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CHAPTER 1

A Misclassification Model for Inferring
Transcriptional Regulatory Networks

Ning Sun, Hongyu Zhao
Yale University

1.1 Introduction

Understanding gene regulations through the underlying transcriptional regulatory
networks (referred as TRNs in the following) is a central topic in biology. A TRN
can be thought of as consisting of a set of proteins (transcription factors), genes,
small modules, and their mutual regulatory interactions. The potentially large num-
ber of components, the high connectivity among various components, and the tran-
sient stimulation in the network result in great complexity of TRNs. With the rapid
advances of molecular technologies and enormous amounts of data being collected,
intensive efforts have been made to dissect TRNs using data generated from the state-
of-the-art technologies, including gene expression data and other data types (e.g. Chu
et al., 1998; Ren et al., 2000; Davison et al., 2002; Lee et al., 2002; Bar-Joseph
et al., 2003; Zhang and Gerstein, 2003). The computational methods include gene
clustering (e.g. Eisen et al., 1998; Roberts et al., 2000), Boolean network model-
ing (e.g. Liang et al., 1998; Akutsu et al., 1999, 2000; Shmulevich et al., 2002),
Bayesian network modeling (e.g. Friedman et al., 2000, Hartemink et al., 2001,
2002), differential equation systems (e.g. Gardner et al., 2003; Tegnr et al., 2003),
information integration methods (e.g. Gao et al., 2004), and other approaches. For
recent reviews, see de Jong et al.(2002) and Sun and Zhao (2004). As discussed in
our review (Sun and Zhao, 2004), although a large number of studies are devoted
to infer TRNs from gene expression data alone, such data only provide very limited
amount of information. On the other hand, other data types, such as protein-DNA
interaction data (which measure the binding targets of each transcription factor, de-
noted by TF in our following discussion, through direct biological experiments), may
be much more informative and should be combined together for network inference.

In this article, we describe a Bayesian framework for TRN inference based on the
combined analysis of gene expression data and protein-DNA interaction data. The
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statistical properties of our approach are investigated through extensive simulations,
and our method is then applied to study TRNs in the yeast cell cycle.

1.2 METHODS

In this article, we model a TRN as a bipartite graph: a one-layer network where a set
of genes are regulated by a set of TFs. The TFs bind to the regulatory regions of their
target genes to regulate (activate or inhibit) the transcription initiation of these genes.
Transcription initiation is a principal mode of regulating the expression levels of
many, if not most, genes (Carey and Smale, 1999). Because the number of the genes
largely exceeds the number of TFs in any organism (e.g. there are 374 TF entries in
the updated Transfac database (http://www.gene-regulation.com/pub/databases.html)
and more than 6000 genes in yeast), there is combinatorial control of the TFs on
genes. That is, for a given gene, its expression level is controlled by the joint actions
of its regulators. Two well-known facts on the joint actions of TFs include cooper-
ativity, which in the context of protein-DNA interaction refers to two or more TFs
engaging in protein-protein interaction stabilize each other’s binding to DNA se-
quences, and transcriptional synergy, which refers to the interacting effects among
the Polymerase II general transcriptional machinery and the multiple TFs on control-
ling transcription levels. In our previous work (Zhao et al., 2003), we assumed that
the expression level of a specific gene is controlled through the additive effects of its
regulators. Liao et al. (2003) applied Hill’s equation for the cooperative TF bindings
on the regulatory regions of their target genes and the first order kinetics for the rate
of gene transcription. Under a quasi-steady state assumption, they proved that the
relative gene expression level has a linear relationship with the relative activities of
the TFs that bind on the gene’s regulatory region. In order to obtain a unique solution
of the regulation matrix, they required the full column-rank of the regulation and its
reduced matrices. In this article, we extend our previous work (Zhao et al., 2003) to
fully incorporate gene expression data and protein-DNA binding data to infer TRNs.
Before the discussion of our model, we first give a brief overview of the protein-DNA
binding data used in our method.

