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CHAPTER 1

Combining genomic data in human
studies

Debashis Ghosh, Dan Rhodes and Arul Chinnaiyan
University of Michigan

1.1 Introduction

With the development of technology that has allowed for the high-throughput minia-
turization of standard biochemical assays, it has become possible to globally moni-
tor the biochemical activity of populations of cells. This has led to the emergence of
cDNA microarrays in medical and scientific research and has allowed for large-scale
trasncriptional characterization. It should also be notedthat the microarray technol-
ogy would have limited ability without the existence of large-scale genome sequenc-
ing projects, such as the Human Genome Project (International Human Genome Se-
quencing Consortium, 2001; Venter et al., 2001). Having such sequence data avail-
able allows for the characterization of the probes on the microarray. In this chapter,
we will be using the term ”genomic data” to generically referto any genetic data that
is generated using large scale technologies.

While transcript mRNA microarrays have received much attention in the literature,
there has been work on other types of microarrays. Examples include chromatin-
immunoprecipitation (ChIP) microarrays, which measure transcription factor-DNA
binding expression (Lee et al., 2002) and methylation microarrays (Yan et al., 2001),
which assess DNA methylation on a global scale. In addition,there has also been
much attention on high-throughput assays that measure protein-protein interactions,
such as yeast two-hybrid systems (Uetz et al., 2001). Because of all the large-scale
data that is being generated, there is much interest in attempting to integrate the
data to provide a more complete understanding of the biological mechanisms that
are at play. This type of analysis has been given the name ”systems biology” in the
bioinformatics literature (Ideker et al., 2001).

For the statistician, this area brings many interesting andchallenging problems. While
the term ”meta-analysis” is familiar among most statisticians (Normand, 1999), the
term here takes a very different meaning. The situation statisticians are familiar with
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vi COMBINING HUMAN GENOMIC DATA

involves attempting to combine information from relatively homogeneous data struc-
tures from multiple similar experiments. However, in much of the genomic area, the
issue is one of trying to combine relatively inhomogeneous data structures from mul-
tiple experiments that may or may not be similar.

Another complication is that data availability depends on the type of organism stud-
ied. In this chapter, we focus on data from human studies. Thus, protein-protein in-
teraction data from two-hybrid experiments are not currently available for humans.
We will talk about approaches for combining genomic data in human studies, pri-
marily focusing on methods developed in the cancer setting.Some familiarity with
microarray technologies is assumed; the reader is referredto the first and second vol-
umes ofThe Chipping Forecast, a supplement to the journalNature Genetics that
has been made publicly available online (Chipping Forecast, 1999, 2002). Our goal
here is to seek to outline the major issues involved in such analyses and describe
some solutions that have been proposed. It is not our intent to provide an up-to-the
date listing of all methodologies that have been used, as theliterature is constantly
changing. Given the dynamic nature of the field, an importantcomponent will be
benchmarking of methods to see which should be used in practice.

1.2 Genomic data integration in cancer

1.2.1 Goals

Our group has focused primarily on the analysis of genomic data in cancer studies.
There are two broad goals of this research. One is the discovery of new biomarkers
that might be used potentially as screening tests or to better predict patient prognosis.
Examples of potential promising biomarkers found using gene expression technology
include enhancer of zeste homolog 2 (EZH2) in prostate cancer (Varambally et al.,
2002). In this study, the transcript mRNA expression EZH2 gene transcript was found
to be highly expressed in metastatic prostate cancer. A key point to make at this stage,
which we will address later, is that mRNA expression does notnecessarily perfectly
correlate with protein expression. In terms of diseases, the action is happening at
the protein level. In protein validation studies done by Varambally et al. (2002), the
EZH2 protein was also found to be highly expressed in metastatic prostate cancer.
Another example of a potential biomarker found using genomic data technologies is
prostasin in ovarian cancer (Mok et al., 2001). In that study, the authors reported a
sensitivity of 92% and a specificity of 94% for discriminating ovarian cancer cases
from controls using validation by ELISA of serum. Thus, prostasin might serve as a
potential biomarker for early detection of ovarian cancer.

