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0.1 Introduction

Karl Sax was a pioneer in the field of quantitative trait loci (QTL) mapping. In his
ground breaking 1923 paper, Sax identified a quantitative trait locus (QTL) for seed
weight by associating the trait with seed color (a “marker” for which genotype infor-
mation could be inferred). The next 60 years saw only a handful of similar studies,
largely due to limitations imposed by the difficulty in arranging crosses with a rea-
sonably large number of genetic markers. This changed in the 1980s following the
discovery that abundant, highly polymorphic variation could be used to derive molec-
ular markers densely spaced throughout the genome (Botstein et al. 1980). This ad-
vance, combined with statistical methods for QTL mapping (Lander and Botstein
1989), led to hundreds of QTL mapping studies.

A recent advance of comparable significance has been made in the area of pheno-
typing. With high throughput technologies now widely available, investigators today
can easily measure thousands of traits for QTL mapping. Gene expression abun-
dances measured via microarrays are particularly amenable to QTL mapping, and
most scientists agree that the mapping of gene expression has the potential to impact
a broad range of biological endeavors (Cox 2004; Broman 2005).

The optimism is based largely on the first expression trait loci (ETL) studies which
have demonstrated utility in identifying candidate genes (Schadt et al. 2003; Bystrykh
et al. 2005 Hubner et al. 2005), in inferring not only correlative but also causal rela-
tionships between modulator and modulated genes (Brem et al. 2002; Schadt et al.
2003; Yvert et al. 2003), in elucidating subclasses of clinical phenotypes (Schadt et
al. 2003; Bystrykh et al. 2005; Chesler et al. 2005; Hubner et al. 2005), and perhaps
most importantly, in identifying “hot spot” regions, genomic regions where multiple
transcripts map (Schadt et al. 2003; Brem et al. 2002; Morley et al. 2004; Bystrykh et
al. 2005; Chesler et al. 2005; Hubner et al. 2005). Hot spot regions are attractive for
follow up studies as they putatively contain master regulators that affect transcripts
of common function. The identification of master regulators could give critical infor-
mation on mechanisms of regulation that remain poorly characterized and ultimately
lead to targets of gene therapies (Cox 2004; Schadt et al. 2003). As a result of these
successes, a number of efforts are now underway to localize the genetic basis of gene
expression.

It is clear that the experimental set up in an ETL mapping study is structurally simi-
lar to a traditional QTL mapping study, but with thousands of phenotypes; and, as a
result, most published studies to date have used methods developed for the QTL map-
ping problem in the ETL mapping setting. Lan et al. (2003) reduced the expression
measurements to a few summary scores using a principal components analysis and
then used single-trait QTL mapping methods to map the summary phenotypes. Do-
ing so proved useful; however, transcript specific information could not be recovered.
Others have used a “transcript-based” approach. In a transcript-based approach, each
transcript is treated separately as a one-dimensional phenotype for QTL mapping.
Single trait QTL analysis is then carried out thousands of times (once for each tran-
script). Notably, although adjustments are made for multiple tests across the genome,
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no adjustments are made for multiple tests across transcripts. This leads to a poten-
tially serious multiple testing problem and an inflated false discovery rate (FDR).

An alternative approach recognizes the similarities between ETL mapping and the
problem of identifying differentially expressed (DE) transcripts in a standard mi-
croarray experiment. By grouping animals with similar marker genotypes, the ETL
mapping problem at a particular marker reduces to identifying DE transcripts across
the genotype groups. Any method developed for identifying DE transcripts could be
applied. Similar to the transcript-based approach, this “marker-based” approach is
also subject to inflated FDR as here multiplicities across markers are not accounted
for. For some labs, an inflated FDR is tolerable as many genes can be tested quickly
for certain properties and discarded if found to be false positives. However, for many
labs, validation tests are prohibitively expensive and statistical methods that control
error rates across both markers and transcripts are needed. Kendziorski et al. (2004)
proposed such an approach, the mixture over markers (MOM) model.

