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CHAPTER 1

Heterogeneity in Meta-Analysis of
Quantitative Trait Linkage Studies

Hans C. van Houwelingen and Jéŕemie J. P. Lebrec
Leiden University Medical Center, The Netherlands

1.1 Introduction

In complex diseases where many genes might be involved in the genetic causation of
the disease, individual loci influencing a quantitative trait are most likely to explain
only a small proportion of its total variance. Consequently, there is a huge problem
of lack of statistical power. Most linkage studies published to date only consist of
a few hundred pedigrees with a limited number of individuals and, therefore, have
little power to detect linkage of any but the ”largest” quantitative trait loci (QTL). In
order to enhance power, it is now common practice to retrospectively pool evidence
for linkage from several different studies. However, in pooling data from different
studies, one should be aware of the possible heterogeneity between studies. The aim
of this chapter is to present statistical models for describing this heterogeneity and
approaches to analyze heterogeneous data

We distinguish two types of heterogeneity: locus and size heterogeneity. The popula-
tions used in each of the studies often have different genetic backgrounds and a locus
affecting the trait of interest in one population might have no effect in another one;
we will refer to this type of heterogeneity aslocus heterogeneity. In other instances,
the same locus may influence the trait in all populations, but there are many reasons
to believe that the size of the effect will vary. For instance, the frequency of the causal
allele may be much smaller in some populations or it may interact with other loci, or
with environments and risk factors. We will refer to this type of heterogeneity assize
heterogeneity.

Besides those biological sources of heterogeneity, some common logistic sources
of variation often arise: typically, genotyping will have been carried out on differ-
ent marker maps (and even when identical markers are used, their allele frequencies
may vary across populations) and families may have been sampled according to dif-
ferent schemes. More simply, the phenotypes measured may vary in their method of
collection from study to study.

v
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When the raw data are available, one obvious way to gather evidence from several
studies is to pool the data into a meta-file and proceed with an overall analysis. In
the case of linkage studies with different marker maps, the data manipulations in-
volved are very tedious. Moreover, the data sets become unnecessarily large because
of the artificially created missing data on markers that are used in other studies.
Furthermore, running standard methods of analysis on such large data files usually
requires uncommon computing capacities. Therefore, we advocate the meta-analytic
approach that collect all relevant summary information for each study and uses that
as starting point for further analysis. Of course another simple reason for favoring
meta-analysis is that researchers usually simply cannot access the raw data for each
study and have to be content with individual test statistics along with (at best) pa-
rameter estimates.

We refer the reader to Dempfle and Loesguen (2003) and Rao and Province (2001)
for recent overviews of meta-analytic methods for linkage studies. Most methods
are in the spirit of the classical meta-analysis. An interesting, widely applicable, al-
ternative are the rank-based methods such as the GSMA (Wiseet al., 1999). They
might be sub-optimal compared to approaches based on the pooling of estimates of
a common linkage parameter, but much more robust because of the built-in genomic
control. Note that associated methods that assess heterogeneity have recently been
developed (Zintzaras and Ioannidis, 2005). The idea of pooling different estimates of
a common linkage effect across studies is not new although it has only been described
for sib pair designs to date. Guet al.(1998) use the excess identical-by-descent (IBD)
sharing as a common effect, but their approach appears to be limited to studies with
the same marker maps. Li and Rao (1996) and Etzel and Guerra (2002) both use
the slope in a classical Haseman-Elston regression as a common effect, the former
suffering the same restriction as Guet al.(1998) regarding location of markers. Inter-
estingly in the latter, the authors explicitly adjust for the (study-specific) marker to
locus distance and allow for heterogeneity across studies by means of a random ef-
fect. Unfortunately, they do not seem to efficiently take into account the within-study
dependence structure between markers.

