fold change(log2) of gene expression and LPE p-values(−log2) for näıve mice
and CD8+ T-cell D4 clone (left panel) conditions. The two horizontal lines mark the two-
fold change threshold and the vertical line marks the threshold of cutoff Bonferroni-adjusted
p-value = 0.05. Genes shown in green color undergo low fold change but changes are
significant—these genes are missed by fold change method alone. Genes shown in blue color
have high differential expression but are not significant and would be detected as false posi-
tives by a fold change method. The right panel shows the distribution of genes in M v A format.
There is no clear-cut relation between significant and high fold-change genes, and hence LPE
is required for such differentiation. Numbers shown in each sector of left panel represent the
number of genes in that sector.

the most extreme value of the test statistic, and step down the correction with the
value of the test statistic. However, these methods result in high false-negative error
rates, likely missing many genes that are truly differentially expressed.

Benjamini and Hochberg (BH; 1995) suggested that controlling false discovery rate
(FDR), or the expected proportion of false positives among all positive (or rejected)
hypotheses, is more appropriate for large screening problems. Benjamini and Yeku-
tieli (BY; 2001) proposed a new FDR procedure considering a certain dependency
structure among the test statistics. However, both the BH and BY procedures may
still be too conservative when applied to real microarray data analysis (Dudoit et
al., 2002). This is mainly due to the fact that the independence or the artificial de-
pendency assumptions made in these approaches may not be supported in real mi-
croarray data applications. Furthermore, microarray experiments are often conducted
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with a small number of replicates due to limited availability of RNA samples and/or
budgetary constraints as mentioned earlier.

One of the key issues in estimating FDR is the assumption regarding the underlying
null distribution. The Significance Analysis of Microarrays (SAM) method (Tusher
et al., 2001) uses a full permutation strategy, sampling across all genes and conditions
to generate such a null distribution (mix-all). However, this strategy breaks many in-
trinsic correlation structures and does not generate a realistic orbiologically-relevant
null distribution for microarray data. Chip-by-chip permutation strategies, which ran-
domly shuffle all the columns (chips) and preserve gene structure, are not applicable
when the sample size is small because the number of independent permutations is
too small to generate a null distribution with enough granularity to support desired
significance calculations. To provide more stable estimation of such FDR values, a
method based on the spacings LOESS histogram (SPLOSH) was also proposed based
on a certain assumption about the p-value distribution (Pounds and Cheng, 2004). In
order to further improve the FDR estimation in practical microarray data analysis, a
rank-invariant resampling(RIR) approach can be applied to microarray data with a
small number of replicates as follows.

Generation of biologically relevant null distribution: It is critical to generate an
underlying null distribution as close as possible to real microarray data because a
gene’s statistical significance can be dramatically different under different under-
lying null distributions. Therefore, a resampling strategy needs to be designed to
preserve the biological structure of each microarray data set as much as possible.
Before describing this resampling strategy, an algorithm is defined for constructing
intervals in the resampling strategy. A naive approach for construction of intervals
is to partition intensity ranges so that each interval has an equal number of genes.
This approach may yield overly large test statistics in high intensity levels because
intensities are very sparse in high levels and condense in the middle levels. In or-
der to obtain the local intervals of the genes with homogeneous variances, adaptive
intervals are constructed by the following algorithm.

Adaptive Interval (AI) Algorithm

1. Estimate a baseline variance function for all data under consideration (within each
experimental condition) by LPE

2. Obtain medians and variance estimates for each gene.

3. Order the medians and variances by the medians and denote the ordered medians
and variances byξ(i) andσ(i).

4. Obtain the first interval with threshold valuesξ(1) andξ(1) + σ(1).

5. Obtain the next interval withξ(2) andξ(2)+σ(2), whereξ(2) is the smallest median
such thatξ(2) ≥ ξ(1) + σ(1).

6. Repeat step 5 to obtain the next intervals withξ(i) andξ(i) + σ(i), wherei is the
index of the smallest median such thatξ(i) ≥ ξ(i−1) + σ(i−1) until all the data are
assigned to certain intervals.
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Note that the number of genes in each interval is forced to be between given mini-
mum and maximum numbers, typically between 10 and (1/100 of the total number of
genes) for the minimum and maximum numbers, respectively. Note also that this AI
algorithm is applied to the replicated array data under each experimental condition
separately.

