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Abstract

The evolution of complex polygenic diseases is modeled using forward-time individual-

based simulations. In a typical simulation, individuals have 20 chromosomes with 400

microsatellite markers and 5 binary disease susceptibility loci (DSL). The simulation

starts with a small population and proceeds through four stages of evolution processes

including burn-in, disease introduction, split and growth, and mixing. Genetic drift,

mutation, selection, migration and demographic changes shape the genotype of the

resulting large multi-generation populations in which samples can be drawn using dif-

ferent ascertainment methods. Transmission Disequilibrium Test (TDT) and Linkage

(LOD) method are applied to these samples and their performance are compared. For

our simulated data, the TDT method turns out to be more sensitive than the LOD

method. However, both methods seem either to miss DSL or to indicate wide chromo-

somal regions. The novelty of our study is that we provide a flexible way to generate

datasets of polygenic diseases with different evolutionary backgrounds, and we are able

to directly test not only different gene mapping methods, but also different experimen-

tal designs and ascertainment methods.
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1 Introduction

In this study, we combine evolutionary simulation of genetic disease with statistical anal-

yses aimed at discovering the genes causing this disease. Our purpose is to evaluate the

effectiveness of these analyses.

Simulated datasets with known disease susceptibility genes and affectedness or trait values

provide tools to test the performance of gene mapping methods. For example, genetic epi-

demiologists use computer-simulated datasets distributed by the Genetic Analysis Workshop

(GAW, http://www.gaworkshop.org) to evaluate and compare statistical genetic methods.

Two main approaches exist to simulate such datasets, namely forward-time and backward-

time (coalescent) simulations. (Kingman 1982) Backward-time simulations are sample based.

The basic idea is that given a sample (of unknown genotype), we find the common ancestors

of individuals and coalesce them according to a stochastic process characterized by evolution-

ary properties like mutation, recombination and migration. After the most recent common

ancestor of all individuals is found, the process is run forward in time and it assigns genetic

information to individuals in the coalescent tree. This method is fast because it only con-

cerns individuals related to the final sample. It is also very flexible in that it can model many

migration and mutation models. It becomes more complicated when arbitrary demographic

models and recombination are involved. Even more, due to its theoretical basis as a neutral

process, coalescent process can not handle selection well, despite some recent advances (e.g.,

Fearnhead 2003). Therefore, it is very difficult, if not impossible, to simulate the evolution

of polygenic diseases with complex selection and penetrance models using this approach.

Forward-time simulations are simpler as an idea, and in implementation. Since evolution

proceeds forward in time, all that is needed is to mimic this process as close as possible. A

forward-time simulation usually starts from an initial population, and evolves it generation

by generation, subject to arbitrary number of genetic or demographic changes. Samples are

drawn from the last several generations. There is no limit on the type of disease, selection

and penetrance models this approach can handle. The problem with this approach is its
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inefficiency. For example, to simulate the evolution of a rare simple disease, we have to

keep track of all genotype in a very large population. From a sample point of view, most

of the computing time is wasted on unaffected individuals. Because of their limited use in

mimicking real populations, forward-time simulations have been used primarily for teaching

purposes. However, due to the exponential growth of the power of personal computers and

the availability of highly flexible forward-time simulation programs (Balloux 2001, Peng

and Kimmel 2005), it is now feasible to simulate large populations with complex polygenic

diseases.

In this paper, we will simulate the evolutions of polygenic diseases using a forward-time

population genetic simulation environment simuPOP (Peng and Kimmel 2005). Although all

parameters are customizable, a typical individual has 20 chromosomes with 400 microsatellite

markers and 5 binary disease susceptibility loci (DSL). The disease is defined by the layout

of the DSL and the single and multi-locus penetrance functions. During evolution, a small

population runs through a long burn-in process and then expands exponentially to its current

size. The disease is introduced at the beginning of the expansion and is nurtured until it

achieves a common status with disease allele frequency greater than 5%. Mutation, selection,

migration and demographic changes are applied to the population at appropriate generations.

The results of the simulations are large multi-generation populations in which samples can

be drawn using different ascertainment methods. We draw affected sib-pair samples from

the population and apply Transmission Disequilibrium Test (TDT) and Linkage method to

detect the DSL. The performance of these two methods is compared.

Our approach allows us to compare experimental designs and ascertainment methods.

For example, we may draw both family-based sibpair samples and population-based case

control samples and try to answer the question like ‘what would be required sample size of

a population based association study to achieve the power of family based linkage studies’?

These will be the subject of further study.

In addition to pure simulation, we derive theoretical expression for characteristics such
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as allele frequencies in case and control groups and sibling recurrence risk, some of which

being the multi-locus extension of the two-locus expressions derived by Risch (1990). This

provides a desirable validation of simulations.

2 Simulation scenario

Using a forward-time population genetics simulation environment simuPOP (Peng and Kim-

mel 2005), we write a Python script that simulates the evolution of a polygenic disease using

a flexible four-stage scenario. We note that the script can handle even more complicated

scenarios.