Classical methods of meta-analysis originally introduced in the field of clinical tri-
als (DerSimonian and Laird, 1986) can be adapted to linkage studies. The sufficient
statistics used to perform such approaches are some measure of effect on a common
grid of putative locations and its associated standard error. In the case of quantitative
traits, a natural estimate of common linkage effect is the proportion of total variance
explained by a putative location. We first describe the meta-analytic tools, assum-
ing that QTL effect estimates and standard errors are available for all studies on a
common gridof locations. In Section 1.2 the traditional meta-analytic approach in
the context of linkage is reviewed, including how to test and allow forsize hetero-
geneity, while in Section 1.2.4 we introduce a simple finite mixture model to account
for potentiallocus heterogeneity. A complication that arises in both approaches for
heterogeneous data is that variance components are nonnegative by definition. We
will discuss the consequences of that for estimation and testing. In Section 1.3, we
quickly review the methods which should be used for the analysis of individual stud-
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ies in order to yield the relevant statistics required for meta-analysis as advocated
in Sections 1.2. All methods are illustrated by means of four data sets used for a
genome-wide scans for lipid levels in Section 1.4.

1.2 The classical meta-analytic method

Introductions to classical meta-analysis can be found in two Tutorials in Biostatistics
in Statistics in Medicine, namely Normand (1999) and van Houwelingenet al.(2002).
In this section, we recall briefly how meta-analysis is classically carried out and in-
troduce some refinement that is specific to the variance component model used in
linkage studies. We assume that at a givencommon putative position, each study (in-
dexed byi = 1, . . . ,K) provides a consistent estimateγ̂i of the true QTL effectγi of
that locus and an associated standard errorsi. The link with the traditional lodscore
is given byLODi = (γ̂i

2/s2i )/(2× ln(10)). Details of the definition of the variance
component and its estimation are given in Section 1.3.

1.2.1 Analysis under homogeneity

The simplest approach to meta-analysis assumes that the effectsγi’s are all equal
to a common valueγ so thatγ̂i ∼ N(γ, s2

i ). This is known as thehomogeneity
assumptionIn this situation the corresponding maximum likelihood estimator ofγ is
given by the weighted average

(1.1) γ̂hom =
∑

i γ̂i/s2
i∑

i 1/s2
i

with standard errorSEhom = 1/

√∑

i

1/s2
i .

The null hypothesis of no effect, that isγ = 0 versus the alternativeγ > 0, can be
tested by means of the one-sided statistic

(
z+
hom

)2 =
{

(γ̂hom/SEhom)2 , if γ̂hom > 0
0 if γ̂hom ≤ 0

which follows the mixture distribution12χ2
0 + 1

2χ2
1 under the null hypothesis, where

χ2
0 denotes the degenerate density with all mass in0. The correspondingLODhom

score can be calculated as
(
z+
hom

)2
/ (2× ln(10)). Observe that we do not truncate

the estimated̂γi at zero, if negative, because that would complicate the pooling con-
siderably. However, truncation is no problem in the final stage.

1.2.2 Test for heterogeneity

Even when the same locus is affecting a trait in different populations, it seems diffi-
cult to believe, for reasons given in Section 1.1, that the QTL effects are all equal. In
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the setting introduced earlier, this situation ofsize heterogeneitycan be tested:

H0 : γ1 = γ2 = · · · = γK ≡ γhom

H1 : at least oneγi is different,

the hypothesis of homogeneityH0 can be tested using the following statistic

X2 =
K∑

i=1

(γ̂i − γ̂hom)2

s2
i

whose approximate null distribution isχ2
K−1. In practice, any test for heterogeneity

is likely to have little power because individual studies tend to have low precision.
Nonetheless, the test can formally suggest heterogeneity in some instances, as will be
seen in Section 1.4. Note that theX2 statistic has an appealing interpretation (at least
for researchers with experience in parametric linkage). Indeed, it can be re-written as

X2 =
K∑

i=1

γ̂2
i

s2
i

− γ̂2
hom

(
∑

i 1/s2
i )−1

= 2× ln10× (
∑

i=1,...,K

LODi − LODhom) .

In other words, the individual LODs add up only when the effect is perfectly homo-
geneous.

1.2.3 Modeling size heterogeneity

The classical way to allow for heterogeneity between studies is to introduce an addi-
tional layer in the earlier homogeneous model by assuming that the true study specific
effectsγi’s themselves arise from some distribution. The usual model is a normal dis-
tribution with common meanγ and a between study varianceσ2. This is referred to
as a normal mixture model (or random effect model) and results in marginal distribu-
tions for the observations given bŷγi ∼ N(γ, s2

i +σ2). If the between study variance
σ2 were known, the estimate ofγ would be

γ̂het(σ2) =
∑

i wiγ̂i∑
i wi

with wi =
1

σ2 + s2
i

and with standard errorSEhet = 1/

√∑

i

wi ,

So, one way to carry out estimation is by maximization of the profile log-likelihood
pl(σ2) = l(γ̂het(σ2), σ2).