The RIR procedure for generating null data is then as follows.

1. Calculate medians for each gene and obtain the ranks of these medians within
each experimental condition.

2. Calculate rank differences between two conditions for each gene.

3. Construct the first intensity intervals using the AI algorithm above and retain rank-
invariant genes by eliminating a certain percentage of genes with largest rank
differences within each interval.

4. Construct the final intensity intervals of rank-invariant genes using the AI algo-
rithm.

5. Obtain a set of null data by resampling intensities of rank-invariant genes within
each interval.

6. Repeat the above step B times, e.g., 1,000, to obtain B independent sets of resam-
pled null data.

In step 5 of the above procedure, a certain percentage of genes are eliminated to
retain only rank-invariant expressed genes. In this current application, 50% of all
genes with largest rank differences are eliminated in this step. Note that the AI algo-
rithm is used twice in this RIR procedure; the first time to remove rank-variant genes
evenly throughout the whole intensity range. Without this step, many genes in low
intensity ranges would be unproportionately removed due to the larger variability in
those ranges. This is a particularly important issue for Affymetrix data that have been
summarized using the MAS5 procedure.

RIR-based FDR estimation:SupposeZ0 is a LPEZ-statistic calculated from null
data as described above. Generation of the null data is repeated many times indepen-
dently. LetZ be a LPE Z-statistic computed from the real data. FDR at a threshold
valueδ can be estimated as

F̂DR(∆) =
π̂0(λ)R̄0(∆)

R(∆)
, (1.2)

whereR̄0(∆) is the average number ofZ0 equal to or greater than∆ andR(∆) is
the number ofZ equal to or greater than∆. The proportionπ0(∆) of true null genes
in real data can be estimated by the number of{Z ≤ λq} divided by the average
number of{Z0 ≤ λq}, whereλq is theq-th quantile ofZ0 as suggested by Storey
and Tibshirani (2003), e.g. 0.9 forq. A gene’s FDR value might be estimated as zero
when no gene in the resampled null data exceeds itsZ; in these cases the minimum
estimate of FDR is forced to be the reciprocal of the product between the numbers
of genes and resampled null data sets, which is the finest resolution of this RIR FDR
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Table 1.1Numbers of differentially expressed genes discovered by five methods

FDR cutoff BY BH SPLOSH Mix-all RIR

0.0001 1397 1730 2876 2542 2074
0.001 1730 2162 3134 2958 2485
0.01 2160 2849 3467 3694 3382
0.05 2670 3661 5654 4594 4548

estimation. Note that the confidence bounds for̂FDR(∆) at each threshold valuec
can also be obtained from the B resampled null data sets.

Comparison with other FDR estimation methods:SAM’s full permutation (or
mix-all) strategy randomly samples all intensity values across genes and conditions
to generate null data, of which FDR estimation can be similarly performed as de-
scribed above for our RIR approach. Benjamini and Hochberg (BH; 1995) proposed
the step-up procedure to control FDR. These approaches can be compared with our
RIR approach based on the LPE statistics in the following manner. Letz(1) ≥ z(2) ≥
. . . ≥ z(G) be LPEz-statistics for discovery of differential expression ofG genes.
Denote the corresponding ordered rawp-values asp(1) ≤ p(2) ≤ . . . ≤ p(G). BH
adjustedp-values are defined as̃p(i) = mink=1,...,G{min(p(k)G/k, 1))}. For con-
trol of FDR at levelα, a genei is claimed as significant if̃p(i) ≤ α. Thus, the BH
estimate of FDR at a given critical valuec can conservatively be defined asp̃(i∗),
wherei∗ is min{i : z(i) ≥ c}. The adjustedp-values of Benjamini and Yekutieli

(BY; 2001) are defined as̃p(i) = mink=1,...,G{min(p(k)G
∑G

j=1(1/j)/k, 1))}. Uti-
lizing the full information in the p-value distribution, the SPLOSH FDR estimate is
derived ash(i) = mink≥i(r(k)), wherer(k) is cFDR estimate of genek. A compari-
son between these five FDR estimation methods and the RIR method is shown in 1.1
for the mouse immune-response microarray data.