1. Create an initial population of N0 individuals. Each individual has 20 chromosomes

each with 20 equal-spaced microsatellite markers. Five disease susceptibility loci (DSL)

are placed on five different chromosomes, half-way between their adjacent markers.

2. Initialize each individual with two out of five initial haplotypes. Initialize DSL with wild

type alleles. This leads to an initial population with complete linkage disequilibrium

between markers.

3. Burn-in the population for G0 generations, subject to symmetric stepwise mutation and

recombination. Mutation and recombination will act on the population throughout the

simulations.

4. In the next G1 generations, disease alleles are introduced to the population by point-

mutating disease loci of different individuals. An allele is re-introduced if it is lost

because of genetic drift. Given a destined allele frequency, a disease allele is placed un-

der strong (positive or negative) selection pressure until it stabilises around its destined

frequency.

5. Split the population into k subpopulations and expand it exponentially during the next
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G2 generations. Migration is not allowed so subpopulations evolve independently of

each other. This allows population structure to build up.

6. Migration is allowed in the next G2 generations. Depending on the migration rate and

length of G2, population structure is attenuated as a result of mixing.

7. In the last three generations, each mating event produces two offspring (instead of

one as in previous generations). Pedigree information is recorded. The last three

generations are saved as the final virtual population.

8. Draw affected sibpair samples from the large population and apply TDT and Linkage

methods. DSL are removed from the samples.

The following subsections describe various aspect of this process in detail.

Markers and disease susceptibility loci

Each individual has 400 microsatellite markers and 5 binary disease susceptibility loci. The

microsatellite markers are spread evenly on 20 chromosomes. The microsatellite markers are

initialized with alleles labeled 50 and then mutate following a symmetric stepwise mutation

model. Although this mutation process has two absorbing boundaries 1 and 99, none of

them is reached by any allele during our simulations.

Although the number of DSL can be arbitrary, we will use five DSL for all our simulations.

These DSL are unlinked because they are put on different chromosomes. These DSL are

placed half-way between their adjacent markers.

There are one wild (N) and one disease susceptibility (S) allele at each DSL. We do

not model mutations between these alleles. Instead, we assume that all disease alleles are

derived from one common ancestral allele introduced at the disease introduction stage.

Marker locations are not explicitly specified and are roughly determined by recombina-

tion rates between adjacent markers. For example, if recombination rate between adjacent
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markers is 0.0005, the map distance between these two markers is 0.05 centiMorgan and

the length of chromosome is roughly one centiMorgan (using Haldane’s mapping function

−1
2
ln (1− 2θ), where θ = 19× 0.0005 ).

Burn-in stage

Chromosomes of each individual are randomly assigned two out of five haplotypes (nnnn · · · ),
n = 50, 51, 52, 53, 54 so that linkage disequilibrium between markers is complete (D′ = 1).

DSL are all initialized with the wild type allele. For the next G0 generations, microsatellite

markers are mutated under a symmetric stepwise mutation model. Recombinations between

adjacent loci (including DSL) happen at a constant recombination rate.

The goal of this stage is to make LD between adjacent markers closer to the prevailing

in the human population. For example, when r = 0.0001, the map distance between these

two markers is around 0.01cM, roughly 10k base pair. After burning in for G0 = 400

generations, D′ between adjacent markers will decline from 1 to a level comparable to that

of human population, which is roughly 0.7 according to Dunning et al. (2000). This is the

Linkage Disequilibrium scenario of Abdallah et al. 2003. Although it is possible to start with

totally random alleles and let LD build up with time (the Linkage Equilibrium scenario).

We have not investigated this possibility yet.

Introduction of disease

Five mutants are introduced to the population to five different individuals at the beginning

of the disease introduction stage. A mutant is re-introduced if it is lost because of genetic

drift. To let disease alleles reach designated range of allele frequency (e.g. 5% ∼ 10%),

strong advantageous or purifying selection is used to control the disease allele frequency at

each DSL. This is an extension to the scenario adopted by Abdallah et al. (2003). Although

other methods such as a bottleneck may be used to achieve the same high allele frequency,

our method seems more convenient.
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Fitness models

We assume that the fitness of an individual is solely determined by his/her genotype, re-

gardless of affectedness status or trait value. This allows us to disregard the penetrance

information during evolution and only assign penetrance at the last several generations.

An additive fitness model is used at each DSL. That is, fitness at a DSL with genotype

NN , NS or SS is 1, 1 − s/2 or 1 − s respectively, where s is the selection coefficient at

this DSL, and it may vary from locus to locus. The overall fitness value is obtained using a

multiplicative model (Pritchard 2001, Risch 1990). For example, if all DSL have the same

selection coefficient s, an individual with genotype at five disease loci NS, NN, NN, SS, NN

will have fitness value (1− s/2)×1×1×(1− s)×1 ≈ 1−3s/2, compared to 1 for non-carriers.

