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CHAPTER 1

Combining genomic data in human
studies

Debashis Ghosh, Dan Rhodes and Arul Chinnaiyan
University of Michigan

1.1 Introduction

With the development of technology that has allowed for figh{throughput minia-
turization of standard biochemical assays, it has becomssilgle to globally moni-
tor the biochemical activity of populations of cells. ThizsHed to the emergence of
cDNA microarrays in medical and scientific research and hawed for large-scale
trasncriptional characterization. It should also be naled the microarray technol-
ogy would have limited ability without the existence of largcale genome sequenc-
ing projects, such as the Human Genome Project (Interradtidniman Genome Se-
guencing Consortium, 2001; Venter et al., 2001). Havindhsseqjuence data avail-
able allows for the characterization of the probes on theaaitay. In this chapter,
we will be using the term "genomic data” to generically refeany genetic data that
is generated using large scale technologies.

While transcript mRNA microarrays have received much aitb@nn the literature,
there has been work on other types of microarrays. Exampltdade chromatin-
immunoprecipitation (ChIP) microarrays, which measuamscription factor-DNA
binding expression (Lee et al., 2002) and methylation naimays (Yan et al., 2001),
which assess DNA methylation on a global scale. In additibere has also been
much attention on high-throughput assays that measureip+ptotein interactions,
such as yeast two-hybrid systems (Uetz et al., 2001). Beoafusll the large-scale
data that is being generated, there is much interest in ptiegnto integrate the
data to provide a more complete understanding of the bicddghechanisms that
are at play. This type of analysis has been given the naméetsgsbiology” in the
bioinformatics literature (Ideker et al., 2001).

For the statistician, this area brings many interestingcliadlenging problems. While
the term "meta-analysis” is familiar among most statistis (Normand, 1999), the
term here takes a very different meaning. The situatiomssitaans are familiar with
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involves attempting to combine information from relativebmogeneous data struc-
tures from multiple similar experiments. However, in muéhhe genomic area, the

issue is one of trying to combine relatively inhomogeneata dtructures from mul-

tiple experiments that may or may not be similar.

Another complication is that data availability dependsuntype of organism stud-
ied. In this chapter, we focus on data from human studiess,Tjotein-protein in-
teraction data from two-hybrid experiments are not culyestailable for humans.
We will talk about approaches for combining genomic dataumban studies, pri-
marily focusing on methods developed in the cancer setSogae familiarity with
microarray technologies is assumed; the reader is refeyri first and second vol-
umes ofThe Chipping Forecast, a supplement to the journélature Genetics that
has been made publicly available online (Chipping Fored£89, 2002). Our goal
here is to seek to outline the major issues involved in sucgtlyaas and describe
some solutions that have been proposed. It is not our inbepitdvide an up-to-the
date listing of all methodologies that have been used, abténature is constantly
changing. Given the dynamic nature of the field, an importamponent will be
benchmarking of methods to see which should be used in peacti

1.2 Genomic dataintegration in cancer
1.2.1 Goals

Our group has focused primarily on the analysis of genomia ttacancer studies.
There are two broad goals of this research. One is the discof@mew biomarkers
that might be used potentially as screening tests or torqieict patient prognosis.
Examples of potential promising biomarkers found usingegetpression technology
include enhancer of zeste homolog 2 (EZH2) in prostate caivaeambally et al.,
2002). In this study, the transcript mRNA expression EZH2geanscript was found
to be highly expressed in metastatic prostate cancer. Adiey {o make at this stage,
which we will address later, is that MRNA expression doesegoessarily perfectly
correlate with protein expression. In terms of diseases atttion is happening at
the protein level. In protein validation studies done byavabally et al. (2002), the
EZH2 protein was also found to be highly expressed in mdtagteostate cancer.
Another example of a potential biomarker found using geratata technologies is
prostasin in ovarian cancer (Mok et al., 2001). In that stdldg authors reported a
sensitivity of 92% and a specificity of 94% for discriminatiovarian cancer cases
from controls using validation by ELISA of serum. Thus, gessn might serve as a
potential biomarker for early detection of ovarian cancer.