In this chapter, we will review transcript-based approaches, marker-based approaches,
and the MOM model approach to ETL mapping. The advantages and disadvantages
of these approaches are discussed in Sections 0.2 and 0.4. Utility is evaluated using
simulated data and data from two case studies (Section 0.3).

0.2 ETL Mapping Data and Methods

0.2.1 Data

The general data collected in an ETL mapping experiment consists minimally of a
genetic map, marker genotypes, and microarray data (phenotypes) collected on a set
of individuals. A genetic marker is a region of the genome of known, or estimated,
location. These locations make up the genetic map. At each marker, genotypes are
obtained. ETL mapping studies take place in both human and experimental popu-
lations. We focus here on the latter. For these populations, the number of possible
marker genotypes is relatively small.

Studies with experimental populations most often involve arranging a cross between
two inbred strains differing substantially in some trait of interest to produce F1 off-
spring. Segregating progeny are then typically derived from a B1 backcross (F1 x
Parent) or an F2 intercross (F1 x F1). Repeated intercrossing (FnxFn) can also be
done to generate so-called recombinant inbred (RI) lines. For simplicity of notation,
we focus on a backcross population. This is not required and is relaxed in the sim-
ulation and case studies sections. Consider two inbred parental populations P1 and
P2, genotyped as AA and aa, respectively, at M markers. The offspring of the first
generation (F1) have genotype Aa at each marker (allele A from parent P1 and a
from parent P2). In a backcross, the F1 offspring are crossed back to a parental line,
say P1 resulting in a population with genotypes AA or Aa at a given marker. We
denote AA by 0 and Aa by 1.
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For each member of the backcross population, phenotypes are collected via microar-
rays. For the kth animal, let yt,k denote the expression level for transcript t and gm,k

denote the genotype at marker m; t = 1, 2, . . . , T and k = 1, 2, . . . , n. To avoid
confusion when referring to genes on a genetic map and gene expression levels mea-
sured on a microarray (where the physical location of the gene is often not known),
when referring to the former, we use the term gene; when referring to the latter, we
use transcript or trait.

Most questions addressed in an ETL mapping study rely on the ability to identify a
list of significant linkages between transcripts and markers. To be precise, a transcript
t is linked to marker m if µt,0 6= µt,1, where µt,0(1) denotes the latent mean level of
expression of transcript t for the population of animals with genotype 0(1) at marker
m. Suppose observations yt,k have density fobs(yt,k|µt,gm,k

, θ) where θ denotes
any remaining unknown parameters. Assuming independence across animals, un-
der the null hypothesis of no linkage, the data is governed by

∏n
k=1 fobs(yt,k|µt,0 =

µt,1, θ); and under the alternative,
∏n

k=1 [fobs(yt,k|µt,0, θ)]
1−gm,k [fobs(yt,k|µt,1, θ)]

gm,k .
As discussed below, a main difference between the transcript-based (TB) and marker-
based (MB) approaches arises from different assumptions regarding the latent means.

0.2.2 Transcript Based Approach

A TB approach refers generally to the repeated application of any single phenotype
QTL mapping method to each mRNA transcript, with locations identified as impor-
tant if the test statistic of interest exceeds some critical value. The LOD score

log10

(

∏n
k=1 fobs(yt,k|µ̂t,0, µ̂t,1, θ̂)
∏n

k=1 fobs(yt,k|µ̂, θ̂)

)

is often used as the statistic measuring evidence in favor of linkage, where (̂·) denotes
the maximum likelihood estimate of the associated parameter(s) and µ denotes the
mean common across genotype groups (Lander and Botstein 1989). Critical values
that adjust for multiplicities across genome locations can be obtained theoretically
(Dupuis and Siegmund 1999) or via permutations (Churchill and Doerge 1994).