The second is to better understand the biology of the disease. In the past, cancer was
thought of as a heterogeneous collection of diseases. However, a more integrative
view of the disease is currently being put forward by many researchers; this view
was summarized eloquently in a review article by Hanahan andWeinberg (2000).
According to their paradigm, there are six principles that underlie tumorigenesis (the
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initiation and development of a tumor); equivalently, for acancer to develop, it must
acquire six ”hallmark capabilities”:

• Self-sufficiency in growth signals;

• Insensitivity to anti-growth signals;

• Evading apoptosis (cell death);

• Limitless replicative potential;

• Sustained angiogenesis;

• Tissue invasion and metastasis.

With the current availability of large-scale genomic data,we can address the Hanahan
and Weinberg model in two ways. First, we can analyze the datato see the relative
contributions of the six ”hallmark capabilities.” Second,we can use genomic data to
further refine and identify the pathways that comprise each of the individual hallmark
capabilities described above.

1.3 Combining data from related technologies: cDNA microarrays

The statistical problem closest in spirit to classical meta-analysis involves trying to
combine multiple datasets in which the same type of cellularactivity was assessed.
As an example here, we consider multiple microarray studiesin which the same
comparison was considered, namely cancer versus normal.

There are several issues that must be considered when attempting such an analysis.
First, one must consider the problem of study-specific artifacts, such as sampling
bias, variations in experimental protocols and differences in laser scanners. However,
there are two bigger issues in the analysis of such data. The first is that of matching
genes from two studies. This is where the availability of large-scale genomic data
figures in hugely. Each spot on a microarray corresponds to a DNA sequence. What
one can do is to match up each spot to a putative gene in the Unigene Database,
which is a collection of clusters of orthologous genes. The Unigene link can then
be used to identify common genes across multiple datasets. Such a task can be done
for Affymetrix chips from their website (http://www.netaffx.com/) or for two-color
cDNA microarrays using the SOURCE tool at Stanford (Diehn etal., 2003).

While such a mapping is useful, there still might be errors that remain. A more chal-
lenging issue involves the fact that the numbers from different microarray platforms
represent different things. That is, an expression value of20 from a cDNA two-
color microarray is much different from an expression valueof 20 measured on an
Affymetrix array. Another technique that has proven to be useful as a filtering device
to enhance comparability across arrays of different platforms is known as the integra-
tive correlation coefficient or correlation of correlationcoefficients (Lee et al., 2002;
Parmigiani et al., 2004). The idea underlying this method isthat while raw expres-
sion values vary from study to study, the intergene correlations do not vary as much.
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Thus, one would consider combining genes that have similar intergene correlations
across the studies.

In terms of meta-analysis methods put forward, many have been based on the fact
that the standardized effect size is combinable across studies. This is the approach
advocated by Parmigiani et al. (2004) after filtering based on the integrative corre-
lation coefficient. In Rhodes et al. (2002), the t-statisticwas transformed into a p-
value, a transformation of which was combined across multiple studies. By contrast,
in Ghosh et al. (2003), the t-statistic was combined directly. An approach that was
more Bayesian in nature was taken by Wang et al. (2004), in which expression values
from one study were used to develop a prior distribution for the standardized effect
size; data from the remaining studies were used to generate posterior distributions.
A fully hierachical approach was taken by Choi et al. (2003),who then used Markov
Chain Monte Carlo methods to sample from the posterior distributions. It should be
noted that all of these methods make the assumption that a standardized effect size
can be estimated directly for each individual study.

Another approach more in line with classification or supervised learning analyses is
to build a classifier or find a gene expression signature on onedataset and to see how
well it predicts in an independent microarray dataset. Suchapproaches were taken by
Beer et al. (2002), Wright et al. (2004) and Jiang et al. (2004). An alternative method
using hierarchical clustering, which is an unsupervised learning procedure, was taken
by Sorlie et al. (2003). They found a gene expression signature that defined molecular
subtypes in breast cancer; they found through interrogation of other datasets that the
subtypes were present there as well. Given the increasing availability of publicly
available large-scale gene expression datasets, it is increasingly important that results
found by one investigator on a particular dataset be validated using other datasets as
well.