Table 1.1 displays the numbers of the selected differentially expressed genes at FDR
0.0001, 0.001, 0.01, or 0.05. The results show that BH and BY are more conservative
than others, whereas the SPLOSH and mix-all methods are more liberal than the
others. Table 1.2 shows the FDR estimates for the five well-known genes that were
reported and confirmed in the original study (Jain et al., 2003). The FDR estimates
of several genes among them were greater than 0.01 by conservative BH and BY.
One or more genes’ FDR estimates were greater than 0.01 by SPLOSH and mix-all,
whereas RIR identified all of these genes with FDR< 0.01.
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Table 1.2FDR estimates of well-known genes found to be differentially regulated genes

Gene Title BY BH SPLOSH Mix-all RIR

CD97 antigen .0230 .0023 .0489< .0001 .0006
GATA-binding protein-3 .0208 .0021 .0489< .0001 .0006
CD40 ligand transcript .1005 .0103 < .0001 .0007 .0034
Granzyme K .2768 .0277 .0524 .0037 .0091
Fas-associated factor-1 1 .1100< .0001 .0335 .0038

1.3 Empirical Bayes Heterogeneous Error Model (HEM)

1.3.1 Background

Microarray experiments are often performed under multiple experimental conditions.
The statistical testing methods discussed above are inefficient and restrictive for an-
alyzing such data sets because they have to be applied to each pairwise comparison
among many different combinations of the multiple conditions. Analysis of variance
(ANOVA) approaches have been suggested to examine and evaluate the statistical
significance of differential expression one gene at a time, controlling for the random
chance of false positives among all candidate genes in microarray data (Kerr and
Churchill, 2001; Woolfinger et al., 2001).

Under a Bayesian testing framework, several approaches have been developed for
analyzing microarray data: Bayesian parametric modeling (Newton et al., 2001),
Bayesian regularizedt-test (Baldi and Long, 2001), Bayesian hierarchical model-
ing with a multivariate normal prior (Ibrahim et al., 2002), and Bayesian hierarchical
error model with two error components (Cho and Lee, 2004). In order to improve
the error estimation accuracy of large-screening microarray data, empirical Bayes
(EB) techniques have also been applied (Efron et al., 2001; Newton and Kendziorski,
2003). In these cases, the Empirical Bayes priors are considered for mixture dis-
tributions of equivalently and differentially expressed genes. Certain Bayesian ap-
proaches have considered heterogeneous error variability in microarray data includ-
ing the Bayesian model presented in Ibrahim et al. (2002).

However, the the error estimation in these classical and Bayesian approaches is not
accurate when the number of replicated arrays is small. Furthermore, these modeling
approaches are limited in that they are not able to capture heterogeneous error com-
ponents accurately in microarray data due to the unidentifiability and computational
restrictions of numerous error components. Consequently, these approaches do not
provide a reliable statistical inference framework when the number of array repli-
cates is very small, as is typically the case in investigating complex biological and
biomedical mechanisms (Lee, 2002).

To remedy these restrictions, a heterogenous error model (HEM) approach is sug-
gested to estimate heterogeneous technical and biological errors in microarray data
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separately and accurately (Cho and Lee, 2004). In particular, using LPE-estimated
empirical Bayes prior specifications, HEM takes into account the fact that these two
heterogeneous error components can often be observed separately, the former at dif-
ferent intensity ranges and the latter for different genes and conditions. Similar to the
RIR-based FDR evaluation for LPE, a resampling-based evaluation of thefalse dis-
covery rate(FDR) is also used for HEM, fully utilizing the distributional information
of the original raw data.

1.3.2 Heterogeneous Error Modeling

Suppose thatyijkl is the l-th technically replicated gene expression value of thei-
th gene for a particulark-th individual sample under thej-th biological condition,
wherei = 1, . . . , G; j = 1, . . . , C; k = 1, . . . ,mij ; l = 1, . . . , nijk. Assume that
data are properly normalized and log-transformed (typically base 2). The heteroge-
neous error model (HEM) with two layers of error is considered as follows. HEM
first separates the technical erroreijkl from the observed expression valueyijkl to
obtain the expression valuexijk free of the technical error. The first layer, thus, is
defined as

yijkl|{xijk, σ2
eijk

} = xijk + eijkl. (1.3)

The technical erroreijkl is assumed to bei.i.d.N(0, σ2
eijk

), where its heterogeneous
variance is defined to be a function ofxijk, i.e., σ2

eijk
= σ2

e(xijk). This assumption is
based on the fact that such technical error variances vary on different intensity levels
in microarray data.