The second is to better understand the biology of the diséatiee past, cancer was
thought of as a heterogeneous collection of diseases. Hoywawmore integrative
view of the disease is currently being put forward by mangaeshers; this view
was summarized eloquently in a review article by Hanahan\aathberg (2000).

According to their paradigm, there are six principles thaterlie tumorigenesis (the
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initiation and development of a tumor); equivalently, faramcer to develop, it must
acquire six "hallmark capabilities”:

e Self-sufficiency in growth signals;
e Insensitivity to anti-growth signals;
e Evading apoptosis (cell death);

o Limitless replicative potential;

e Sustained angiogenesis;

e Tissue invasion and metastasis.

With the current availability of large-scale genomic data,can address the Hanahan
and Weinberg model in two ways. First, we can analyze the tdasae the relative
contributions of the six "hallmark capabilities.” Secomee can use genomic data to
further refine and identify the pathways that comprise e&ttedndividual hallmark
capabilities described above.

1.3 Combining data from related technologies: cDNA microarrays

The statistical problem closest in spirit to classical rreatalysis involves trying to

combine multiple datasets in which the same type of celladdivity was assessed.
As an example here, we consider multiple microarray stutlieshich the same

comparison was considered, namely cancer versus normal.

There are several issues that must be considered when &tigrapch an analysis.
First, one must consider the problem of study-specificants, such as sampling
bias, variations in experimental protocols and differerindaser scanners. However,
there are two bigger issues in the analysis of such data. itésfithat of matching
genes from two studies. This is where the availability oféascale genomic data
figures in hugely. Each spot on a microarray corresponds thA §&quence. What
one can do is to match up each spot to a putative gene in theehimiBatabase,
which is a collection of clusters of orthologous genes. Timigene link can then
be used to identify common genes across multiple datasath. &Stask can be done
for Affymetrix chips from their website (http://www.nefafcom/) or for two-color
cDNA microarrays using the SOURCE tool at Stanford (Diehal2003).

While such a mapping is useful, there still might be errors tbmain. A more chal-

lenging issue involves the fact that the numbers from difiemicroarray platforms
represent different things. That is, an expression valugOofrom a cDNA two-

color microarray is much different from an expression vaifi@0 measured on an
Affymetrix array. Another technique that has proven to befulsas a filtering device
to enhance comparability across arrays of different ptatfis known as the integra-
tive correlation coefficient or correlation of correlaticoefficients (Lee et al., 2002;
Parmigiani et al., 2004). The idea underlying this methotthé& while raw expres-
sion values vary from study to study, the intergene colimiatdo not vary as much.
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Thus, one would consider combining genes that have sinmitargene correlations
across the studies.

In terms of meta-analysis methods put forward, many have based on the fact
that the standardized effect size is combinable acrossestuthis is the approach
advocated by Parmigiani et al. (2004) after filtering basedhe integrative corre-
lation coefficient. In Rhodes et al. (2002), the t-statistas transformed into a p-
value, a transformation of which was combined across nalsfudies. By contrast,
in Ghosh et al. (2003), the t-statistic was combined diyeéth approach that was
more Bayesian in nature was taken by Wang et al. (2004), inlwénpression values
from one study were used to develop a prior distribution lier standardized effect
size; data from the remaining studies were used to geneoateror distributions.

A fully hierachical approach was taken by Choi et al. (2008)o then used Markov
Chain Monte Carlo methods to sample from the posterioridigions. It should be

noted that all of these methods make the assumption thahdastéized effect size
can be estimated directly for each individual study.

Another approach more in line with classification or supssdilearning analyses is
to build a classifier or find a gene expression signature ordateset and to see how
well it predicts in an independent microarray dataset. Sygtoaches were taken by
Beer et al. (2002), Wright et al. (2004) and Jiang et al. (20@4)alternative method
using hierarchical clustering, which is an unsupervisadimg procedure, was taken
by Sorlie et al. (2003). They found a gene expression sigedtat defined molecular
subtypes in breast cancer; they found through interrogati@ther datasets that the
subtypes were present there as well. Given the increasiaidphility of publicly
available large-scale gene expression datasets, it sdairgly important that results
found by one investigator on a particular dataset be valitiasing other datasets as
well.