The specific TB approach considered here assumes a Gaussian density for fobs with
critical values determined by the formulas given in Dupuis and Siegmund (1999). We
consider the output from this approach at markers and refer to this as a TB marker
regression (TB-MR) approach. The restriction to consider output only at markers
is done to facilitate comparisons with MB methods, discussed below. For TB-MR,
the genome wide type I error rate per transcript is controlled at 5% (Dupuis and
Siegmund 1999).
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0.2.3 Marker Based Approaches

To identify transcripts significantly linked to genomic locations, instead of testing
each transcript for significant linkage across markers, one could test at each marker
for significant linkage across transcripts. This amounts to identifying DE transcripts
at each marker, with groups determined by marker genotypes. The MB approach
refers generally to the repeated application, at each marker, of any method for identi-
fying DE transcripts. In this setting, a number of approaches could be used. We here
consider four.

The first is an empirical Bayes approach, EBarrays, with the log-Normal Normal
model (LNN) described in detail in Kendziorski et al. (2003; 2004). This approach
calculates the posterior probability of differential expression for every transcript.
Thresholds can be chosen to control the expected posterior FDR across transcripts.
For example, by specifying the threshold to be the smallest posterior probability
such that the average posterior probability of all transcripts exceeding the threshold
is larger than 1 − α, the posterior expected FDR is controlled at α · 100% (New-
ton et al. 2004). This marker-based empirical Bayes approach will be referred to as
MB-EB. As in TB-MR, the LNN model assumes a Gaussian density for fobs .

The second marker-based approach consists of obtaining p-values from a Student t-
test followed by p-value adjustment; and the last two approaches consider moderated
t-statistics followed by p-value adjustment. The details of the moderated statistic
construction are given in Smyth et al. (2004) and Tusher et al. (2003), respectively.
Adjustment for these last three methods is done using q-values to control the overall
false discovery rate (FDR). In particular, to control the FDR at α, transcripts with
q-values <= α are considered significant (Storey and Tibshirani 2003). MB-Q, MB-
LIMMA, and MB-SAM will denote the three marker-based approaches, respectively.

0.2.4 Other Approaches

Although the TB and MB approaches are in many ways fundamentally different,
they share an important flaw. Separate tests are conducted for each transcript-marker
pair, and each measures evidence that the transcript maps to that marker relative to
evidence that it maps nowhere. Since a transcript can map to any of many marker
locations, the evidence that a transcript maps to a particular marker should not be
judged relative only to the possibility that it maps nowhere, but rather relative to
the possibility that it maps nowhere or to some other marker. This idea motivates
the mixture over markers (MOM) model (Kendziorski et al. 2004). Briefly, MOM
assumes a transcript t maps nowhere with probability p0 or to marker m with prob-
ability pm where p0 +

∑M
m=1 pm = 1 and M denotes the total number of markers.

The marginal distribution of the data yt is then given by

p0f0(yt) +

M
∑

m=1

pmfm(yt) (0.1)
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where fm describes the distribution of data if transcript t maps to marker m (f0

describes the data for non-mapping transcripts). The component densities are pre-
dictive distributions that can be derived under different parametric assumptions. For
comparison, we take Gaussian observation components for the log measurements
with Normal priors on the latent expression levels.

0.3 Evaluation of ETL Mapping Methods

The methods discussed above were evaluated using simulated data and data from two
case studies. The simulations are in no way designed to capture the many complexi-
ties of ETL mapping data. Nevertheless, they do provide some insight into operating
characteristics of each of the approaches. The first case study concerns an experiment
in yeast and the second a study of diabetes in mouse.

0.3.1 Simulation

Recall that for a backcross population, a subject has one of two genotypes (AA or
Aa) at each marker locus. For an F2, three genotypes are possible (AA, Aa, or aa)
and, as a result, a given transcript may be equivalently expressed (EE) or may be
in any one of 4 DE patterns (AA|Aa, aa ; AA, Aa|aa; AA, aa|Aa; AA|Aa|aa ).
Here | denotes inequality among the latent genotype group means. We performed
a simulation of an F2 population in which pattern membership was determined by
a multinomial where the expected proportion of transcripts in each DE pattern was
specified at 3%, 3%, 1% and 3%, respectively (1% is used for the pattern that is least
biologically plausible).