Population expansion and splitting

Human population has a complicated expansion and migration history. Most notably, human

population grew from a quarter billion to 6.4 billion in a thousand years, roughly following

an exponential increase model. Our increases the initial population from N0 = 104 to

N1 = 0.2×106 in 400 generations (8000 years if we assume 20 years per generation.) Although

N1 is nowhere close to our current census population size of 6×109, it seems enough to roughly

mimic isolated regional populations such as that of Finland. Another reason to justify this

population size is that human population does not follow random mating so the effective

population size is much smaller than the census size.

In an attempt to mimic human migration, we split the population into ten subpopula-

tions at the beginning of population expansion. The subpopulations first evolve separately

and then start to mix with migrations following an island model. The length of the no-

migration stage, mixing stage and intensity of migration determines the level of population

structure at the final population. Note that disease prevalence varies from subpopulation

to subpopulation and the disease may become extinct in some subpopulations. Since there

is no mutation at DSL, the only way to re-introduce this allele into the subpopulation is
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through migration.

Sample from the final population

True random mating is used almost all the time to ensure maximum effective population

size. In this mating scenario, parents are chosen randomly and will produce one offspring at

each mating event. Although a parent may be chosen multiple times and produce more than

one offspring, it is very unlikely to observe full siblings since the probability of two offspring

having the same parents is 1/N2 where N is the population (or subpopulation) size. Because

we use a family based ascertainment method (affected sibpairs), the number of offspring per

mating is changed to 2 at the last two generations. The resulting population has 0.2 × 106

individuals in 10 equal-sized subpopulations. It has genotype and pedigree information of

the last two generations so affected sibpairs and their parents can be sampled.

Affectedness of each individual is assigned according to a heterogeneity model (Risch

1990) superimposed on an additive model at each DSL. That is to say, the penetrance at a

DSL with genotype NN , NS or SS is 0, δ or 2δ respectively and the overall penetrance is

determined using formula 1−∏5
i=1 (1− di) where di is the penetrance value at locus i. For

example, if δi = 0.25 for i = 1, ..., 5, the probability of being affected for an individual with

genotype NS,NN ,NN ,SS,NN is 1 − .75 × 1 × 1 × .5 × 1 = 0.625. Note that if only one

DSL has disease allele(s), the overall penetrance equals the penetrance at this DSL.

TDT and Linkage (LOD score) method

Affected sibpairs and their parents are sampled. Genotypes at all DSL are removed from

the samples so we are left with datasets of 400 microsatellite markers. Samples are drawn

from the whole population regardless of the population structure. Since disease prevalence

varies among subpopulations, the sibpairs from less diseased subpopulations may be under-

represented. This can be corrected by sampling equal number of families from each subpop-

ulation but we will not discuss this possibility here.

9



These samples are saved in the Linkage format chromosome by chromosome so that

they can be analyzed by TDT and Linkage methods. We use GeneHunter to perform these

analyses. p−values at all markers are recorded.

3 Theoretical analysis

Because we know all the details about the evolutionary process and the penetrance models,

it is possible to estimate some population properties theoretically. These estimates will be

compared to simulated populations as a way to validate our simulations. It is also possible

to use these properties to estimate the power of a particular gene mapping method.

We assume that

• There are five DSL. Although all the results will be obtained for the five DSL case,

most of them can be easily extended to an arbitrary number of DSL.

• The allele frequency of the disease allele at locus i is fi, i = 1, 2, 3, 4, 5, which also

will be called the size of a DSL. Since the DSL are binary, the frequencies of wild-type

alleles are 1− fi, i = 1, 2, 3, 4, 5.

• The genotype at a DSL is gi = g1
i g

2
i , i = 1, 2, 3, 4, 5. gj

i can be set equal to N or S.

For numerical simplicity, we assume N = 1, S = 2.

• The frequency of a particular genotype is denoted by F (g) = F (g1g2g3g4g5).

• The penetrance of an individual is

P (g) = P (g1g2g3g4g5) = 1−
5∏

i=1

[1− pi(gi)]
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where

pi(gi) =





0 gi = NN

δi/2 gi = SN or NS

δi gi = SS

is the penetrance at DSL i.

In the following sections, we will estimate some population statistics such as disease preva-

lence, or sibling recurrence risk ratio in the final population. Note that some of the results

are motivated by and are extensions of similar results for two DSL in Risch (1990).

LD between adjacent markers

If we do not consider the impact of mutation and genetic drift, linkage disequilibrium (D )

between two adjacent binary markers is equal to Dt = D0 (1− r)t. If we start from complete

LD (D0 = 1
4
), D800 = 0.168 when r = 0.0005.

Our case is more complicated since microsatellite markers are involved. In this case, LD

between two adjacent markers is equal to the average of all D values estimated using one

allele at each locus, weighted by allele frequencies. More specifically,

D =
∑

i

∑
j

fifj |Dij| =
∑

i

∑
j

fifj |Fij − fifj|

where fi, fj are allele frequency of allele i and j, Fij is the genotype frequency of genotype

ij.