In the context of linkage where the actual effectsγi’s are standardized variance com-
ponents themselves, this model only makes sense if the probabilityΦ(−γ/σ) of neg-
ativeγ’s is negligibly small. In practice that is achieved if the coefficient of variation
σ/γ < 1/2. For the same reasons, the null hypothesis of no locus effect requires
that allγi’s should be equal to0 with probability1. Hence, the null hypothesis spec-
ifies bothγ = 0 andσ2 = 0, which is different from the usual situation in meta-
analyzes of clinical trials. The test for linkage is then given by the corresponding
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log-likelihood difference

2× [
pl(σ̂2)− l

(
γ = 0, σ2 = 0

)]

so that evidence for heterogeneity potentially contributes to the rejection of the null
hypothesis of no linkage. The use of the usual mixture1

2χ2
0 + 1

2χ2
1 for the null dis-

tribution of this non-standard likelihood is anti-conservative, the correct asymptotic
distribution is given by a mixture( 1

2−p)χ2
0+

1
2χ2

1+pχ2
2 (Self and Liang, 1987). How-

ever, asymptotic results are unlikely to be useful since we typically have very few
observations (i.e. studies) to pool together. In practice, we use the anti-conservative
limits dictated by the12χ2

0 + 1
2χ2

1 mixture as a screening tool and resort to parametric
bootstrapping for refinement of the level of significance once interesting positions
have been identified.

1.2.4 A two-point mixture model for locus heterogeneity

In some cases, the previous model will not be adequate to model differences between
studies because heterogeneity is qualitative rather than quantitative, in other words
the locus influences the trait in some studies/populations and not at all in others.
There is an indication of such qualitative heterogeneity when the normal mixture
model yields a large coefficient of variationσ/γ allowing negativeγ ’s under the
normal mixture . In analogy to what is done routinely at the family level in parametric
linkage (e.g. Ott (1999), see also Hollidayet al.(2005) for a recent application) and
can be done in the variance components setting (Ekstrom and Dalgaard, 2003), one
can fit a two-point mixture model at the study level as follows:γ̂i|γi ∼ N(γi, s

2
i )

with

γi =
{

γ, with probabilityα;
0, with probability1− α

so that, marginally,

γ̂i ∼ αN(γ, s2
i ) + (1− α)N(0, s2

i ) .

The basic idea is that only a proportionα of the studies show linkage to the puta-
tive locus andγ is the QTL effect among those studies only. (Hence,γ is not longer
the mean value of theγi’s as in the normal mixture model. Care is needed when
comparing the models) . For estimation purposes, this mixture of normal distribu-
tions naturally lends itself to the EM algorithm (Dempsteret al., 1977). Denoting by
φ(x; µ, σ2) the normal density function with meanµ and varianceσ2, the E (estima-
tion) step at stagek+1 of the iterative procedure consists in calculating the posterior
probabilitiesτ (k+1)

i ’s that theγ̂i’s have arisen from a normal distribution with mean
γ(k) given the prior mixing proportionα(k) i.e.

τ
(k+1)
i =

α(k)φ(γ̂i, γ
(k), s2

i )
α(k)φ(γ̂i, γ(k), s2

i ) + (1− α(k))φ(γ̂i, 0, s2
i )

,
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whereas the M (maximization) step gives the updated parametersα(k+1) andγ(k+1)

as

α(k+1) =
K∑

i=1

τ
(k+1)
i /K

γ(k+1) =
∑K

i=1 γ̂iτ
(k+1)
i /s2

i∑K
i=1 τ

(k+1)
i /s2

i

.