A large-scale comprehensive meta-analysis was performed by Rhodes et al. (2004).
They performed a meta-analysis of 40 independent datasets (>3,700 array experi-
ments) across ??? tissue sites. They found a universal profile of 67 genes that could
differentiate cancer versus noncancer tissue for a varietyof cancers. In addition, they
determined 36 cancer-specific signatures for determining atissue-specific cancer.
The signatures also demonstrated good discrimination performance on three inde-
pendent datasets.

A more sophisticated method for meta-analysis was put forward by Shen et al. (2004),
based on an idea of Parmigiani et al. (2002). Namely, the ideais that for a given gene
from a given sample in a given study, it is either over-,under- or non-differentially
expressed with respect to a baseline cohort of genes. Each ofthe three states de-
fines a latent category, which induces a mixture model for gene expression values.
The latent states of over-, under- or non-differentially expressed are inferred using a
Markov Chain Monte Carlo sampling algorithm. The estimatedprobabilities of the
latent states are then transformed to define a “probability of expression,” which is
then used as input for a meta-analysis.

Much of the meta-analysis methods have studied differential expression across mul-
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tiple studies. A notable exception is the study by Lee et al. (2004), in which inter-
gene correlations across multiple studies was considered.The authors sought pairs
of genes that were consistently coexpressed across severaldatasets. As will be de-
scribed in the next section, such coexpression is the first step needed in building gene
regulatory networks.

Because of the fact that information on thousands of genes are typically considered,
there is an inherent multiple testing problem. A popular method for calibrating re-
sults in this setting has been through use of the false discovery rate (Benjamini and
Hochberg, 1995). The false discovery rate, or FDR, is roughly defined as the ex-
pected proportion of falsely rejected null hypotheses among the set of rejected null
hypotheses. A smaller FDR indicates that there are more “real” discoveries found by
the investigator. This can be visualized by considering thecross-classification ofn
single-gene hypotheses by whether they are rejected based on the data and their true
status (i.e. null hypothesis is true or alternative hypothesis is true). Such a table is
given here:

Table 1.1 Outcomes of n tests of hypotheses
Accept Reject Total

True Null U V n0

True Alternative T S n1

W Q n

The definition of false discovery rate (FDR) as put forward byBenjamini and Hochberg
(1995) is

FDR ≡ E

[

V

Q
|Q > 0

]

P (Q > 0).

The conditioning on the event[Q > 0] is needed because the fractionV/Q is not
well-defined whenQ = 0. Methods for controlling the false discovery rate have
been proposed by several authors (Benjamini and Hochberg, 1995; Benjamini and
Liu, 1999; Benjamini and Yekutieli, 2001, Sarkar, 2002). Inaddition, methods for
directly estimating the false discovery rate (Storey, 2002) are also available.

A more recent innovation put forward by Storey and Tibshirani (2003) has been es-
timation of a quantity known as the q-value, which represents the minimum positive
FDR rate at which significance is attained. It represents an analog of the p-value that
takes multiple testing into account. It is quite commonplace for investigators to rank
genes based on a q-value threshold.

Another technique that is done is to adjust p-values for multiple testing; a variety of
methods for doing so is found in Westfall and Young (1993). The p-value corresponds
to the minimum significance level at which significance is attained. For multiple test-
ing as described in Table??, the an analog of the significance level is the familywide
error rate (FWER), defined asP (V ≥ 1). Further dicussion for FWER-controlling
procedures can be found in Ge et al. (2002) and in a collectionof papers by Van der
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Laan and colleagues (Dudoit et al., 2004; van der Laan et al.,2004a,b). One unin-
tended result of the development of high-throughput genomic data technologies has
been the development of new statistical methodologies for addressing the multiple
testing problem.

1.3.1 Functional and Pathway Analyses

Once these meta-analyses are performed and a calibrated list of genes are generated,
the gene lists can be entered into databases representing functional processes. A sim-
ple visualization exercise, done in Rhodes et al. (2002), isto find metabolic pathways
in which multiple genes exist. One example of such a databaseis the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG). Based on a list of genes that were consistently
dysregulated across multiple studies comparing prostate cancer to non-prostate can-
cer, pathways such as the purine biosynthesis were found to have multiple genes.
This leads to the hypothesis that the purine biosynthesis pathway is dysregulated in
prostate cancer. While the study is only generating a hypothesis and not confirming
it, such a computational prediction can help to inform investigators as to the next
series of experiments to perform. Also, a visual display such as that given by KEGG
does not allow for any formal statistical assessment of significance.