Genotype frequency

At DSL i, the probability of having one disease allele is 2fi(1−fi), having two disease alleles

is f 2
i . The genotype frequency F , assuming no interaction between DSL and homologous
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genotypes, is equal to

F (g) =
5∏

i=1

Fi (gi)

=
5∏

i=1

f
g1

i−1
i (1− fi)

2−g1
i f gi2−1

i (1− fi)
2−g2

1

where g1
i g

2
i is the genotype at DSL i. Fi (gi) is the genotype frequency at DSL i, g1

i , g
2
i =1

(wild type) or 2 (disease allele).

Overall disease prevalence

Let G be all possible genotypes at the DSL (45 = 1024 distinct types). The population

prevalence K is

K =
∑
g∈G

F (g) P (g)

=
∑

g

(
5∏

i=1

fi (gi)

)(
1−

5∏
i=1

(1− pi (gi))

)
(1)

As a special case, if fi = f and δi = δ for all i = 1, ..., 5,

K = 10fδ − 40f 2δ2 + 80f 3δ3 − 80f 4δ4 + 32f 5δ5

When f = 0.05, δ = 0.25,

K = 0.119

That is to say, if disease allele frequencies are 0.05 and penetrance is 0, 0.25 and 0.5 for

genotype NN , NS and SS respectively, the population incidence rate should be 0.119.

Table ?? displays K under different fi and δi values.
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Prevalence summands

Equation 1 uses all five DSL. However, it is useful to have a look at prevalence caused by

one DSL. Let

Ki =
∑
g∈G

F (g) pi (g)

and denote Gi = {g1
i g

2
i | g1

i , g
2
i = 0 or 1}. Without loss of generality, let i = 1. Because

∑
gi∈Gi

Fi (g) = 1, we have

K1 =
∑

g1∈G1

∑
g2∈G2

∑
g3∈G3

∑
g4∈G4

∑
g5∈G5

F (g) p1 (g)

=
∑

g2∈G2

∑
g3∈G3

∑
g4∈G4

∑
g5∈G5

[ ∑
g1∈G1

p1 (g) f1 (g)

]
4∏

j=2

fj (g)

=

[ ∑
g1∈G1

p1 (g) f1 (g)

]( ∑
g2∈G2

f2 (g)
∑

g3∈G3

f3 (g)
∑

g4∈G4

f4 (g)
∑

g5∈G5

f5 (g)

)

=
∑

g1∈Gi

p1 (g) f1 (g)

Therefore,

K =
∑
g∈G

F (g) P (g) =
∑
g∈G

F (g)

(
1−

5∏
j=1

(1− pj (g))

)

=
∑
g∈G

F (g)−
∑
g∈G

5∏
i=1

fi (g) (1− pi (g))

= 1−
∑

g1∈G1

∑
g2∈G2

∑
g3∈G3

∑
g4∈G4

∑
g5∈G5

5∏
i=1

(fi (g) (1− pi (g)))

= 1−
5∏

i=1

( ∑
gi∈Gi

fi (g) (1− pi (g))

)
= 1−

5∏
i=1

(1−Ki)

Under the additivity assumption, Ki can be simply expressed as

Ki = 2δifi
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and (1) can be written as

K = 1−
5∏

i=1

(1−Ki) = 1−
5∏

i=1

(1− 2δifi)

This formula is an extension of equation (15) in Risch (1990).

Genotype frequency in case and control groups

If we sample cases and controls from the population, we should expect higher frequency of

disease alleles in the case group and lower frequency in the control group. The magnitude

of this difference is important in mapping the DSL using association based studies. For any

genotype g,

Pr (g | affected) =
Pr (affected, g)

Pr (affected)
=

Pr (affected | g) Pr (g)

Pr (affected)

=
P (g) F (g)

K

Pr (g | unaffected) =
(1− P (g)) F (g)

1−K

For example, when fi = f = 0.05 , δi = δ = 0.25, i = 1, ..., 5

Pr ([NN, NN,NN,NN, NS] | affected) = 0.0663

Pr ([NN, NN, NN,NN,NS] | unaffected) = 0.0268

By symmetry and independence, we know that the proportion of affected individuals having

one disease allele is 6.63×10 = 66%. Similarly, the proportion of affected individuals having

two disease alleles is 28%, having three disease alleles is 5% and the rest of cases 1%. Among

those individuals having two disease alleles, homozygotes account for 12% of the cases.
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Genotypic distribution at a single DSL

Given Pr (g | affected), we can easily calculate the genotype frequencies at one DSL. For

example,

Pr (g1 | affected) =
∑

g2g3g4g5

Pr (g1g2g3g4g5 | affected)

=
∑

g2g3g4g5

P (g) F (g)

K

This formula can be expanded to

Pr ((1, 1) | affected) = (1− f1)
2

∑5
i=2

(
Ki

∏5
j=i+1 (1−Kj)

)

1−∏5
i=1 (1−Ki)