In the subsequent layer, expression intensityxijk is decomposed into additive effects
of gene, condition, and interaction:

xijk|{µij , σ
2
bij
} = µij + bijk = µ + gi + cj + rij + bijk, (1.4)

whereµ is the parameter for the grand mean;gi andcj are the parameters for the gene
and condition effects, respectively;rij is the parameter for the interaction effect of
each gene-condition combination; andbijk is the error term for the biological varia-
tion, assumingi.i.d. N(0, σ2

bij
). The biological variance parameterσ2

bij
is allowed to

be heterogeneous for each combination of genei and conditionj because each gene
can have its inherent, distinctive biological variation under a specific biological con-
dition. Note that this two-layer HEM is conceptually similar to the two-consecutive
regression fitting suggested by Woolfinger et al. (2001); HEM inference is based on
the complete likelihood of the two layers, whereas the two-stage ANOVA models
are separately fit in the latter. Note also that the above two-layer HEM is suitable
for analyzing microarray data with both biological and experimental replicates. This
HEM method is slightly modified in the later section when only one of the biological
and technical replicates is available. The following section describes the LPE-derived
empirical Bayes prior specifications for HEM (non-mathematical readers may skip
this section).
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1.3.3 LPE-based Empirical Bayes Prior Specifications

The two-layer HEM contains unobserved data as well as a large number of parame-
ters. Most of these parameters can be efficiently estimated in a Bayesian framework,
using conjugate priors such as a uniform distribution forµ and normal distributions
for gi, cj , andrij with mean zero and variancesσ2

g , σ2
c , andσ2

r , respectively. Prior
information is negligible or posterior distributions consistently converge to their tar-
get distribution when there are a large number of replicates. However, estimation of
variance parameters,σ−2

bij
andσ−2

eijk
, with a small number of replicates heavily de-

pends upon the choice of priors; hence, constant gamma priors such as in Newton
and kendziorski (2003) are not enough to precisely estimate heterogeneous variance
parameters in this case. In order to correctly estimate heterogeneous variances in mi-
croarray data with limited replication, strong informative priors are needed. Thus,
informative LPE-estimated EB priors are used with a non-constant gamma prior
Gamma(αb, βbij

) for σ−2
bij

with varying hyper-parameters and a non-parametric prior

for σ−2
eijk

. These LPE-based EB priors are constructed as follows.

Suppose that there are two biological replicates (1 and 2) and two technical repli-
cates (a and b) in a condition,i.e., Y1a, Y1b, Y2a, andY2b. For the technical error
distribution, the variances ofY1a − Y1b, Y1b − Y1a, Y2a − Y2b, andY2b − Y2a are
pooled to derive its baseline distribution because no biological variability between
replicatesa andb is involved. Similarly, for the biological error distribution, the vari-
ances ofY1a−Y2a, Y2a−Y1a, Y2a−Y1b, andY1b−Y2a are pooled to obtain its error
distribution. Note, however, that the latter error distribution is for thetotal variance
containing both technical and biological variances since both technical and biologi-
cal errors are involved between replicates 1 and 2. Therefore, the biological variance
estimate is obtained by LPE, subtracting the technical variance estimate from the
corresponding total variance estimate at each local intensity region under their (or-
thogonal) independence assumption.

Based on the above modified-LPE estimates of the two error variances, the hyper-
parameters of the EB priors can be defined. Specifically, the inverse of the biological
variance,σ−2

bij
, is assumed to have a Gamma(αb, βbij

) prior satisfyingE(σ−2
bij

) =
αb/βbij

. It follows that E(σ2
bij

) = βbij
/(αb−1) and Var(σ2

bij
) = β2

bij
/(αb−1)(αb−

2). For positive expectations and variances, a valueαb is chosen such thatαb > 2
(e.g.αb = 3). Givenαb and modified-LPE estimates̃σ2

bij
, βbij

is obtained by the

method of moment,i.e., βbij
= (αb − 1)σ̃2

bij
. This provides Gamma priors that

are dependent on each combination of gene and condition, so that a gene under a
different condition has its specific error distribution for biological error. In contrast,
technical error varies on different intensity levels, so that its baseline distribution can
be estimated precisely. Therefore, the inverse of the technical error variance,σ−2

eijk
, is

assumed to have a nonparametric prior rather than a Gamma prior. In order to fully
utilize the LPE-estimated baseline distribution of technical error, a nonparametric
EB prior specification is used forσ−2

eijk
based on the following resampling algorithm:

1. Given a probabilityp, find sample quantiles0 = ξ0 < ξ1 < ξ2 < . . . < ξQ of
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median intensities corresponding to probabilities0 < p < 2p < . . . < (Q−1)p <
Qp = 1.