More formal statistical analyses for enrichment of functional terms can be done using
the hypergeometric distribution. This requires a databaseof functional annotation
terms such as Gene Ontology (GO) (Ashburner et al., 2000). The idea behind this
procedure is to see if the frequency of certain Gene Ontologyterms in a list of genes
is similar to or significantly larger than that in an externaldatabase. If it is determined
that there is statistically significant enrichment of functional annotation terms in a
list, then again this generates the hypotheses that certainpathways are dysregulated
in the disease process. This can be easily seen with the following 2 × 2 table: There

Table 1.2 Fisher’s test example
Gene List Non-Gene List Total

GO term X a b G
Non GO term X c d N-G

l N-l N

arel genes in the list andN genes total, i.e. on the chip. The null hypothesis is that
there is no association between the rows and columns of the table; no association
means that there is no functional enrichment of GO term X in the list of genes. This
is tested for by calculating a p-value based on the hypergeometric distribution, which
conditions on the row and column totals. An exact test is known as Fisher’s exact
test.

There are now many publicly available tools for performing such a test (Draghici et
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al., 2003; Al-Sharour et al., 2004; Beissbarth and Speed, 2004). Note that the meth-
ods discussed in the last two paragraphs are post-hoc types of procedures in that the
pathway analysis is done conditional on selecting a list of genes. An alternative is to
directly model the information contained in the Gene Ontology databases with gene
expression data. However, this raises the problem of what constitutes a proper metric
by which the heterogeneous information from the two diversedatabases can be re-
lated; this currently remains an open question. We later discuss the use of graphical
models later in this chapter as well.

A resource initiated by our group is a database known as ONCOMINE (Rhodes et al.,
2004), located at the URL http://www.oncomine.org/. The database represents an ef-
fort to systematically curate, analyze and make available all public cancer microarray
data via a web-based database and data-mining platform. Within the database, one
can perform over 100 types of differential expression analyses based on disease/non-
diseased, stage of disease, subtype, etc., reported with study-specific q-values. These
analyses are based on standard differential expression analysis with correction for
multiple testing using the q-value. In addition, one can query individual genes for
known available genetic and proteomic information that is stored at other databases
(e.g., GenBank, Swiss-Prot, etc.). There are links with pathway databases for visu-
alization and assessing functional enrichment of the gene lists that are found. One
can also search for individual genes of interest to see theirexpression patterns across
multiple cancer studies.

1.4 Combining Data from Different Technologies

In the traditional statistical view of meta-analysis, one thinks of attempting to com-
bine information from multiple similar experiments. However, the challenge of bioin-
formatics is that high-throughput functional genomics data are being generated on a
variety of platforms and stored in different databases. Thechallenge then becomes
how to integrate diverse data. This leads to a new definition of “meta-analysis.”

1.4.1 Bayesian networks

One tool that has been utilized quite heavily for this type ofproblem has been graph-
ical models (Lauritzen, 1996; Jensen, 2001). These are alsoreferred to as Bayesian
networks and belief networks as well. The idea of graphical models is to estimate
dependencies between random variables through calculation of measures of covaria-
tion between them. As a simple example, let us consider threerandom variables,A,
B andC. If we assume that the joint distribution of(A,B,C) is multivariate normal,
then assuming the random variables have mean zero, the distribution is summarized
by the pairwise correlation coefficients between them. Thus, if we can estimate the
correlations, then we have “learnt” about the system characterized byA, B andC.
There was a lot of interest in attempting to construct regulatory networks by fitting
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graphical models to gene expression data only. However, given the amount of exper-
imental variability in such data, this turned out not to be a major direction, so the
focus has been on building networks with multiple sources ofdata.

One major goal of Bayesian networks has been to predict protein-protein interac-
tions. While much of the genomic data is measured at non-protein levels, actual cel-
lular activity and disease occurs at a protein level. Thus, it is of interest to figure out
how well functional genomic correlations predict protein-protein interactions. This
was first studied in yeast by Jansen et al. (2003). However, they had the advantage
of having high-throughput protein-protein interaction data available from yeast two-
hybrid experiments. Such experiments currently do not exist for humans.