A large-scale comprehensive meta-analysis was performé&hbdes et al. (2004).
They performed a meta-analysis of 40 independent datas&3 (0 array experi-
ments) across ??7? tissue sites. They found a universalepobf7 genes that could
differentiate cancer versus noncancer tissue for a vasietgncers. In addition, they
determined 36 cancer-specific signatures for determinitigsaie-specific cancer.
The signatures also demonstrated good discriminatioropeence on three inde-
pendent datasets.

A more sophisticated method for meta-analysis was put fahlvg Shen et al. (2004),
based on an idea of Parmigiani et al. (2002). Namely, theiglémat for a given gene
from a given sample in a given study, it is either over-,undemon-differentially
expressed with respect to a baseline cohort of genes. Eaitte dhree states de-
fines a latent category, which induces a mixture model foegetpression values.
The latent states of over-, under- or non-differentiallpressed are inferred using a
Markov Chain Monte Carlo sampling algorithm. The estimgteababilities of the
latent states are then transformed to define a “probabifigxpression,” which is
then used as input for a meta-analysis.

Much of the meta-analysis methods have studied differegtjgression across mul-
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tiple studies. A notable exception is the study by Lee et20104), in which inter-
gene correlations across multiple studies was consid@iesl authors sought pairs
of genes that were consistently coexpressed across seleaakets. As will be de-
scribed in the next section, such coexpression is the feptreteded in building gene
regulatory networks.

Because of the fact that information on thousands of gereetypically considered,
there is an inherent multiple testing problem. A popularhodtfor calibrating re-
sults in this setting has been through use of the false désgaate (Benjamini and
Hochberg, 1995). The false discovery rate, or FDR, is ropgleffined as the ex-
pected proportion of falsely rejected null hypotheses agrtbe set of rejected null
hypotheses. A smaller FDR indicates that there are mord ‘tleszoveries found by
the investigator. This can be visualized by consideringcttoss-classification of
single-gene hypotheses by whether they are rejected basbe data and their true
status (i.e. null hypothesis is true or alternative hypsithés true). Such a table is
given here:

Table 1.1 Outcomes of n tests of hypotheses
Accept Reject Total

True Null ] \Y no
True Alternative T S ny
W Q n

The definition of false discovery rate (FDR) as put forwardeyjamini and Hochberg
(1995) is

FDRZE[Z |Q>O] P(Q > 0).

The conditioning on the everf@ > 0] is needed because the fractitii@ is not
well-defined when)) = 0. Methods for controlling the false discovery rate have
been proposed by several authors (Benjamini and Hochb88%; Benjamini and
Liu, 1999; Benjamini and Yekutieli, 2001, Sarkar, 2002).akhdition, methods for
directly estimating the false discovery rate (Storey, J@02 also available.

A more recent innovation put forward by Storey and Tibshif@f03) has been es-
timation of a quantity known as the g-value, which represémt minimum positive
FDR rate at which significance is attained. It representsiatog of the p-value that
takes multiple testing into account. It is quite commongl&ar investigators to rank
genes based on a g-value threshold.

Another technique that is done is to adjust p-values for ipleltesting; a variety of
methods for doing so is found in Westfall and Young (1993 pfvalue corresponds
to the minimum significance level at which significance isiatd. For multiple test-
ing as described in Tabl#, the an analog of the significance level is the familywide
error rate (FWER), defined &3(V > 1). Further dicussion for FWER-controlling
procedures can be found in Ge et al. (2002) and in a collecfipapers by Van der
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Laan and colleagues (Dudoit et al., 2004; van der Laan e2@Db4a,b). One unin-
tended result of the development of high-throughput genatata technologies has
been the development of new statistical methodologiesddressing the multiple
testing problem.

1.3.1 Functional and Pathway Analyses

Once these meta-analyses are performed and a calibratefigenes are generated,
the gene lists can be entered into databases representictgphial processes. A sim-
ple visualization exercise, done in Rhodes et al. (2002}, find metabolic pathways
in which multiple genes exist. One example of such a databake Kyoto Encyclo-
pedia of Genes and Genomes (KEGG). Based on a list of gertegat@consistently
dysregulated across multiple studies comparing prostatees to non-prostate can-
cer, pathways such as the purine biosynthesis were foundwe imultiple genes.
This leads to the hypothesis that the purine biosynthesisnag is dysregulated in
prostate cancer. While the study is only generating a hygattand not confirming
it, such a computational prediction can help to inform itiggdors as to the next
series of experiments to perform. Also, a visual displajhsagthat given by KEGG
does not allow for any formal statistical assessment ofifiigimce.