As the primary goal of TRN inference is to identify the regulation targets of each
TF, the most direct biological approach for this goal is to experimentally identify
the targets of various TFs. Many different biological methodologies are available to
serve this purpose. The large-scale chromatin immunoprecipitation microarray data
(ChIP-chip data) provide the in vivo measurements on TFs and DNA binding in yeast
(Ren et al., 2000; Lee et al., 2002). In our study, the protein-DNA binding data thus
collected are viewed as one measurement of the TRN with certain level of mea-
surement errors due to biological and experimental variations, e.g. physical binding
is not equivalent to regulation. We use the ChIP-chip data collected by Lee et al.
(2002) as the data source for protein-DNA binding. These data represent a continu-
ous measurement of the binding strength between each TF and its potential targets,
and a p-value is derived based on replicated experiments to assess the statistical sig-
nificance of binding. In our following work, the inferred binding p-values between
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a TF and its potential target genes are transformed into binary observations using a
significance level cut off of 0.05. That is, for all TF-gene pairs whose p-value is be-
low 0.05, we denote the observation as 1, representing evidence for binding, and for
those pairs whose p-value is larger than 0.05, we denote the observation as 0, repre-
senting not sufficient evidence for binding. The reason that we utilize protein-DNA
binding data is because we believe that the information from such data serves as a
close measurement for the true underlying TRN.

In our previous work (Zhao et al., 2003), we treated protein-DNA binding data as
representing the true underlying network, and used a simple linear model to describe
the relationship between the transcript amounts of the genes considered and their
regulators’ activities. In our current work, we extend this linear model to incorporate
potential errors associated with protein-DNA binding data to integrate three compo-
nents that are biologically important in transcription regulation, namely, the TRN as
characterized by the covariate (or design) matrix in the linear model, protein regula-
tion activities as defined by the predictors in the model, and gene expression levels
as defined by the response variables. We propose a misclassification model to simul-
taneously extract information from protein-DNA binding data and gene expression
data to reconstruct TRNs.

1.2.1 Model Specification

Our model relating gene expression levels, TRNs, and TF activities can be described
through three sub-models:

• A linear regression model relating gene expression levels with the true underlying
TRNs and regulators’ activities;

• A misclassification model relating the true underlying networks and the observed
protein-DNA binding data;

• Prior distribution on the TRNs.

The information on the measurement error can be built in a flexible way into a graph-
ical model (Richardson and Gilks, 1993; Richardson, 1999). The hierarchical struc-
ture of our graphical model is summarized in Figure 1.1 and we describe each com-
ponent in detail in the following.

The first sub-model: the linear regression model

Let N denote the number of genes and M denote the number of TFs related to the
regulation of these genes. We consider a total number T of gene expression exper-
iments, where these experiments may represent a time-course study, e.g. yeast cell
cycle studies, or different knock out experiments. We focus on time-course experi-
ments in our following discussion. In this case, we use t represents a specific time
point. The observed gene expression levels at time t, Yt, are the vector of N expres-
sion levels normalized over all time points for each gene i and serve as the response
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Figure 1.1 The hierarchical structure of the misclassification model discussed in this paper.
The unknown parameters are in the ovals, and the known parameters are in the rectangles.

in the linear model (1.1) with the following form:

Yt = Xβt + εt (1.1)

εit ∼ N(0, σ2
t ) (1.2)

where X represents the true TRN, β represents the time dependent regulator activities
of the M TFs, and εt represents the errors that are associated with gene expression
measurements. In matrix X, each row corresponds to a gene and each column cor-
responds to a TF. Therefore, the (i,j)th entry in this matrix represents the regulation
pattern of the jth TF to the ith gene. The value of this entry is 1 if the jth TF affects
the transcription level of the ith gene, and the value is 0 otherwise. Therefore, if our
primary interest is to infer the TRN, the overall objective is to infer the values in this
matrix, either 0 or 1.
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This model states that (1) the expression level of a gene is largely controlled by
the additive regulation activities of its regulators, (2) the same regulator has the same
relative effect on all its targets, (3) the TRN is identical across all time points, and (4)
the errors associated with gene expression measurements have the same distribution
across all the genes. We note that these assumptions are simplistic and may only
provide a first order approximation to reality. This model has nevertheless (implicitly
or explicitly) been used in the analysis of TRNs by many research groups and found
good success. The limitations and modifications of these assumptions are further
discussed in the Summary section.