The model parametersα andγ are constrained in[0, 1] and[0,+∞[ respectively and
although the EM estimation procedure described above ensures thatα ∈ [0, 1], the
estimate ofγ will sometimes be negative in which case we setγ̂ = 0 and α̂ = 0
too. Under usual regularity conditions, the corresponding likelihood ratio test would
be asymptotically distributed as a12χ2

0 + 1
2χ2

1 under the null hypothesis. However,
here the situation is further complicated by the fact that the model parameters are
not identifiable under the null hypothesis (indeed ifγ = 0, any choice ofα will give
the same likelihood). One way to tackle this problem is to slightly modify the like-
lihood as done by Chenet al.(2001) and derive corresponding simple asymptotics,
but for the same reason alluded to in Section 1.2, we prefer to resort to parametric
bootstrapping techniques in order to assess significance of the likelihood ratio test.

The model for size heterogeneity and locus heterogeneity could be combined into a
model where eitherγ = 0 with probability1− α or γ follows a normal distribution
with probabilityα .

1.3 Extracting the relevant information from the individual studies

As we described in Section 1.2 the basic ingredients of a classical meta-analysis are
study specific QTL effects’ estimateŝγi’s in the i = 1, . . . , K studies available and
their associated standard errorssi’s on acommonfine grid of genome locations. In
this section, we explain how to obtain these estimates in practice and how to adjust
for varying information across studies.

1.3.1 General approach

For random samples of the trait values, the variance components method (Almasy
and Blangero, 1998; Amos, 1994) is the standard way of testing for linkage to a quan-
titative trait. Unfortunately, the emphasis of most computer programs implementing
the variance components method has been placed on testing rather than estimating
and they rarely provide both QTL effect estimates and associated standard errors.
In the context of linkage, two exceptions that we know of are theMENDEL(Lange,
2001) andMx softwares (Nealeet al., 1999). However, in principle, this is not so
much of a problem because asymptotic standard errorss can be obtained provided the
QTL effect estimatêγ is present (and differs from0) in addition to its statistical sig-
nificance, using the approximate relation(γ̂/s)2 ' χ2 with χ2 = LOD×2× ln(10).
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At positions where the QTL estimate is0, one could interpolate values ofs at neigh-
boring positions wherêγ 6= 0. One problem with the variance components method,
as far as pooling of estimates is concerned, is thatγ̂ is constrained to remain nonnega-
tive and pooling of several imprecise estimatesγ̂i’s could result in a positively biased
estimate of the true QTL effectγ. Whenever possible, we would personally favor ad-
equate regression or score test approaches (Lebrecet al., 2004) to linkage whose
slope is equal tôγ and is allowed to be negative. As shown by Putteret al.(2002),
such approaches are equivalent to the variance components method.

Often, data are selected based on phenotype values (selected sample such as affected
sibpairs, extremely discordant pairs, etc . . . ), the variance components method is no
longer valid and appropriate methods that take into account the sampling scheme
need to be employed. These so-called inverse regression methods first introduced by
Sham and Purcell (2001) have been implemented inMERLIN-regress (Shamet al.,
2002). A typical output from the software will provide a signed estimate of the QTL
effect γ̂ and associated standard errors at an arbitrary grid of positions. The soft-
ware can also be used in case of random samples as an alternative for the variance
components modules. Because of its very convenient output we advocate the use
of MERLIN-regress when analyzing linkage data whenever suitable. One out-
standing problem withMERLIN-regress is the use of an imputed covariance for
IBD sharing which can lead to bias in estimation especially in genome areas where
markers information is very low. In practice, one clear indication that the imputed
covariance is not a good approximation is when the software either gives out QTL
estimates larger than1 with huge associated LOD scores or no estimates at all (NA).
In practice, marker maps and densities vary widely and one often ends up with areas
of the genome with scarce information. In this case, we advocate the use of a more
reliable IBD covariance matrix which we calculate by Monte Carlo simulations. In
Section 1.3.2, we provide more details on how we do this in practice.

1.3.2 Special case: sib pair designs

In order to show how we adjust for differing marker maps (or different allele fre-
quencies on the same map), we now outline the inverse regression approach in the
simplest and most widespread case of sib pair studies. The trait valuesx = (x1, x2)′

are assumed to have been standardized and to follow the usual additive variance com-
ponents model i.e. the vectorx is assumed to follow a bivariate normal distribution
with mean0 and covariance matrixΣ

Σ =
[

1 ρ + γ(π − 1
2 )

ρ + γ(π − 1
2 ) 1

]
.