Pr ((1, 2) or (2, 1) | affected) = 2 (1− f1) f1

[
δ1 +

∑5
1i=2

(
(1− δ1) Ki

∏5
j=i+1 (1−Kj)

)]

1−∏5
i=1 (1−Ki)

Pr ((2, 2) | affected) = f 2
1 (1− 2δ1)

[∑5
i=2

(
Ki

∏5
j=i+1 (1−Kj)

)]

1−∏5
i=1 (1−Ki)

Using the same example when δi = δ = 0.25 and fi = f = 0.05, we have

Pr (NN | affected) = 0.731

Pr (SN or NS | affected) = 0.257

Pr (SS | affected) = 0.012

Furthermore, with even more algebra, we can obtain that

Pr (NN | unaffected) = 0.926

Pr (SN or NS | unaffected) = 0.073

Pr (SS | unaffected) = 0.001
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When looking at a particular DSL, unlike in the case of rare Mendelian disease where most

affected individual have affected alleles, only around a quarter of all affected individuals have

at least one disease allele. The genotype of other three quarter of the affected individuals

will contribute noise at this DSL and make mapping of this DSL difficult.

Further analysis shows that Pr (at least one diease allele | affected) increases with in-

creasing disease allele frequency, decreases with increasing penetrance coefficient. The im-

pact of the size of DSL is much larger than that of penetrance coefficient though.

Population versus Sample Allele Frequencies at DSL

In this simulation study, we have both population allele frequency (from the overall pop-

ulation) and sample allele frequency (from affected sibpair samples) available. It is of in-

terest to see how large is the difference between these frequencies. In other words, what

isf ′i = Pr (disease allele at DSL i | affected)?

Since we already know Pr (g1 | affected) , we can estimate f ′i by

f ′i =
1

2
Pr (SN or NS | affected) + Pr (SS | affected)

The formula is too lengthy to list here. When fi = f = 0.05, δi = δ = 0.25, f ′i = 0.26/2 +

0.01 = 0.14, larger than fi = 0.05. More examples are listed in table ?? .

Sibling recurrence risk

Let XP ,XS be the affectedness status of a proband and his/her sibling respectively (1 for

affected and 0 for unaffected). Let KS = E (XS | XP = 1) = Pr (XS = 1 | XP = 1) be the

recurrence risk for a sibling of an affected proband and λS = KS/K be the risk ratio for a

sibling of an affected individual compared with population prevalence. Therefore,

K ×KS = E (XP ) E (XS | XP = 1) = E (XSXP )
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where K = E (XP ) is the population prevalence of the disease. Following the same type of

argument as that in Risch (1990), we can prove that (see the Appendix)

K ×KS = 1− 2
5∏

i=1

(1−Ki) +
5∏

i=1

(1− 2Ki + KiKSi) (2)

where Ki =
∑

g∈G F (g) Pi (g) and KSi = E (XSi | XPi = 1) is KS restricted to DSL i (using

penetrance at DSL i as individual penetrance).

Numerical values of sibling recurrence risk can be found in table ??. KS for some pi, fi

configuration is listed in table ??.

4 Results

A number of simulations were run using different combinations of parameters. Table 1

summarizes the expected and observed population statistics of some of the simulations.

Note that disease allele frequencies can not be controlled exactly: They are adjusted to be

close to anticipated values during disease introduction stage and then drift randomly as a

result of genetic drift.

4.1 Population

Let us focus on two populations. Both populations are simulated using the following param-

eters: N0 = 104, N1 = 2×105, G0 = 400 (burn-in), G1 = 50 (disease introduction), G2 = 300

(without migration), G4 = 50 (mixing). Mutation and migration rates are 10−4 and 10−3

respectively. The only difference between these two populations is the recombination rates,

which are 5 × 10−4 and 10−4 respectively. There are five disease susceptibility loci located

after the 19th, 6th, 6th, 8th, 10th marker on chromosomes 1, 5, 7, 11, 16 respectively. The

disease allele frequencies at these DSL before population expansion are controlled between

4.5% and 5.5%. The disease alleles are neutral in the sense that they are not subject to pu-
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rifying selection after the disease introduction stage. The penetrance function at each DSL

is additive with parameter 0.5, and the overall penetrance follows a heterogeneity model.

The resulting first population has allele frequencies 6.3%, 7.5%, 4.0%, 3.3%, 4.6% at the

five DSL, which scatter around our expected allele frequency 5% as the result of modest level

of genetic drift. There are 24359 affected individuals in the final population which form 2736

sibpairs. The sibling recurrence risk ( the probability that a sibling of an affected proband

is also affected) is equal to KS = 18.2%, compared to population prevalence K = 12.2%.

This results in a sibling recurrence risk ratio λ = KS

K
= 1.49. Among all disease individuals,

at any given DSL, about 73% have no disease allele and 25% have one disease allele. As

depicted in Table 1, these observed population statistics match the theoretical expectations

well.