Care was taken to protect against biasing the results in favor of any of the meth-
ods considered. The details are given in Kendziorski et al. (2004). In short, a major
difference among methods lies in the estimation of transcript variance σt

2. To set
the variance for a simulated transcript t, we used the posterior mean of σt

2, given

by
∑n

k=1
(yt,k−ȳt,·)

2+ν0σ0
2

ν0+n−2 (derived assuming the transcript specific variance is dis-

tributed as scaled inverse chi-square: σt
2 ∼ Invχ2

(

ν0, σ0
2
)

). As ν0 → 0, the poste-

rior mean approaches (n−1)s2

n−2 ≈ s2, the transcript specific sample variance, which is
the naive estimate of σt

2 for an EE transcript under TB-MR assumptions. Data sim-
ulated with small ν0 is therefore consistent with assumptions made in TB-MR. As
ν0 → ∞, the posterior mean approaches a constant value σ0

2, which is assumed in
MB-EB (note that this assumption implies a constant coefficient of variation on the
raw gene expression scale). By varying ν0, operating characteristics could be evalu-
ated without biasing the results in favor of one method. Data simulated by this em-
pirical method had marginal distributions that were virtually indistinguishable from
the observed data.

We consider a single ETL simulation with 100 animals and 2 chromosomes. Marker
genotype data was obtained from chromosomes 2 and 3 of the F2 data described
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in the next section. Chromosome 2 (3) contained 17 (6) markers with an average
intermarker distance of 7.6 (17.7) cM. An ETL at marker 5 on chromosome 2 was
simulated; no ETL was simulated on chromosome 3. Seven sets of simulations were
obtained for ν0 between 5−5 and 55 (ν0 for the actual F2 data was estimated near 5).
For each value of ν0, 20 simulated data sets were generated. At each fixed ν0, the
profile marginal MLE was obtained for σ0

2.

FDR gives the proportion of transcripts identified incorrectly as mapping to chromo-
some 2; i.e. they were EE or they were DE but mapped outside the region flanking the
true ETL. Table 1 reports the operating characteristics. FDR is well above the target
level of 0.05 for most methods and most values of ν0. MOM is the only approaches
capable of FDR control in this simple simulation setting. Power measures the ability
to identify the DE transcripts exactly at marker 5 or either of the flanking markers
which are 16.5 and 5.8 cM away, respectively. There is little variation in power across
ν0. MB-Q is the most powerful method, followed by TB-MR, MB-EB, and MOM.
The difference in power between MOM and the others is statistically significant, but
perhaps not practically significant as power is still near 80%.

As shown in Table 1, the results from MB-Q, MB-LIMMA and MB-SAM were very
similar, most likely because the relatively large sample size (100 animals) yields
statistics in MB-LIMMA and MB-SAM that have been “moderated” only slightly.
A similar result was reported in Smyth et al. (2004), where an experiment with 16
animals was considered. For this reason, only results for MB-Q will be discussed
hereinafter.

0.3.2 Case Studies

To further compare these approaches, we consider ETL mapping data from the yeast
experiment described in Brem et al. (2002). It is structured as a backcross between a
standard laboratory strain (BY) and a wild isolate from a California vineyard (RM).
There are 6215 transcripts and 3312 markers. With only 40 segregants in the cross,
recombinants are limited. We removed pairs of markers with fewer than 10 recombi-
nants in between leaving 88 markers.