Hereπ is the proportion of alleles shared IBD measured exactly at the QTL position
andγ therefore represents the proportion of total variance explained by the QTL,ρ
is the marginal sib-sib correlation for the trait of interest. An extension of a relation
shown in Putteret al.(2003) under complete information gives an approximate re-
gression (valid for small values ofγ) between excess IBD sharing and a function of
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the phenotype trait values which is the basis of the inverse regression approach:

E(π̂ − 1
2
|x, γ) ' γ var0(π̂) C(x, ρ)

where

π̂ =
1
2
× P0(π =

1
2
|M) + 1× P0(π = 1|M)

is the usual estimate of IBD sharing given marker dataM available while

C(x, ρ) =
[
(1 + ρ2)x1x2 − ρ(x2

1 + x2
2) + ρ(1− ρ2)

]
/(1− ρ2)2

and is sometimes referred to as the optimal Haseman-Elston function. For a sample
of j = 1, . . . , N sib pairs, the method of least squares provides an approximately
consistent estimate ofγ given by

γ̂ =

∑N
j=1(π̂j − 1

2 )C(xj , ρ)

var0(π̂)×∑N
j=1 C2(xj , ρ)

,(1.2)

with standard errors =


var0(π̂)×

N∑

j=1

C2(xj , ρ)



−1/2

.(1.3)

Here var0(π̂) represents the variance ofπ̂ under the null hypothesis and would equal
1
8 under complete information and although an exact calculation is extremely tedious
it can be closely approximated by simple Monte Carlo simulations. For example, one
can use the options--simulate and--save in Merlin (Abecasiset al., 2002)
to generate a large number of pedigrees with a given structure (sib pairs here), mark-
ers’ characteristics (i.e. allele frequencies and inter-marker distances) and possibly
missing pattern for genotypes, the true var0(π̂) can then be accurately approximated
by the sample variance of̂π. We show in Figure 1.1 how widely this measure of
marker information may vary within and between studies. It is therefore crucial to
appropriately account for this variation when estimatingγ, failure to do so may in-
troduce bias in the QTL estimates. If no such information is available, it is possible in
principle to calibrate scan by comparing mean or median QTL variance components
over the whole genome between studies, but in small studies such methods might be
prone to error.

1.3.3 Retrieving information on the common grid from an individual study

For the meta-analysis we need to define a common grid of locations and obtain QTL
estimates on that grid for each study. However, it can happen that in the individual
studies, the only data at hand are QTL estimates (γ̂’s) and their standard errors (s’s)
on an original grid of locations which is not the common one we wish to use. Typ-
ically this original grid would be a set of sayt = 1, . . . ,M markers’ positions. We
show how to obtain QTL estimates and associated standard errors on this new com-
mon grid of locations, if the characteristics of the original map are available and from
the IBD distribution for that map under the null hypothesis.
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Figure 1.1 Marker information (var0(π̂)) in the Australian (continuous line) and Dutch (bro-
ken line) data sets Vs. position (Haldane’s cM) - Chromosome 6

For the sake of simplicity, we stick to sib-pair designs as in the previous section.
Given theM ×1 vector of original QTL effect estimateŝγ = (γ̂t)t=1,...,M and asso-
ciated standard errors(st)t=1,...,M , the best linear approximation of the QTL effect
γ̂q at an arbitrary position denotedq is given by a weighted least squares estimate

γ̂q =
ω′qV

−1γ̂

ω′qV −1ωq
,

with standard errorsq =
(
ω′qV

−1ωq

)−1/2
.

Here′ denotes the transpose of a vector. The matrixV is proportional to the variance-
covariance matrix of the vector̂γ under the null hypothesis of no linkage and is given
by

Vkl =
{

var0(π̂k)−1 if k = l

Cov0(π̂k, π̂l) (var0(π̂k) var0(π̂l))
−1 if k 6= l

,

Furthermore,ωq is theM × 1 vector whosekth element is given by

ωq,k =
Cov0(π̂k, π̂q)

var0(π̂k)
.