2. Randomly sample gene vectors with replacement at each quantile range propor-
tionally, and obtain a datasetD(b) with sizeG.

3. Apply LPE toD(b) with the above quantiles, and so obtain quantile experimental
variance estimates̃σ2(b)

eqj , whereq = 1, . . . , Q.

4. Repeat steps 2 and 3 withB times, and obtaiñσ2(b)
eqj whereq = 1, . . . , Q; b =

1, . . . , B

The above algorithm is performed for each condition for our MCMC update describe
below.

1.3.4 HEM Inference

The joint probability of the observed and unobserved variables for the two-layer

HEM is IPr(y,x;θ) =
∏

ijkl φ
(

yijkl−xijk

σeijk

)
×∏

ijk φ
(

xijk−µ−gi−cj−rij

σbij

)
, where

θ = (µ, g, c, r, σ2
b, σ2

e) andφ is the density function of the standard normal distri-
bution. With the above prior specification, the posterior distributionπ(x,θ|y) of the
unobserved datax and the parametersθ = (µ, g, c, r, σ2

b, σ2
e), given the observed

datay, is proportional to

IPr(y,x;θ)
∏

i

φ(gi/σg)
∏

j

φ(cj/σc)
∏

ij

φ(rij/σr)
∏

ij

Γ(σ−2
bij

; αb, βbij
)
∏

ijk

h(σ−2
eijk

),

whereIPr(y, x; θ) is the joint probability,Γ(∗;α, β) is the density function of a
Gamma distribution with meanα/β and varianceα/β2, andh is a unknown distrib-
ution.

In order to estimate such a large number of parameters and unobserved data, the
MCMC technique is used to sample the parameters or unobserved data from their
posterior conditional distributions. Unobserved data and parameters except for tech-
nical errorσ−2

eijk
can be estimated by Gibbs sampling. The conditional posterior dis-

tribution of technical errorσ−2
eijk

cannot be obtained explicitly, so the Metropolis-
Hastings algorithm is applied.

HEM summary statistic: Suppose that posterior estimates of parameters are ob-
tained, as described in Section 2.2. Denote posterior estimates byµ̄, ḡi, c̄j , r̄ij , σ̄2

bij

andσ̄2
eijk

, and letµ̄ij = µ̄+ ḡi+ c̄j + r̄ij . Based on these posterior estimates, one still
needs a guiding statistic to evaluate the significance of overall differential expression
patterns. Therefore, the HEM summary statistic,H-scoreis defined by utilizing the
posterior estimates:

Hi =
C∑

j=1

wij(µ̄ij − ¯̄µi)2

(σ̄2
bij

+
∑mij

k=1 σ̄2
eijk

/mij)
, (1.5)



14 LOCAL POOLED ERROR METHODS

wherewij = mij/
∑C

j=1 mij and ¯̄µi =
∑C

j=1 µ̄ij/C. The form ofH-score is simi-
lar to ANOVA F -statistic; however,H-score utilizes variance estimates that are non-
constant over conditions as well as genes, and separately account for change of each
condition divided by its own variance. HEMH-statistic does not follow any para-
metric distribution. Differentially expressed genes have largeH-scores, so gene se-
lection can be performed by the magnitude of its score; A rigorous selection criterion
of differentially expressed genes is detailed by Bayesian FDR evaluation below.