Allele frequencies vary from subpopulation to subpopulation. Figure 2 plots the geno-

types of all affected individuals in the final population. As we see from the figure, there

are around 500 affected individuals in subpopulation 1 but around 3500 in subpopulation

8. Disease allele frequencies also vary: Most disease individuals have disease susceptibility

allele 2 or 4 in subpopulation 1, but more than 50% of diseased individuals have disease

susceptibility allele 1 in subpopulation 7.

With recombination rate 5× 10−4 or 1× 10−4, the linkage disequilibria between adjacent

markers are still strong. From Figure 1, we can see that D′ between a DSL and its closest

marker is close to 0.9 in the first population. LD between adjacent markers on a chromo-

some without DSL is around 0.6. These numbers increase to 0.95 and 0.84 for the second

population because of a lower recombination rate.

4.2 TDT method

A sample of size 1000 (250 affected sibpairs with their parents) are drawn from each of the

final populations, regardless of subpopulation structure. Single-locus TDT test is applied to

both samples.
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We use the basic transmission disequilibrium test provided by GeneHunter. This single-

locus TDT method scans through all markers and looks for transmission distortion of parental

alleles. A p-value is given at each marker, which is plotted in Figure 3 in the form of − log p-

value. Decimal logarithms are used.

We use Bonferroni method to adjust these p-values. At the significance level 0.05, we

look for markers with p-values less than 0.05/400 (or equivalently with − log p-value greater

than − log 0.05
400

= 3.90). This is the horizontal line in Figure 3 and all the following figures.

Among five DSL, only DSL 1 and 2 are statistically significant. Note that disease allele

frequency at DSL 2 is the highest among all DSL.

With a smaller recombination rate, LD between DSL and their adjacent markers, and

between markers on the same chromosome are expected to be stronger in the second popula-

tion. This results in lower p-values at markers around each DSL. Because the recombination

rate between adjacent markers reflects map distances, population 2 reflects the result of a

denser mapping than population 1: A chromosome of population 2 is roughly one fifth of that

in the first population. The TDT method picks out three out of five DSL (2,4,5). Usually,

several markers are significantly linked to a DSL at each picked-out DSL due to the strong

linkage between these markers. Almost all markers are significant on chromosome 5.

From each of the two populations, we draw 10 samples and apply the TDT method. In

population 1, disease locus one through five are picked out 8, 7, 1, 0, 0 times respectively.

In population 2, disease loci are picked out 2, 10, 2, 3, 2 times. These numbers are closely

related to disease allele frequencies which are 6.3%, 7.5%, 4.0%, 3.3%, 4.6% in the first

population and are 3.3%, 5.4%, 3.1%, 5.0%, 2.8% in the second population.

4.3 LINKAGE (LOD Score) Method

The Linkage/LOD method is also applied to the samples, using GeneHunter. The underlying

disease model behind LOD method is obviously not compatible with ours, but we would like

to see if it can detect some of the DSL by treating it as a black-box method.
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We try to feed the LOD method with correct information whenever possible. For ex-

ample, we provide the true recombination rate and use allele frequency estimated from the

whole virtual population as the allele frequencies for markers. Although our disease follows

a heterogeneity multi-locus penetrance model, we provide the program with the true single-

locus penetrance values (0, 0.25, 0.5). These penetrance values are mostly true when a DSL

has one or two disease susceptibility alleles because few people have disease susceptibility

alleles at more than one DSL. However, the zero penetrance when there is no disease sus-

ceptibility allele at a DSL is untrue for the simulated datasets, because the disease is caused

by more than one DSL and disease susceptibility alleles at other DSL can also cause the

disease.

p-values at each marker are collected and plotted in the format of − log p-value (see Figure

4). Bonferroni multiple-testing correction is applied and the cutoff value is marked. The

results show that at the 0.05/400 significance level, no DSL is detected in the ten samples

we draw from each population.

5 Discussion

This paper employs a flexible way (Peng and Kimmel 2005) to generate large virtual popula-

tions from which various types of samples can be drawn and analyzed. We use evolutionary

modeling in forward time to recreate non-observable characteristics of complex genetic dis-

ease in human population. This approach has been rarely used. We then explore two

statistical genetics methods of disease gene mapping, using the simulated populations. Al-

though many kinds of ascertainment and gene mapping methods can be tested, we only

explore affected sibpair samples and the basic TDT and LOD methods.

This paper are not a comprehensive or exhaustive study of the methodology used for gene

detection in complex diseases. We introduce the methodology and generate two examples of

a complex disease, involving interaction of a number of genetic and demographic forces. The
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comparison between TDT and LOD is tentative, much more study is needed to elucidate

the relative effectiveness of these methods in the context of complex diseases.

Some of the reasons for complex diseases being so difficult to handle are elucidated by

numerical examples provided using the theoretical formulae derived in the paper: Naturally,

when several DSL are involved, each of them is presented in the affected individual with a

rather low probability.

It is considered that the TDT method is less sensitive to population structure. This

might be the reason for its relatively better performance in our study.