Because protein-DNA binding data are often obtained from a mixture of biological
samples across all the time points, e.g. the asynchronized cells, they measure an av-
eraged protein-DNA binding over the whole cell cycle. Although we may use the
time-course gene expression data to investigate the fluctuation of the network over
time, the information at one time point may not be sufficient for statistical inference
(see results in the simulation study in the following). Therefore, we make the assump-
tion that the network is time independent and combine the information across time
points. Consequently, the variation of the response variable, gene expression, across
time points is accredited to the change in activities of the TFs, βt. With the given
activities of the predictors, the TRN of gene i (Xi) is independent of the network of
any other gene Xi′ , where i′ = 1, 2, ..., (i− 1), (i + 1), ..., N .

The second sub-model: the misclassification model

In our model set-up, both the true and observed covariates are binary, where 0 cor-
responds to no regulation and 1 corresponds to regulation. We assume the following
model (1.3-1.6):

P (Wij = 1|Xij = 1) = 1− p (1.3)

P (Wij = 0|Xij = 1) = p (1.4)

P (Wij = 0|Xij = 0) = 1− q (1.5)

P (Wij = 0|Xij = 1) = q (1.6)

where the values of p and q are the false-negative and false-positive rates of the
protein-DNA data. In practice, these values may be directly estimated from some
control experiments, thus we treat these parameters as known or prior information
in the misclassification model and specify their values. In the case these values may
not be precisely known, we also study the robustness of their misspecifications on
statistical inference. Note that the false-positive and false-negative rates may be gene-
TF specific, therefore, our assumption here represents a first-order approximation to
reality that may need further extension in future studies. The binary binding matrix
W serves as the measurement for the true TRN X.

The third sub-model: the exposure model
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For this submodel, we need to specify the prior distribution of the regulatory matrix
X. The prior distribution of X (πX ) describes the probability of Xij being 1, where
Xij represents the regulation between TF j and gene i. We assume that the Xij are
independent and have an identical distribution πX . For a given true network X, the
value of πX can be calculated from the data. When X is unknown and W serves as
the surrogate of X, πX is a model parameter to be specified.

1.2.2 MCMC algorithm for statistical inference

In our model set-up, a large number of unknown parameters {X, βt, σ
2
t } need to be

inferred based on the observations Yt, t=1, , T , and W. We propose to use the Gibbs
sampler for statistical inference. The Gibbs sampler is alternated between two steps:
(1) sample {βt, σ

2
t } conditional on X; and (2) sample X conditional on {βt, σ

2
t }.

These two steps are described in detail in the following.

Given current estimate of X, the model reduces to a standard linear regression model.
The parameters {βt, σ

2
t } are sampled through (1.7 and 1.8)

σ2
t ∼ Inv − χ2(df, s2

t ) (1.7)

βt ∼ N(β̂t, Vβσ2
t ) (1.8)

where df = N −M , Vβ = (X̂
T

X̂)−1, β̂t = VβX̂
T
Yt, and st is the sample standard

deviation. The matrix is the current estimate for the TRN.

Given current estimates of {βt, σ
2
t }, we individually update the TRN for each gene.

If there are M TFs, there are a total of K = 2M possible combined patterns among
the TFs to jointly regulate a specific gene. The likelihood Lik for each pattern k can
be evaluated as

Lik = LX
ik + LY

ik (1.9)

where

LX
ik = n1 log πX+n11 log (1− p)+n10 log p+n0 log (1− πX)+n01 log q+n00 log (1− q)

(1.10)

LY
ik = −

T∑
t=1

(Yit − Ŷikt)2

2σ2
t

(1.11)

In the above expression, LX
ik and LY

ik represent the likelihood contributions from the
protein-DNA binding data and the expression data, respectively. In the expression
for LX

ik, nso represents the number of TF-gene pairs whose true regulation is s and
the observed binding is o, where the values of s and o are 0 or 1. For example, n11

corresponds to the number of pairs whose true regulation and observed binding are
both 1, n1 = n10 + n11, and n0 = n00 + n01. The expression for LY

ik represents
the likelihood component derived from gene expression data across all time points.
After evaluating the log-likelihood for all the patterns, we sample one pattern based
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on the following multinomial distribution:

LY
ik ∼ multinomial(1,

exp(Lik)∑K
k=1 exp(Lik)

) (1.12)

Therefore, in the updating of the TRN, our algorithm does an exhaustive search over
all possible network patterns for each gene, and sample a specific network based the
relative likelihood of all possible networks. We repeat this for each of the N genes
to obtain the updated X̂ for the next iteration.