In a recent application (Rhodes et al., 2005), we used Bayesian networks to predict
protein-protein human interactions using functional genomic data. We used several
different types of information in order to develop the graphical model:

1. interactions between orthologs of human proteins;

2. intergene correlations from gene expression profiles;

3. shared functional annotations from Gene Ontology;

4. shared enrichment domains.

The idea was to develop a graphical model using known positive and negative protein-
protein interactions in order to develop a scale of evidencefor predicting a protein-
protein interaction. To define the positives, we used the Human Protein Reference
Database (HPRD) (Peri et al., 2003) , a bioinformatics resource that contains known
protein-protein interactions manually curated from the literature by expert biologists.
We queried 11,678 distinct literature-referenced protein-protein interactions among
5,505 proteins. For the negatives, we identified all proteinpairs in which one protein
was assigned to the plasma membrane cellular component and the other to the nuclear
cellular component based on Gene Ontology. Based on fitting model, we predicted
approximately 10,000 interactions with a false positive rate of 20% and about 40,000
interactions with a false positive rate of 50%. Several of the predicted protein-protein
interactions were verified by subsequent experimentation,while other predictions
mimicked what was found in the reported experimental literature. This model has
been integrated into ONCOMINE and is available at the URL http://www.himapp.org/.

While there have been some successes with the graphical models approach, this area
definitely remains in its infancy. One limitation of the graphical model is that it only
uses pairwise covariation information. Furthermore, the graphical models used by
Jansen et al. (2003) and Rhodes et al. (2005) involve a binning procedure that seems
somewhatad hoc. One interesting alternative to has been proposed by Balasubra-
maniam et al. (2004), who propose using a graph-theoretic approach to combining
functional genomics data from diverse platforms and test for significance of the nodal
connections using permutation testing. Interestingly, the appear to be similarities
with the use of graph-theoretic ideas in this area with thosein social network lit-
erature (Wasserman and Faust, 1994). This suggests that there may exist techniques
from that field that may be of use here.
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Another point of the Bayesian networks is that they are bidirectional and do not
attempt to impose any directionality. However, we know thatactivity in biological
systems consists of a series of ordered steps. Thus, there might be some advantage to
incorporating directionality into the system. Let us take the transcription process as
an example. First, the must be binding of DNA to the upstream promoter regions in
the genome so that transcription is “turned on.” Thus, one could imagine a model for
expression as a function of upstream promoter sequence for this scenario. Models
like this have been proposed for lower-level eukaryotes (Bussemaker et al., 2001;
Conlon et al., 2003) and are referred to as “dictionary models.” They take a view
that the expression value is a function of a score computed using the sequence data,
which is a conditional model. It remains to be seen whether such models could work
for human genomic data.

1.4.2 Towards an understanding of regulatory mechanisms

In the previous sections, we have described methods for combining information in
order to derive improved gene signatures and to make protein-protein interactions.
Another goal of interest is to derive “regulatory” modules.It is likely that some gene
expression patterns observed from microarray data represent a downstream readout
of a small number of genetic aberrations (e.g., mutations, amplifications, deletions,
translocations) that led to the activation or inactivationof a small number of transcrip-
tion factors. In some cases, cancer-causing genetic aberrations may not be directly
apparent from these downstream gene expression readouts. Recently, approaches to
developing gene expression regulatory modules in human studies have been taken by
Elkon et al. (2003), Segal et al. (2004) and by Rhodes et al. (2005).

The general approach requires a predefined list of genes. Thelist of genes can come
from an external database, such as Gene Ontology (e.g. set ofgenes involved in a
known process), or it may come from a differential expression analysis. Based on the
gene list, the Segal et al. (2004) approach is to determine which arrays are commonly
induced by multiple gene lists; the gene lists are then combined to form a “core” gene
cluster. One then determines which arrays show significant differential expression
based on the core gene cluster. One then determines if there is enrichment of clinical
annotation in the set of arrays found at the previous step. Through this procedure,
Segal et al. (2004) are able to find 456 regulatory modules from gene expression data
consisting of measurements of 14,145 genes in 1917 samples across 22 tissue sites.