Brem et al. (2002) identified 8 regions enriched for linkage across the genome. Many
transcripts in these hot spot regions have been at least partly validated using indepen-
dent experiments. As noted in the Introduction, these regions are of much interest as
they may contain a master regulator responsible for the control of transcripts sharing
common biological function. A statistical test for enrichment of common function
can done via GOHyperG in Bioconductor (Bioconductor Core Team 2004)). GO-
HyperG uses data from Gene Ontology (GO), where transcripts are categorized at
varying levels of biological detail (the three broadest levels are molecular function,
cellular component, and biological process - there are many subcategories within
each). For a given set of mapping transcripts and a given function, a hypergeometric
calculation is performed to test for enrichment of that function across the transcripts.
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Interpretation of resulting p-values is not straightforward due to the many depen-
dent hypotheses tested. Furthermore, the hypergeometric calculation tends to result
in small p-values when GO nodes with few transcripts are considered. For these rea-
sons, it has been suggested that one only consider interesting small p-values obtained
from a relatively large set of transcripts (> 10) (Gentleman, 2005). Applying this cri-
terion to the results from Brem et al. (2002) gives 5 regions, shown in Table 2.

Table 3 shows information similar to Table 2, for the top 5 regions (5 regions with
the largest number of mapping transcripts) identified by MOM, TB-MR, and MB-Q.
We see that TB-MR identifies 3 of the 5 regions identified by Brem et al. (2002) on
chromosomes 3, 12, and 14. The location identified by Brem et al. (2002) on chromo-
some 2 is missed by TB-MR; and the location identified by TB-MR on chromosome
9 is not found using any other method and shows little evidence for enrichment of
common function. This is likely a false positive. Similar results are obtained from
MB-Q, with 3 of the 5 regions identified, and one potentially spurious identification
on chromosome 8.

The MOM model performs better: 4 of the 5 regions identified by Brem et al. (2002)
(on chromosomes 2, 3, 12, and 14) are also identified by MOM. The one region
identified by Brem et al. (2002) but not MOM is a second location on chromosome
3. There are not enough markers considered (using the selected 88) to distinguish
between these two regions using MOM. In addition to improved hot spot localiza-
tion, MOM is generally more sensitive than the other methods. We suspect that the
increased number of identifications made by MOM are not false discoveries as the
additional transcripts maintain evidence for enrichment of the common function.

It is insightful to check the results from these approaches when control of particular
error rates is not used for hot spot identification. For example, instead of defining hot
spots in terms of the number of mapping transcripts (which depends on particular
thresholds to generate binary calls), one could consider average evidence (across
transcripts) of mapping at each location (average LOD, average posterior probability,
or the average of 1 - q-value). Given hot spots identified in this way, one can simply
rank transcripts at each hot spot by LOD score, posterior probability, or 1-q-value and
then consider the top N transcripts for some N . In terms of regions identified and
tests for enrichment of common function, we found results similar to those shown in
Table 3 for N of 50 and 100.

The ETL mapping approaches were also evaluated using data from a study of dia-
betes in mouse. For details on the experiment, see Kendziorski et al. (2004). Briefly,
it is well known that the ob mutation in the C57BL/6J mouse background (B6-ob/ob)
causes obesity, but only mild and transient diabetes (Coleman and Hummel, 1973),
while the same mutation in the BTBR genetic background (BTBR-ob/ob) causes se-
vere type 2 diabetes (Stoehr et al. 2000). To gain insight into the genetic basis of these
differences, a (B6 x BTBR)F2-cross was generated yielding 110 animals. Selective
phenotyping (Jin et al. 2004) was employed to identify 60 F2 ob/ob mice. For each of
the 60 mice, liver tissue was isolated and 45,265 mRNA abundance traits were col-
lected at 10 weeks of age using Affymetrix Gene Chips (MOE430A,B). The probe
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level data was processed using Robust Multi-array Average (RMA) to give a single,
normalized, background corrected summary score of expression for each transcript
(Irizarry et al. 2003). Low abundance transcripts, defined as transcripts with aver-
age expression level below the tenth percentile, were removed leaving 40,738 traits.
Genotypes for 145 markers were also obtained (over 90% of the animals provided
genotype data at any given marker).