More formal statistical analyses for enrichment of funeéibterms can be done using
the hypergeometric distribution. This requires a datalmgenctional annotation
terms such as Gene Ontology (GO) (Ashburner et al., 2003.idé&a behind this
procedure is to see if the frequency of certain Gene Ontdiegys in a list of genes
is similar to or significantly larger than that in an exterdatabase. If it is determined
that there is statistically significant enrichment of fuonal annotation terms in a
list, then again this generates the hypotheses that cerastmvays are dysregulated
in the disease process. This can be easily seen with thevfoll® x 2 table: There

Table 1.2 Fisher’stest example
Gene List Non-Gene List Total

GO term X a b G
Non GO term X c d N-G

I N-I

arel genes in the list and/ genes total, i.e. on the chip. The null hypothesis is that
there is no association between the rows and columns of the; tao association
means that there is no functional enrichment of GO term X énlit of genes. This

is tested for by calculating a p-value based on the hypergé&aistribution, which
conditions on the row and column totals. An exact test is knew Fisher's exact
test.

There are now many publicly available tools for performingtsa test (Draghici et
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al., 2003; Al-Sharour et al., 2004; Beissbarth and Spee@¥4 2MNote that the meth-

ods discussed in the last two paragraphs are post-hoc typesaedures in that the

pathway analysis is done conditional on selecting a listeofeg. An alternative is to

directly model the information contained in the Gene Orggldatabases with gene
expression data. However, this raises the problem of whrestitates a proper metric

by which the heterogeneous information from the two divelstbases can be re-
lated; this currently remains an open question. We lateugis the use of graphical
models later in this chapter as well.

A resource initiated by our group is a database known as ONIENRhodes et al.,
2004), located at the URL http://www.oncomine.org/. Thtabase represents an ef-
fort to systematically curate, analyze and make availdbfrialic cancer microarray
data via a web-based database and data-mining platforrhin/fte database, one
can perform over 100 types of differential expression asedybased on disease/non-
diseased, stage of disease, subtype, etc., reported wily+ specific g-values. These
analyses are based on standard differential expressidysenwith correction for
multiple testing using the g-value. In addition, one canrguedividual genes for
known available genetic and proteomic information thatdsed at other databases
(e.g., GenBank, Swiss-Prot, etc.). There are links witlhway databases for visu-
alization and assessing functional enrichment of the gstethat are found. One
can also search for individual genes of interest to see éxpiression patterns across
multiple cancer studies.

1.4 Combining Data from Different Technologies

In the traditional statistical view of meta-analysis, ohmks of attempting to com-
bine information from multiple similar experiments. Hoveepthe challenge of bioin-
formatics is that high-throughput functional genomicsadate being generated on a
variety of platforms and stored in different databases. ditedlenge then becomes
how to integrate diverse data. This leads to a new definitidmeta-analysis.”

1.4.1 Bayesian networks

One tool that has been utilized quite heavily for this typprablem has been graph-
ical models (Lauritzen, 1996; Jensen, 2001). These araaflered to as Bayesian
networks and belief networks as well. The idea of graphicatiefs is to estimate
dependencies between random variables through calaulatimeasures of covaria-
tion between them. As a simple example, let us consider tiaredom variables4,

B andC. If we assume that the joint distribution f, B, C) is multivariate normal,
then assuming the random variables have mean zero, thibdiigtn is summarized
by the pairwise correlation coefficients between them. THwse can estimate the
correlations, then we have “learnt” about the system cheraed byA, B andC.
There was a lot of interest in attempting to construct regmyanetworks by fitting
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graphical models to gene expression data only. Howevesnglve amount of exper-
imental variability in such data, this turned out not to be @ondirection, so the
focus has been on building networks with multiple sourcesabé.

One major goal of Bayesian networks has been to predictiprptetein interac-
tions. While much of the genomic data is measured at non-prigeels, actual cel-
lular activity and disease occurs at a protein level. Thus,df interest to figure out
how well functional genomic correlations predict prot@irotein interactions. This
was first studied in yeast by Jansen et al. (2003). Howewey, lthd the advantage
of having high-throughput protein-protein interactionaavailable from yeast two-
hybrid experiments. Such experiments currently do not éaihumans.