The approach taken by Elkon et al. (2003), while similar in spirit, involves a major
difference. The difference is that sequence data are integrated with the gene expres-
sion profiling data. For the study by Elkon et al. (2003), approximately 13,000 pu-
tative promoter start sites were identified based on the NCBIReference Sequence
Database (ftp://ftp.ncbi.nih.gov/genomes/Hsapiens). Next, a set of genes that were
determined to be cell-cycle regulated from a human cell cycle gene expression pro-
filing study () were used; of the 874 putative cell-cycle genes in that paper, promoter
start sites were available for 568 of them. The authors searched for significantly
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enriched position weight matrices in the entire set of the 568 cell cycle-regulated
promoters using the original 13K set as the background set and found enrichment
of six binding sets. Thus, this provides a set of candidate transcription factors which
may play a role in cell-cycle progression.

The study of Rhodes et al. (2005) is similar to that of Elkon etal. (2003). They derive
265 gene lists from various differential expression analyses using a q-value cutoff of
0.10. Next, they identify putative transcription factor binding sites in the promoter
sequences of human genes and come up with a database of 361 transcription fac-
tors. Next, enrichment of each transcription factor in eachof the gene lists is done;
again an adjustment for multiple testing based on false discovery rate calibration is
performed. From this analysis, they defined 311 regulatory programs that displayed
highly significant overlap (P < 0.00033) between a gene expression signature and
a regulatory signature; these will serve as candidate regulatory modules that can be
tested experimentally.

The crux of the analyses described in this section is that based on defined lists of
genes, one calculates overlap measures of enrichment of a certain biological prop-
erty (here binding sites) with the lists. It is fairly easy tosee how other types of
biological sequence information (e.g., protein structureinformation, etc.) might be
used here as well. In addition, there are many ways of defining“interesting.” It could
be differential expression from a two-group comparison, orcell-cycle regulated (i.e.,
periodic expression) in a microarray time-course study. The overlap statistic is a very
simple, and again, many other approaches are possible. Thisarea will be a popular
one for further study.

1.5 In vivo/in vitro genomic data integration

An area that is beginning to be considered more frequently infunctional genomic
studies in cancer is the integration ofin vitro, i.e. experimental studies, with human
gene expression studies, termedin vivo data. Integrating results from such exper-
iments with in vivo cancer signatures holds the potential both to infer activity of
specific oncogenic pathways in vivo and to identify relevanteffectors of oncogenic
pathways. For example, Huang et al. (2003) developed distinct in vitro oncogenic
signatures for three transcription factors, Myc, Ras and E2F1-3. These signatures
were able to predict Myc and Ras state in mammary tumors that developed in trans-
genic mice expressing either Myc or Ras, suggesting that specific oncogenic events
are encoded in global gene-expression profiles.

To begin to understand the mechanisms by which oncogenes cause cancer, stud-
ies have used gene-expression profiling to identify downstream targets of oncogenic
pathways in cell-culture systems. Conceptually, this involves manipulating a gene in
an in vitro system and measuring a global profile using gene expression technology
and then trying to relate the in vitro gene expression profileto an in vivo gene ex-
pression profile. Such an approach was taken by Lamb et al. (2004) to determine the
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direct transcriptional effects of oncogene Cyclin D1. In vitro experiments were per-
formed in which the Cyclin D1 was both over and underexpressed, and global gene
expression profiles were determined. Lists of differentially expressed genes were
then generated. To correlate the lists with in vivo gene expression data, a two-step
process was utilized in which genes were first ordered based on correlation with Cy-
clin D1. Then, a Kolmogorov-Smirnov statistic was used to determine if the lists
clustered within the ordered list based on correlation. Since there was significant
evidence of clustering, Lamb et al. (2004) found that the in vitro-defined targets of
Cyclin D1 were correlated with Cyclin D1 levels in vivo. Thissuggests that the direct
regulatory effects of Cyclin D1 may play an important role intumorigenesis. The sta-
tistical problem brought up this type of analysis is determining clustering of a list of
genes within an ordered list of genes. While a Kolmogorov-Smirnov statistic has the
advantage of being a nonparametric statistic, the potential disadvantage to the use of
such a method will be a loss of efficiency. Determining alternative methodologies for
this type of problem will be important.