1.3.5 Resampling-based Bayesian FDR Evaluation for HEM

Similar to the RIR-based FDR evaluation for LPE, it is important to generatebiologically-
relevantnull distributions of small-sample microarray data for the HEM application.
In order to obtain null data simulating biological microarray data, gene and condition
identities are preserved in our resampling. That is, all ofyij,1,1, . . . , yij,mij ,nijk

for
genei and conditionj are sampled simultaneously for a simulated gene under each
condition. For example, consider a microarray study with two conditions. Suppose
genei is selected for condition 1. For condition 2, genei′ is then selected with the
normal probability for(µi,1 − µi′,2), so that genes with means closer to the mean of
genei are sampled more likely. Gene vectorsi andi′ are then combined as a gene
vector in our (simulated) null data. Similarly, gene vectors are selected for all con-
ditions simultaneously if there are multiple conditions. This strategy maintains gene
and chip identities so that their corresponding variance structure can be retained.

SupposeH-statistics and andH0-statistics are computed from raw data and gen-
erated null data, respectively. Generation of the null data is repeatedB times in-
dependently. Given a critical value∆, the estimate of Bayesian FDR is calculated
by equation (1.2). In the equation,̄R0(∆) = #{H0

ib|H0
ib ≥ ∆, i = 1, . . . , G, b =

1, . . . , B}/B is the average number of significant genes in the null data, andR(∆) =
#{Hi|Hi ≥ ∆, i = 1, . . . , G} is the number of significant genes in the raw
data. The estimate of a correction factor with theλ-quantilemλ of H0

ib is π̂0(λ) =
#{Hi|Hi ≤ mλ}/#{H0

ib|H0
ib ≤ mλ}, which is required because of the different

numbers of true null genes in the raw data and the null data.

1.3.6 HEM Only with One Type of Replication

The two-layer HEM above was described for microarray data when both technical
and biological replicates are available. If a microarray study does not have technical
replicates but has some biological replicates, the technical error distribution cannot
be separately observed and two error distributions are therefore confounded. In con-
trast, if only technical replicates are available, the biological variability cannot be
observed from the data; this kind of array experiments may be performed for exam-
ining the effects of specific biological treatments and conditions on a single subject.
In these cases, HEM is reduced into a model with one layer as follows:

yijk|{µ, gi, cj , rij , σ
2
εij
} = µ + gi + cj + rij + εijk, (1.6)
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wherei = 1, . . . , G, j = 1, . . . , C, k = 1, . . . ,mij andεijk is the error term for the
biological and experimental error variation, assumingi.i.d. N(0, σ2

εij
). Note that

mij is the number of technical (or biological) replicates in this model. The other
parameters are the same as those in the two-layer model and thel−subscript is sup-
pressed in this model.

For the one-layer HEM, the joint probability of the observed variables isIPr(y; θ) =∏
ijk φ(yijk − µ − gi − cj − rij)/σεij

, whereθ = (µ, g, c, r,σ2
b). In this case the

H-score summary statistic is defined slightly differently asHi =
∑C

j=1 wij(µ̄ij −
¯̄µi)2/σ̄2

εij
. The LPE-based nonparametric prior distribution is used for variance pa-

rameterσ2
εij

similarly as before.

1.3.7 Examples

Ionizing radiation response data:The two-layer HEM with microarray data is ap-
plied to the transcriptional response microarray data of lymphoblastoid cells to ion-
izing radiation of which details can be found in Tusher et al. (2001). In brief, two
wild-type human lymphoblastoid cell lines (1, 2) were grown in an unirradiated state
(U) or in an irradiated state (I) 4 hours after exposure to a modest dose of 5 Gy of
ionizing radiation. RNA samples from each combination of the two cell lines and
two states were labeled and divided into two identical aliquots (A, B) that were hy-
bridized independently to the Affymetrix HUGENEFL GeneChip, generating eight
hybridized microarrays (U1A, U1B, U2A, U2B, I1A, I1B, I2A, I2B). Signal inten-
sity values were obtained using the Affymetrix’s Microarray Suite software (MAS5)
algorithm and normalized/log2-transformed data.

The scatter plots of log-expression values between the two aliquots, two cell lines,
and two conditions demonstrate that larger variability exists between the two cell
lines than between the two aliquots (data not shown). This implies that the biolog-
ical variability is distinguishable from technical variability. Accordingly, these data
are fit to the two-layer HEM withmij = 2 biological replicates andnijk = 2
technical replicates forG = 7129 genes underC = 2 biological conditions. For
the prior distributionsgi ∼ N(0, σ2

g), cj ∼ N(0, σ2
c ), rij ∼ N(0, σ2

r), we use
σ2

g = σ2
c = σ2

r = 1. The LPE-based EB prior specifications is used for a Gamma
prior on biological error and a nonparametric prior for technical error. For MCMC
runs, 2000 burn-ins and 10000 main iterations are executed and their updated para-
meters values were collected.