In conclusion, we attempted to create a comprehensive and realistic model of evolution

of complex genetic disease. Some of the details of our approach, such as the burn-in stage,

may not be directly comparable to what is really happening in human population. We will

further study this question.

A Appendix: Proof of expression 2e

Let gS be the genotype of sibling of the proband and gp be the genotype of the proband,

define

τ (gs | gp) = Pr (gs | gp)

Conditioning on gp, we have

K ×KS =
∑
gp∈G

Pr (XS = 1, XP = 1 | gp) F (gp)

=
∑
gP∈G

Pr (XS = 1 | XP = 1, gp) Pr (XP = 1 | gp) F (gp)

=
∑
gp∈G

F (gp) P (gp)
∑
gS∈G

Pr (gS | XP = 1, gp) Pr (XS = 1 | gs, gp, Xp = 1) (3)

=
∑
gp∈G

F (gp) P (gp)
∑
gS∈G

τ (gs | gp) P (gS)
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where F and P are genotype frequency and penetrance functions as defined before. To break

(3) into single locus measures, we need to define several single DSL measures,

• Define

τi (gsi | gpi) = Pr (gsi | gpi) = Pr (gsi, gpi) /fi (gpi)

By conditioning on parental genotype gF (paternal) and gM (maternal), τi (gsi | gpi)

can be calculated as

τi (gsi | gpi) = fi (gpi)
∑

gFi∈Gi

∑
gMi∈Gi

Pr (gsi, gpi | gF , gM) fi (gFi) fi (gMi) (4)

where Pr (gsi, gpi | gF , gM) = Pr (gsi | gF , gM) × Pr (gpi | gF , gM) are obtained using a

table like Pr (g = (1, 1) | gF = (0, 1) , gM = (0, 1)) = 1
4
.

• Define KSi analog to KS but with g confined to DSL i , (the meaning of Ki and Ksi

does not hold any more, they are used for notational and computational convenience.)

KSi =
1

Ki

∑
gpi∈Gi

[
fi (gpi) pi (gpi)

∑
gSi∈Gi

τi (gsi | gpi) pi (gsi)

]

=
1

2
(1 + 3fi) pi

where Ki =
∑

gpi∈Gi
fi (gpi) pi (gpi) = 2fipi.

Since τi are independent to each other, we have

∑
gS

τi (gsi | gpi) =
∑
gS

Pr (gs | gp) = 1

τ (gs | gp) =
5∏

i=1

τi (gsi | gpi)

∑
gSi

τi (gsi | gpi) =
∑
gSi

Pr (gsi | gpi) = 1
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Therefore,

K ×Ks =
∑
gp∈G

[
F (gp) P (gp)

∑
gS∈G

τ (gs | gp) P (gS)

]

=
∑
gp∈G

∑
gs∈G

[
5∏

i=1

(fi (gpi) τi (gsi | gpi))

(
1−

5∏
i=1

(1− pi (gPi))

)(
1−

5∏
i=1

(1− pi (gSi))

)]

=
∑
gp∈G

∑
gs∈G

5∏
i=1

(fi (gpi) τi (gsi | gpi))−
∑
gp∈G

∑
gs∈G

5∏
i=1

fi (gpi) τi (gsi | gpi) (1− pi (gPi))

−
∑
gp∈G

∑
gs∈G

5∏
i=1

fi (gpi) τi (gsi | gpi) (1− pi (gsi))

+
∑
gp∈G

∑
gs∈G

5∏
i=1

fi (gpi) τi (gsi | gpi) [(1− pi (gPi)) (1− pi (gSi))]

= item1-item2-item3+item4

Notice that

item1 =
∑
gp∈G

∑
gs∈G

5∏
i=1

(fi (gpi) τi (gsi | gpi))

=
∑
gp∈G

[
f (gp)

∑
gs∈G

τ (gs | gp)

]
=

∑
gp∈G

F (gp) = 1,

item2 =
∑
gp∈G

∑
gs∈G

5∏
i=1

fi (gpi) τi (gsi | gpi) (1− pi (gPi))

=
5∏

i=1

∑
gpi∈Gi

∑
gsi∈Gi

fi (gpi) τi (gsi | gpi) (1− pi (gPi))

=
5∏

i=1


1−

∑
gpi∈Gi

fi (gpi) pi (gPi)


 =

5∏
i=1

(1−Ki)
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item3 =
∑
gp∈G

∑
gs∈G

5∏
i=1

fi (gpi) τi (gsi | gpi) (1− pi (gsi))

=
5∏

i=1

∑
gpi∈Gi

∑
gsi∈Gi

fi (gpi) τi (gsi | gpi) (1− pi (gsi))

=
5∏

i=1


1−

∑
gpi∈Gi

∑
gsi∈Gi

fi (gpi) τi (gsi | gpi) pi (gsi)




=
5∏

i=1


1−

∑
gpi∈Gi

∑
gsi∈Gi

Pr (gsi, gpi) pi (gsi)




=
5∏

i=1


1−

∑
gsi∈Gi


 ∑

gpi∈Gi

Pr (gpi | gsi
)


 fi (gsi) pi (gsi)