All the var0 and Cov0 terms can in principle be calculated by Monte Carlo simula-
tions provided the map characteristics and pedigree structure are known.

In the idealized case of a saturated map which would supply perfect IBD knowledge
at any location on a chromosome, all var0 terms are equal to18 and Cov0(π̂t1 , π̂t2) =
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1
8 (1 − 2θt1,t2)

2, whereθt1,t2 is the recombination fraction between loci att1 and
t2 (Risch, 1990). Taking the off-diagonal terms inV to be equal to0 (i.e. assuming
that markers are not linked), one obtains the estimate of QTL effect advocated by
Etzel and Guerra (2002) (in the special case that between-study varianceσ2 = 0).
In the context of meta-analysis, it is important to properly account for differences in
marker information between studies, unless the marker maps are close to saturated in
all studies. Remarkably, the elements needed to calculateγ̂q andsq at any arbitrary
location are just the corresponding estimates atM marker locations and map charac-
teristics, none of the subject-specific data (traits values, individual IBD estimatesπ̂i)
are needed.

1.4 Example

We applied the methods previously described to four data sets on lipid levels orig-
inating from Australia (aus), The Netherlands (nlj and nlo) and Sweden (swe). The
full results are reported in Heijmanset al.(2005) and we have selected only one end-
point (LDL cholesterol levels) for illustration purposes. The data available for linkage
analysis consisted almost entirely of sib pairs (371, 83, 110 and 36 pairs in the aus,
nlj, nlo and swe data sets, respectively) with the exception of the Australian data set
which also had 1 family with three siblings and 3 families with four siblings. Geno-
typing has been carried out using a common marker map for the nlj, nlo and swe data
sets but with a different denser map for the aus data set. We actually had access to the
raw data sets and could therefore easily obtain QTL estimates and standard errors on
a common grid of positions.

Prior to linkage analysis (usingMERLIN-regress ), raw phenotypic data were ad-
justed for sex and age, within country. The analysis of the actual data revealed little
differences between the three methods described in Section 1.2, this is partly due
to the small sample sizes in the individual data sets which does not allow to clearly
establish heterogeneity between studies. We present graphically the original results
for two interesting chromosomes: chromosome 2 (Figure 1.2) and chromosome 13
(Figure 1.3). Note that the QTL variance estimates and LOD scores of the Pooled
analyses have been multiplied by 0.95 and 1.05 for the random effect model (la-
belled ’het’) and the two-point mixture model (labelled ’2-p mixt’) respectively, this
was necessary to make all curves visible.
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Figure 1.2 Original data - Chromosome 2 - LDL cholesterol level

In chromosome 2, the three pooled estimates of QTL variance coincide everywhere
apart from the 20-60cM region where the two-point mixture model gives a higher
estimate with corresponding estimate of proportion of study linkedα̂ = 0.75 (i.e. the
’nlo’ data set is not linked) at 32cM where the maximum LOD score is attained. The
corresponding pooled LOD score is roughly the same as the maximum LOD score
obtained in the ’aus’ data set and therefore there seems to be no gain in pooling the
three linked data sets in this case. On chromosome 13, the pooling results in a very
slight increase in LOD score in the region around 20cM compared to the maximum
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Figure 1.3 Original data - Chromosome 13 - LDL cholesterol level

of the individual LOD scores and the three methods give the same score. Note the
sudden rise and fall in the estimate of QTL varianceγ̂ for the two-point mixture at
52cM which corresponds to a decrease inα̂ from 1.0 to 0.36. The fitting algorithm
of the two-point mixture actually gave negative values forγ̂ right of 54cM so the
estimates were truncated to 0. Given those unconvincing real-life examples, one can
legitimately asks the next two questions:
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1. In practice, is there any gain in pooling data sets at all? I.e. can we obtain higher
LOD scores than the maximum of the individual LOD scores?

2. Does allowance for heterogeneity help in enhancing statistical significance? I.e.
are the LOD scores for the random effect model and/or the two-point mixture
model ever higher than the LOD score of the homogeneity model?