Figure 1.3 displays the top 100, 500, and 1000 genes on the MvA plots of(U − I)
against(U + I)/2. Using HEM, the selected genes are well distinguished from the
distribution of random genes (first column, Figure 1.3) demonstrating that HEM
successfully identifies differentially expressed genes by capturing heterogeneous er-
ror variability in microarray data. In contrast, using SAM (Tusher et al., 2001), the
boundary between the selected and unselected genes becomes obscure as the number
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of the selected genes increases and many random genes seem to be identified sig-
nificantly (second column, Figure 1.3). The results of HEM and SAM differ because
HEM estimates heterogeneous technical and biological variances separately, whereas
SAM includes a variance stabilizing factor that is common to all genes.
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Figure 1.3 Identification of differentially expressed genes by HEM or SAM for the ionizing
radiation response data; dark (+) points represent top genes with large HEMH or SAMd-
scores.

In these data, the variability between two conditions is not as large as it is within
conditions; this implies that it is difficult to identify differential expression or that
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Table 1.3Top 10 genes selected by HEM for the T-cell immune response data

HEM SAM
Gene name H-score Rank d-score Rank

granzyme A 1362.7 1 2.02 3
ubiquitin specific protease 18 1163.3 2 1.84 8
chemokine (C-C) receptor 2 1148.7 3 1.95 7
S100 calcium binding protein A6 (calcyclin) 1142.4 4 1.56 22
disintegrin and metalloprotease domain 8 1033.8 5 1.96 5
granzyme K 984.0 6 2.12 2
cytotoxic T lymphocyte-assoc. protein2α 969.7 7 1.46 34
chemokine (C-C motif) receptor 5 831.9 8 1.42 38
annexin A1 817.2 9 1.70 14
chemokine (C-X-C motif) receptor 3 686.6 10 1.22 72

there are a small number of differentially expressed genes. When̂FDR = 0.01 and
0.05, the thresholds of HEMH-scores are 2.98 and 1.69, respectively. In each of
the cases, 11 and 17 genes are claimed as significant while no genes are claimed
as significant under these levels of FDR by the corresponding SAM analysis. This
confirms that the between-condition variation is not large in this case (the opposite
case is described next).

T-cell immune response data:A one-layer HEM is applied to the mouse immune-
response microarray data (Jain et al., 2003) since this experiment comprises three
experimental conditions and only technical replicates. Many genes are found to be
differentially expressed with a small FDR value,e.g., 2464 genes are claimed as
significant with an FDR less than 0.001 because variations between conditions are
much larger than those within each condition. Many important genes also have large
HEM H-scores. Table 1.3 displays the top ten genes selected by HEM, including
their scores from HEM and SAM. The genes with the largest HEMH-scores have
large SAM d-scores as well; five of which are in the top ten of SAM. Note that
unlike the above ionizing radiation data example, which has both technical and bio-
logical replicates, this T-cell immune response microarray study has only technical
replicates. Therefore, both HEM and SAM provide error estimates based on a sin-
gle error term, so that the difference between their error estimates is relatively small
in this study. However, when there exists unusual (very low or high) variability by
chance among a small number of replicates for a gene (compared to other genes in
the same local intensity range), its HEM error estimate can be significantly different
from its SAM error estimate. Recall that the latter still is heavily weighted by the
within-gene error estimate from the small number of replicates.
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1.4 Conclusion

In this chapter we introduced LPE and LPE-based empirical Bayes HEM methods to
accurately capture varying technical and/or biological error variances among differ-
ent genes, experimental conditions, and intensity ranges in microarray data. It is dif-
ficult to estimate such numerous, heterogenous error components using the classical
statistical estimation and standard Bayesian approaches in small-sample microarray
data analysis. To overcome this limitation, we used advanced error-pooling tech-
niques, such as Local Pooled Error estimation and LPE-based empirical Bayes spec-
ifications. These information-pooling approaches not only enabled us to precisely
capture heterogeneous error components with limited replication, but also dramati-
cally improved the statistical power for identification of differential expression genes,
compared to widely-used SAM and ANOVA approaches in small-sample microarray
data analysis.
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