=
5∏

i=1

(1−Ki)

and remember that Ki ×KSi =
∑

gpi∈Gi

∑
gSi∈Gi

[fi (gpi) pi (gpi) τi (gsi | gpi) pi (gsi)], we have

item4 =
∑
gp∈G

∑
gs∈G

5∏
i=1

fi (gpi) τi (gsi | gpi) (1− pi (gPi)) (1− pi (gSi))

=
5∏

i=1

∑
gpi∈Gi

∑
gsi∈Gi

(fi (gpi) τi (gsi | gpi)− fi (gpi) τi (gsi | gpi) pi (gPi)

−fi (gpi) τi (gsi | gpi) pi (gSi) + fi (gpi) τi (gsi | gpi) pi (gSi) pi (gpi)

=
5∏

i=1

(1− 2Ki + KiKSi)

Finally, we have

K ×KS = 1− 2
5∏

i=1

(1−Ki) +
5∏

i=1

(1− 2Ki + KiKSi)

This is an extension to expression (16) of Risch (1990).
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Table 1: Theoretical versus simulated population statistics

δ = δi f1 f2 f3 f4 f5 P11 P12 P22 f ′1 K KS λS

theor. 0.5 0.05 0.05 0.05 0.05 0.05 0.731 0.257 0.012 0.140 0.119 0.174 1.463
simul. 0.5 0.053 0.067 0.053 0.053 0.046 0.730 0.248 0.022 0.155 0.122 0.182 1.49
theor. 0.7 0.05 0.05 0.05 0.05 0.05 0.735 0.254 0.011 0.138 0.163 0.236 1.445
simul. 0.7 0.053 0.067 0.053 0.053 0.046 0.763 0.224 0.014 0.125 0.173 0.264 1.52
theor. 1.0 0.05 0.05 0.05 0.05 0.05 0.740 0.249 0.011 0.136 0.226 0.321 1.419
simul. 1.0 0.053 0.067 0.053 0.053 0.046 0.762 0.224 0.014 0.126 0.239 0.356 1.490
theor. 0.5 0.01 0.01 0.01 0.01 0.01 0.786 0.219 0.002 0.108 0.025 0.095 3.854
simul. 0.5 0.006 0.023 0.010 0.009 0.011 0.882 0.115 0.003 0.062 0.029 0.098 3.390
theor. 0.5 0.01 0.02 0.03 0.04 0.05 0.917 0.082 0.001 0.042 0.073 0.108 1.481
simul. 0.5 0.016 0.024 0.035 0.031 0.072 0.882 0.114 0.004 0.061 0.085 0.147 1.72
theor. 0.5 0.10 0.05 0.05 0.05 0.05 0.551 0.410 0.039 0.244 0.141 0.202 1.426
simul. 0.5 0.115 0.056 0.064 0.046 0.086 0.550 0.38 0.065 0.258 0.171 0.234 1.370

Expected and observed population statistics for various settings of p (penetrance,
the same for all DSL) and fi (allele frequency at DSL i), i = 1, 2, ..., 5. The
statistics are: K: disease prevalence; P11 = Pr (N, N at DSL 1 | affected); P12 =
Pr (N,S or S, N at DSL 1 | affected); P22 = Pr (S, S at DSL 1 | affected); f ′1 sample disease
allele frequency at DSL 1. Ks = E (Xs | Xp = 1) the probability of a sibling of an affected
proband is affected, λS = KS

K
risk ratio for a sibling of an affected proband to be affected com-

pared with population prevalence. For each simulation, disease allele frequency are controled
within fi ± 0.002 during disease introduction stage but then evolve freely afterwards.
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Figure 1: Linkage disequilibrium on two chromosomes
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Figure 2: Alleles at disease susceptibility loci of affected individuals

distribution of affected alleles

subpopulation/DSL1,2,3,4,5

af
fe

ct
ed

 in
di

vi
du

al
s

1 2 3 4 5 6 7 8 9 10

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

Genotype at the five DSL of all affected individuals, arranged by subpopulation (1-10, from
left to right). Genotype at each DSL of each affected individual is displayed from left to
right, marked by light gray (NN), dark gray (NS) and black (SS). The single-locus penetrance
model is an additive model with parameter 0.5.
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Figure 3: p-values of the TDT test
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-log p-value obtained by applying TDT method to two samples that differ by recombination
rate. Vertical dashed lines are location of the five DSL. Horizontal solid line is − log 0.05/400
which is the Bonferroni-adjusted p-value. Top, a simulation with recombination rate 5×10−4,
bottom: recombination rate 1× 10−4.
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Figure 4: p-values of the LOD test
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-log p-value obtained by applying LOD method to two samples that differ by recombination
rate. Vertical dashed lines are location of the five DSL. Horizontal solid line is − log 0.05/400
which is the Bonferroni-adjusted p-value. Top, a simulation with recombination rate 5×10−4,
bottom: recombination rate 1× 10−4.
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