In a recent application (Rhodes et al., 2005), we used Bayewtworks to predict
protein-protein human interactions using functional gerwodata. We used several
different types of information in order to develop the grigghmodel:

1. interactions between orthologs of human proteins;

2. intergene correlations from gene expression profiles;
3. shared functional annotations from Gene Ontology;
4. shared enrichment domains.

The idea was to develop a graphical model using known pestin negative protein-
protein interactions in order to develop a scale of eviddoc@redicting a protein-

protein interaction. To define the positives, we used the &urotein Reference
Database (HPRD) (Peri et al., 2003) , a bioinformatics ressothat contains known
protein-protein interactions manually curated from tkeréiture by expert biologists.
We queried 11,678 distinct literature-referenced prepeistein interactions among
5,505 proteins. For the negatives, we identified all progpeiins in which one protein

was assigned to the plasma membrane cellular componeranthier to the nuclear
cellular component based on Gene Ontology. Based on fittiodetn we predicted

approximately 10,000 interactions with a false positivte i 20% and about 40,000
interactions with a false positive rate of 50%. Several effiredicted protein-protein
interactions were verified by subsequent experimentatigrile other predictions

mimicked what was found in the reported experimental litea This model has
been integrated into ONCOMINE and is available at the URp:Httww.himapp.org/.

While there have been some successes with the graphical srequf@ioach, this area
definitely remains in its infancy. One limitation of the ghéqal model is that it only
uses pairwise covariation information. Furthermore, trephical models used by
Jansen et al. (2003) and Rhodes et al. (2005) involve a lgrpriocedure that seems
somewhaiad hoc. One interesting alternative to has been proposed by Balasu
maniam et al. (2004), who propose using a graph-theorepooaph to combining
functional genomics data from diverse platforms and testifnificance of the nodal
connections using permutation testing. Interestinglg, @ppear to be similarities
with the use of graph-theoretic ideas in this area with thossocial network lit-
erature (Wasserman and Faust, 1994). This suggests thattiay exist techniques
from that field that may be of use here.
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Another point of the Bayesian networks is that they are bidional and do not
attempt to impose any directionality. However, we know thetivity in biological
systems consists of a series of ordered steps. Thus, thght e some advantage to
incorporating directionality into the system. Let us take transcription process as
an example. First, the must be binding of DNA to the upstreammpter regions in
the genome so that transcription is “turned on.” Thus, ongdcimagine a model for
expression as a function of upstream promoter sequencéifostenario. Models
like this have been proposed for lower-level eukaryotess@Bmaker et al., 2001;
Conlon et al., 2003) and are referred to as “dictionary nsatidlhey take a view
that the expression value is a function of a score computied tise sequence data,
which is a conditional model. It remains to be seen whethel soodels could work
for human genomic data.

1.4.2 Towards an understanding of regulatory mechanisms

In the previous sections, we have described methods for icamgbinformation in
order to derive improved gene signatures and to make prpteitein interactions.
Another goal of interest is to derive “regulatory” modulkss likely that some gene
expression patterns observed from microarray data reprasgownstream readout
of a small number of genetic aberrations (e.g., mutatiomglifications, deletions,
translocations) that led to the activation or inactivattba small number of transcrip-
tion factors. In some cases, cancer-causing genetic dbeganay not be directly
apparent from these downstream gene expression read@asntR/, approaches to
developing gene expression regulatory modules in humalnesthave been taken by
Elkon et al. (2003), Segal et al. (2004) and by Rhodes et @R

The general approach requires a predefined list of genedistloé genes can come
from an external database, such as Gene Ontology (e.g. genek involved in a
known process), or it may come from a differential exprassicalysis. Based on the
gene list, the Segal et al. (2004) approach is to determinehvenrays are commonly
induced by multiple gene lists; the gene lists are then coetbio form a “core” gene
cluster. One then determines which arrays show significdferential expression
based on the core gene cluster. One then determines if heneichment of clinical
annotation in the set of arrays found at the previous stepuigh this procedure,
Segal et al. (2004) are able to find 456 regulatory modules ffene expression data
consisting of measurements of 14,145 genes in 1917 sanglessa2?2 tissue sites.