Another setting that leads to consideration of in vitro and in vivo genomic data is
when the in vitro experiment is performed in a model organismsystem. For exam-
ple, Sweet-Cordero et al. (2005) defined a signature by comparing lung tumors gen-
erated from a spontaneous KRAS mutation mouse model to normal mouse lung and
correlating it with gene expression profiles in human lung cancer studies. The ma-
jor issue in such an analysis is mapping mouse genes to orthologous human genes.
Sweet-Cordero et al. (2005) found that the mouse signature shared significant simi-
larity with human lung adenocarcinoma but not with other lung cancer types. Next,
they looked for evidence of the KRAS signature in human tumors carrying activating
KRAS mutations relative to wild-type tumors. Although no individual genes were
significantly associated with KRAS mutation status in humantumors, the mouse
KRAS signature was significantly enriched among genes rank-ordered by differen-
tial expression in human tumors with a KRAS mutation.

It is expected that experiments such as those described in the previous two para-
graphs will become much more commonplace in the future. Thus, it will be critical
to address issues and to develop methods for integrating in vivo and in vitro genomic
data so that inferences regarding transcriptional regulatory pathways in cancer can
be generated.

1.6 Software availability

Due to the recent innovations previously described, publicuse software for imple-
menting these methods is still in their infancy. As mentioned earlier, our group has
developed a database, ONCOMINE, located at the following URL:

http://www.oncomine.org/.

The database is geared towards biologists and does automated data analyses. Exam-
ples include differential expression analyses, analyses for functional enrichment of
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GO terms and Kolmogorov-Smirnov analyses in the spirit of Lamb et al. (2003). In
addition, links to the protein-protein prediction projectof Rhodes et al. (2005), are
available. The website for this is located at the following URL:

http://www.himapp.org/.

Many genomic data analysts primarily use software languages such as MATLAB
and R (R Development Core Team, 2005) for the analysis of genomic data. In par-
ticular, there has been a project towards the development ofbioinformatics software
packages in R, known as Bioconductor (Gentleman et al., 2004). The goals of the
Bioconductor project are threefold: goals of the project include:

1. foster collaborative development and widespread use of innovative software;

2. reduce barriers to entry into interdisciplinary scientific research,

3. promote the achievement of remote reproducibility of research results.

One benefit of R is that it is a high-level interpretable language that allows for rel-
atively fast development of methods. In addition, it has a nice ability for packaging
related components.

Another language that is of great use in this type of bioinformatics research is Perl.
Given that many of the databases are text databases, it is very important to be able to
manipulate such databases relatively easily. Perl is a veryuseful language for such
text manipulations.

1.7 Discussion

In this chapter, we have attempted to describe the current state of knowledge in the
area of functional genomic analyses. Because of the different types of functional ge-
nomic datasets that are being generated, this has led to an extension of the statistical
concept of meta-analysis. Now, analysts are faced with the prospect of combining
different sources of information from different types of platforms.

One of the techniques described earlier, graphical models,is a tool from the area
of machine learning. Machine learning algorithms tend to beblack-box algorithms
that are useful for predictive inference. While the application of machine learning
algorithms to high-dimensional genomic datasets will leadto some predictions that
will be bourne out, it is also important to attempt to build inbiological information
as much as possible into the analyses. As an example, a central tenet of biology is
that binding of DNA to the binding sites transcription factors leads to activation of
gene expression. It would seem sensible that a model in whichtranscription factor
information is the independent factor and gene expression is the dependent variable
should be a better model for the system than a graphical modelthat assumes no
directionality.

Finally, an important non-statistical issue that needs to be addressed is how to store
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information from these types of analyses such that they themselves can be combined.
One can imagine that lists of genes from different analyses can be used to make in-
ferences about various biological aspects in cancer studies. It then may be of interest
to compare the lists themselves in another type of meta-analysis so that higher-order
inferences about the biological network can be made. However, to do this will require
work to develop database requirements and standardization, much as was done in the
case of microarrays (Brazma et al., 2001).
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