Each method was applied to identify ETL. Hot spot regions are shown in the left
panel of Figure 2. The first marker, D2Mit241, is adjacent to D2Mit9, which has
recently been identified as an obesity modifier locus (Stoehr et al. 2004). Two addi-
tional regions identified by 4 of the 5 methods (on chromosomes 4 and 10) are not
yet known to be involved in diabetes although we note that the region identified on
chromosome 4 has been implicated in other analyses done in the Attie lab. The two
regions identified by MOM alone on chromosomes 5 and 8 have been identified by
other groups in earlier studies: D5Mit1 is a location known to affect triglyceride lev-
els (Colinayo et al. 2003) and D8Mit249 is the marker on our map closest to the “fat”
gene which is known to affect both diabetes and obesity (Naggert et al. 1995). This
provides some evidence for the MOM approach, but much more biological validation
is required.

It is interesting to note that the agreement between FDR controlled and rank based
inferences observed for the yeast study was not observed here. Figure 2 (right panel)
gives results from the diabetes case study using the binary scores. As shown, there
is much less agreement across methods when the binary scores are used. We expect
there are conditions under which averaging evidence across transcripts is more ad-
vantageous than reducing to a binary score (and vice versa). This is currently an area
under investigation.

0.4 Discussion

The field of QTL mapping was reignited in the 1980’s by advances that allowed
for the relatively easy identification of genetic markers and their genotypes. Today,
with major developments in high throughput technologies, a similar advance has
taken place that allows for measurement of thousands of phenotypes. The number
and nature of these phenotypes are what distinguish QTL from ETL mapping. In fact,
ETL mapping is exactly traditional QTL mapping, but with thousands of expression
traits considered as phenotypes. The simplicity with which this difference can be
stated perhaps obscures the resulting challenges posed for the statistical analysis of
ETL data.

When faced with just about any statistical problem, it is often best to first consider
methods that are currently available. This was done for ETL mapping. The earliest
ETL papers applied traditional QTL mapping methods to each transcript in isolation.
Doing so does not account for multiple tests across transcripts; and we found this
to have a real impact on increased FDR even in very simplified simulation settings.
For some labs, an inflated FDR is tolerable as many genes can be tested quickly for
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certain properties and discarded if found to be false positives. However, for many
labs, such tests are prohibitively expensive and more appropriate statistical methods
are needed.

The most recent ETL studies have made attempts at adjusting for multiplicities across
both markers and transcripts using a two stage approach (Chesler et al. 2005; Hubner
et al. 2005). The first stage obtains a single p-value for each transcript that is adjusted
for multiple tests across markers; stage two controls the FDR across transcripts by
calculating q-values from these p-values. With this approach, mapping transcripts
are identified, along with the single most likely location to which these transcripts
map. Preliminary simulation results (not shown) show very low power if attempts
are made to control the FDR at 5%. This is consistent with the results reported in
Chesler et al. (2005), where an FDR cutoff of 25% is used so that 101 transcripts can
be identified (out of 12, 422 total transcripts).

Our general conclusion is that a clever application of statistical methods developed
in the context of QTL mapping and/or multiple testing is not sufficient to address the
complexities of the ETL mapping problem. As a result, we continue to investigate
MOM. The MOM approach was designed explicitly to address the ETL mapping
question. Operating characteristics evaluated via simulations as well as results from
case studies are encouraging. Another nice feature of the MOM framework is that
it can be extended to account for interval and multiple ETL mapping. This work is
underway.