The approach taken by Elkon et al. (2003), while similar imigspnvolves a major
difference. The difference is that sequence data are ategjwith the gene expres-
sion profiling data. For the study by Elkon et al. (2003), appnately 13,000 pu-
tative promoter start sites were identified based on the NR&erence Sequence
Database (ftp://ftp.ncbi.nih.gov/genomesglipiens). Next, a set of genes that were
determined to be cell-cycle regulated from a human cellecgeine expression pro-
filing study () were used; of the 874 putative cell-cycle geimethat paper, promoter
start sites were available for 568 of them. The authors kedréor significantly
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enriched position weight matrices in the entire set of thg &éll cycle-regulated
promoters using the original 13K set as the background stf@md enrichment
of six binding sets. Thus, this provides a set of candidatestription factors which
may play a role in cell-cycle progression.

The study of Rhodes et al. (2005) is similar to that of Elkoalef2003). They derive
265 gene lists from various differential expression aregyssing a g-value cutoff of
0.10. Next, they identify putative transcription factondiing sites in the promoter
sequences of human genes and come up with a database of B&drippon fac-
tors. Next, enrichment of each transcription factor in eafcthe gene lists is done;
again an adjustment for multiple testing based on falseodesy rate calibration is
performed. From this analysis, they defined 311 regulatomgiams that displayed
highly significant overlap® < 0.00033) between a gene expression signature and
a regulatory signature; these will serve as candidate aégyl modules that can be
tested experimentally.

The crux of the analyses described in this section is thatdas defined lists of
genes, one calculates overlap measures of enrichment afadnckiological prop-
erty (here binding sites) with the lists. It is fairly easydee how other types of
biological sequence information (e.g., protein strucinfermation, etc.) might be
used here as well. In addition, there are many ways of defitigresting.” It could
be differential expression from a two-group comparisorges-cycle regulated (i.e.,
periodic expression) in a microarray time-course studg dVerlap statistic is a very
simple, and again, many other approaches are possibleafdaswill be a popular
one for further study.

1.5 Invivo/in vitro genomic data integration

An area that is beginning to be considered more frequentfyrictional genomic
studies in cancer is the integrationiafvitro, i.e. experimental studies, with human
gene expression studies, termadvivo data. Integrating results from such exper-
iments with in vivo cancer signatures holds the potentidhtio infer activity of
specific oncogenic pathways in vivo and to identify releveffiectors of oncogenic
pathways. For example, Huang et al. (2003) developed disitinvitro oncogenic
signatures for three transcription factors, Myc, Ras anH1E2 These signatures
were able to predict Myc and Ras state in mammary tumors thatidped in trans-
genic mice expressing either Myc or Ras, suggesting thaifgpencogenic events
are encoded in global gene-expression profiles.

To begin to understand the mechanisms by which oncogene® aancer, stud-
ies have used gene-expression profiling to identify doveastrtargets of oncogenic
pathways in cell-culture systems. Conceptually, this ive® manipulating a gene in
an in vitro system and measuring a global profile using gepeession technology
and then trying to relate the in vitro gene expression prédilan in vivo gene ex-
pression profile. Such an approach was taken by Lamb et &14)26 determine the
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direct transcriptional effects of oncogene Cyclin D1. Itroviexperiments were per-
formed in which the Cyclin D1 was both over and underexpdsaed global gene
expression profiles were determined. Lists of differehtiakpressed genes were
then generated. To correlate the lists with in vivo gene &sgion data, a two-step
process was utilized in which genes were first ordered basedmwelation with Cy-
clin D1. Then, a Kolmogorov-Smirnov statistic was used ttedaine if the lists
clustered within the ordered list based on correlationc&ithere was significant
evidence of clustering, Lamb et al. (2004) found that theiirovdefined targets of
Cyclin D1 were correlated with Cyclin D1 levels in vivo. Tligggests that the direct
regulatory effects of Cyclin D1 may play an important roléimorigenesis. The sta-
tistical problem brought up this type of analysis is deteiing clustering of a list of
genes within an ordered list of genes. While a Kolmogorov+8av statistic has the
advantage of being a nonparametric statistic, the potefitadvantage to the use of
such a method will be a loss of efficiency. Determining akdtiie methodologies for
this type of problem will be important.