The answer to question 1. is ’Yes’ even when individual studies are small provided
the QTL effects are more or less the same in all studies i.e. the assumption of ho-
mogeneity is verified. The answer to question 2. is also ’Yes’ but only when the
sample size in the individual studies are large enough as we show by means of a
simulated example inspired from the original lipid levels data. We artificially in-
creased the sample size of each of the four data sets by a factor 4 (i.e. the standard
errors were divided by 2). The corresponding results are displayed graphically in
Figure 1.4 for chromosome 2 and in Figure 1.5 for chromosome 13. In the 20-70cM
region of chromosome 2, studies ’aus’ and ’swe’ both show clear linkage signals,
QTL estimates vary quite widely across studies which is now unambiguously shown
by the heterogeneity test. We are probably in presence of both quantitative and qual-
itative heterogeneity here since study ’nlo’ shows no QTL effect at all. As a result,
the significant signals observed in the ’aus’ and ’swe’ studies (maximum LOD score
' 8) weaken in the homogeneous model (maximum LOD score' 7) while both the
heterogeneity model and the two-point mixture enhance it further (maximum LOD
score' 10). Heterogeneity therefore contributes to the proof that a linkage effect
is present. Similar outputs are displayed for chromosome 13 in Figure 1.5. In the
40-70cM region, heterogeneity of QTL effects is now clearly qualitative (both ’nlj’
and ’swe’ have similar QTL effects with corresponding suggestion for linkage) and
the pooled homogeneous analysis is dominated by the large ’aus’ study with QTL
variance estimates close to 0 which entirely obliterates the individual linkage signals
of ’nlj’ and ’swe’. The two-point mixture works best here in pooling evidence from
the two positive studies and enhancing the LOD score beyond 4 in a much narrower
region (maximum LOD score' 3.5 in individual studies).
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Figure 1.4Artificial data - Chromosome 2 - LDL cholesterol level
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Figure 1.5 Artificial data - Chromosome 13 - LDL cholesterol level

1.5 Discussion

We have detailed how classical meta-analytic methods can be adapted to linkage pro-
vided consistent estimates of QTL effects along with standard errors are available for
each study on a common grid of positions. The methods required to obtain such sum-
mary statistics are now well developed and their software implementation has been
publicly available for a number of years. We realize, however, that most published
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studies to date will not have sufficient information in order to carry out the method
advocated here. Indeed, it is still common practice nowadays in the literature, even
for QTL mapping where the effect to be estimated is fairly uncontroversial, to pub-
lish statistics conveying statistical significance only (i.e. LOD scores) without any
idea of the actual effect estimate. This heavily hinders powerful pooling of the many
small linkage studies available in the community. Guet al.(1998) presented guide-
lines on how to report linkage studies that would enable future meta-analysis using
IBD sharing as a common linkage parameter. Since the analysis tools are available
(e.g.MERLIN-regress ), it should be expected by journals that researchers pub-
lish QTL effects and associated standard errors (at least as add-on information) on a
grid of locations.

Given the small individual study sizes one typically encounters, any test for hetero-
geneity of QTL effects across studies is bound to suffer from a lack of power. This
was reflected in the test for heterogeneity of the real lipid levels data as well as in
the estimate of the between study variance componentσ2 which very rarely differs
from 0 (Heijmanset al., 2005). Another way to test for heterogeneity in the random
effect model setting is to test whetherσ2 = 0 and this is known to be asymptotically
equivalent to theX2 test that we have presented (Andersenet al., 1999). Note that
the classical random effects model is probably not the most appropriate in the case
of linkage, indeed the fact that the QTL effect is a variance component precludes it
from being negative (which is not impossible under the normal mixture model) and
suggests that the random effectsγi’s could be more appropriately modelled as arising
from aΓ distribution but estimation then becomes less straightforward.

The idea of applying the concept of finite mixture models to meta-analysis is also not
new (Böhninget al., 1998) although it is new for meta-analysis of linkage studies as
far as we are aware. It is based on the simple idea that only studies with a positive
effect should be pooled together to provide evidence for linkage. Instead of doing this
by hand, we let the data decide which study exhibits positive linkage. Note that one
can also formally test for locus heterogeneity by assessing whetherα differs from
1. Ultimately, given a sufficiently large number of studies with decent precision, it
would be possible to fit a model that adapts to both locus and size heterogeneity by
combining the random effect and the two-point mixture models.
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