In summary, much more work is required before the analysis of ETL data becomes
routine. In practice, we suggest an investigator apply a number of tools and focus
initially on genomic locations at which most methods agree (such as the 4 regions
shown in the left panel of Figure 2), keeping in mind that assumptions across dif-
ferent methods are often very similar and therefore by no means are the results of
different methods independent confirmations. Statisticians can contribute to the ETL
mapping effort by method development, evaluation, and validation; and by carefully
considering those genomic regions that do not agree across methods. Such regions
can provide valuable insights so that specific conditions under which different meth-
ods work best can be identified. Advances in each area and communication between
the two are required to maximize the amount of information that can be derived from
ETL mapping studies.
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OC Method
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FDR

TB-MR 0.286 0.286 0.293 0.285 0.286 0.28 0.301
MB-EB 0.282 0.281 0.285 0.279 0.269 0.117 0.034
MB-Q 0.24 0.246 0.246 0.24 0.245 0.23 0.226
MB-LIMMA 0.238 0.236 0.232 0.237 0.235 0.237 0.229
MB-SAM 0.233 0.238 0.235 0.232 0.238 0.236 0.221
MOM 0.038 0.041 0.046 0.037 0.036 0.005 0.002

Power

TB-MR 0.884 0.886 0.887 0.886 0.889 0.919 0.868
MB-EB 0.820 0.817 0.815 0.823 0.833 0.895 0.837
MB-Q 0.911 0.912 0.913 0.912 0.917 0.949 0.918
MB-LIMMA 0.900 0.910 0.909 0.900 0.914 0.935 0.899
MB-SAM 0.897 0.908 0.906 0.898 0.913 0.933 0.899
MOM 0.848 0.851 0.853 0.850 0.856 0.860 0.811

Table 1: Average operating characteristics (OCs) for TB-MR, MB-EB, MB-Q, MB-
LIMMA, MB-SAM, and MOM. Averages are calculated over 20 data sets; standard
errors were less than 0.005. OC definitions and details of the simulation are given in
the text (see Section 0.3.1).
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Chromosome Number of Common Function p-value
(BP) Mapping Transcripts

2(550) 18 Cell Separation ∼ 10−7

3(90) 21 Leucine Biosynthesis ∼ 10−7

3(190) 28 Mating ∼ 10−10

12(670) 28 Fatty Acid Metabolism ∼ 10−7

14(490) 94 Mitochondrial Induction ∼ 10−6

Table 2: Results reproduced from Brem et al. (2002). Chromosomal locations, num-
ber of transcripts mapping to each region, biological function common to these tran-
scripts, and p-values from GoHyperG are shown. BP gives the number of bases
(/1000) from the 5’ end of the chromosome.
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Method Chromosome Number of Common Function p-value
(BP) Mapping Transcripts

TB-MR 3(75) 29 Leucine Biosynthesis ∼ 10−6

TB-MR 12(607) 21 Fatty Acid Metabolism ∼ 10−7

TB-MR 14(502) 644 Mitochondrial Induction ∼ 10−6

TB-MR 15(1) 27 Glucan Metabolism > 0.2
TB-MR 9(99) 19 Iron Transport 0.03
MOM 2(602) 56 Cell Separation ∼ 10−5

MOM 3(75) 56 Leucine Biosynthesis ∼ 10−6

MOM 12(872) 55 Fatty Acid Metabolism ∼ 10−8

MOM 14(502) 94 Mitochondrial Induction ∼ 10−6

MOM 15(1) 288 Glucan Metabolism ∼ 10−3

MB-Q 3(75) 31 Leucine Biosynthesis ∼ 10−5

MB-Q 12(607) 36 Fatty Acid Metabolism ∼ 10−7

MB-Q 14(502) 78 Mitochondrial Induction ∼ 10−5

MB-Q 15(1) 29 Glucan Metabolism 10−1

MB-Q 8(80) 81 Response to Pheromone 0.001

Table 3: Top 5 regions identified by TB-MR, TB-Q, and MOM. For each method
and region, chromosomal locations, number of transcripts mapping to each region,
biological function common to these transcripts, and p-values from GoHyperG are
shown. BP gives the number of bases (/1000) from the 5’ end of the chromosome.
Note that the region identified by all methods on chromosome 15 is one of the 8
originally identified by Brem et al. (2002). It was excluded when constructing the
list of 5 due to a relatively large p-value (0.02). It is difficult to judge whether or not
this region is a false positive. Considering all methods point to this region, perhaps it
is not.