Another setting that leads to consideration of in vitro amd/ivo genomic data is

when the in vitro experiment is performed in a model organégstem. For exam-
ple, Sweet-Cordero et al. (2005) defined a signature by congplung tumors gen-

erated from a spontaneous KRAS mutation mouse model to honmase lung and

correlating it with gene expression profiles in human lungcea studies. The ma-
jor issue in such an analysis is mapping mouse genes to ogithas human genes.
Sweet-Cordero et al. (2005) found that the mouse signahameed significant simi-

larity with human lung adenocarcinoma but not with otheiglwancer types. Next,
they looked for evidence of the KRAS signature in human tusearrying activating

KRAS mutations relative to wild-type tumors. Although naividual genes were
significantly associated with KRAS mutation status in hurtamors, the mouse
KRAS signature was significantly enriched among genes oadkred by differen-

tial expression in human tumors with a KRAS mutation.

It is expected that experiments such as those describeckiprévious two para-
graphs will become much more commonplace in the future. Tibusll be critical
to address issues and to develop methods for integratinigarand in vitro genomic
data so that inferences regarding transcriptional regoigtathways in cancer can
be generated.

1.6 Software availability

Due to the recent innovations previously described, puldie software for imple-
menting these methods is still in their infancy. As mentobearlier, our group has
developed a database, ONCOMINE, located at the following..UR

http://www.oncomine.org/.

The database is geared towards biologists and does autbdwtteanalyses. Exam-
ples include differential expression analyses, analysefuhctional enrichment of
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GO terms and Kolmogorov-Smirnov analyses in the spirit ahbaet al. (2003). In
addition, links to the protein-protein prediction projeétRhodes et al. (2005), are
available. The website for this is located at the followingIU

http://www.himapp.org/.

Many genomic data analysts primarily use software langsiageh as MATLAB
and R (R Development Core Team, 2005) for the analysis of géndata. In par-
ticular, there has been a project towards the developmdribwfformatics software
packages in R, known as Bioconductor (Gentleman et al., 200 goals of the
Bioconductor project are threefold: goals of the projectude:

1. foster collaborative development and widespread usenofviative software;
2. reduce barriers to entry into interdisciplinary sciatiesearch,
3. promote the achievement of remote reproducibility oéegsh results.

One benefit of R is that it is a high-level interpretable laaggi that allows for rel-
atively fast development of methods. In addition, it hasaermibility for packaging
related components.

Another language that is of great use in this type of bioimfatics research is Perl.
Given that many of the databases are text databases, itjigwportant to be able to
manipulate such databases relatively easily. Perl is awsejul language for such
text manipulations.

1.7 Discussion

In this chapter, we have attempted to describe the curratg ef knowledge in the
area of functional genomic analyses. Because of the diffeéypes of functional ge-
nomic datasets that are being generated, this has led tdemsen of the statistical
concept of meta-analysis. Now, analysts are faced with tbhepgct of combining
different sources of information from different types o&tibrms.

One of the techniques described earlier, graphical modeks,tool from the area
of machine learning. Machine learning algorithms tend tdlek-box algorithms
that are useful for predictive inference. While the applaatf machine learning
algorithms to high-dimensional genomic datasets will lesadome predictions that
will be bourne out, it is also important to attempt to buildbiimlogical information
as much as possible into the analyses. As an example, aldemtea of biology is
that binding of DNA to the binding sites transcription fastdéeads to activation of
gene expression. It would seem sensible that a model in vihaciscription factor
information is the independent factor and gene expressitimei dependent variable
should be a better model for the system than a graphical nthdelassumes no
directionality.

Finally, an important non-statistical issue that needsstaddressed is how to store
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information from these types of analyses such that they slebras can be combined.
One can imagine that lists of genes from different analysasbe used to make in-
ferences about various biological aspects in cancer studignen may be of interest
to compare the lists themselves in another type of metaysisado that higher-order
inferences about the biological network can be made. Howevdo this will require
work to develop database requirements and standardizatiach as was done in the
case of microarrays (Brazma et al., 2001).
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