Based on the sampled parameter values, we can derive the posterior distributions for
all the unknown parameters. For example, we can obtain the inferred TRN describ-
ing the binding between the jth TF and the ith gene through the marginal posterior
distribution, i.e. the proportion of samples that the value of Xij is 1. These posterior
probabilities can then be used to infer the presence or absence of regulation through
specifying a cut-off value, e.g. 0.5, such that all the entries below this cut-off are in-
ferred not to have regulation effect, whereas all the entries having values above this
cutoff are inferred to have regulation.

1.2.3 Data analysis and simulation set-up

As our simulation model is based on the real data to be analyzed, we describe the
data sources first. According to the literature, we select eight important cell cycle
TFs, namely Fkh1, Fkh2, Ndd1, Mcm1, Ace2, Swi5, Mbp1, and Swi4, and based
on protein-DNA interaction data reported in Lee et al. (2002), we obtain a binary
binding matrix for these regulators and all yeast genes. The binary observation is
obtained by applying a 0.05 p-value cut-off to the p-values reported by Lee and
colleagues. We then remove those genes with no in vivo binding evidence with any
of the eight TFs from the binding matrix, and further focus only on yeast cell cycle
genes defined by Spellman et al. (1998). These steps result in a total of 295 genes to
be analyzed, and the observed protein-DNA binding matrix has a dimension of 295
(genes) by 8 (TFs). For gene expression data, we use the α arrest cell cycle data with
18 time points collected by Spellman et al. (1998).

Now we describe our set-up used to conduct simulation experiments to evaluate the
performance of our proposed procedure. In our simulation model, we need to specify
(1) the true TRN, (2) true protein regulation activities, (3) false-positive and false-
negative rates in the observed binding matrix, and (4) measurement errors associated
with microarray data. We consider all 295 genes used in the real data analysis, and
select five TFs (Fkh2, Mcm1, Ace2, Mbp1, and Swi4, which are reported to control
the gene expression at the four cell cycle stages) out of the total eight in our simula-
tions to simplify the analysis and summary. For the specification of the “true” TRN
in our simulations, we use the observed binding data to represent the true TRN. As
for TF activity specifications, we estimate the activities of the chosen five TFs from
the linear regression model using the above “true” TRN and the expression levels
of all 295 genes at each time point. The activity levels of the five TFs over 18 time
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points are shown in Figure 1.2. As for false-positive and false-negative rates, we vary
their levels from 0.1 to 0.9 to examine their effects on statistical inference. Finally,
we assess the effect of the measurement variation associated with microarray data on
statistical inference. For the majority of simulations, we assume that the microarray
data are collected from 18 time points as in Spellman et al. (2002). In one case, we
vary the number of time points available to investigate the effect of the number of
time points on statistical inference.
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Figure 1.2 The activities of five transcription factors vary over 18 time points. Two of the five
transcription factors share similar variation, which may lead to identifiable problem of the
model. However, our results show that the slight difference between the TF activities prevents
the problem.

1.3 Simulation Results

1.3.1 Convergence diagnosis of the MCMC procedure

Based on our simulation runs, we generally find good mixing of the proposed MCMC
procedure. Both the traces of the parameter values and the autocorrelation of the pa-
rameter curves indicate that a burn-in run of 1,000 iterations out of 10,000 iterations
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is stable enough to obtain reliable posterior distributions. The posterior distributions
of the five TF activities (βt) and measure variations from microarrays σ2

t at a time
point from a randomly chosen simulated data set are shown in Figure 1.3. We also
investigate the effect of the initial network (covariate matrix) on MCMC results.
When the measurement errors in gene expression data are low, the MCMC proce-
dure has good convergence regardless of the initial network. In general, the observed
protein-DNA binding data provide a good starting point for statistical inference.
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Figure 1.3 The posterior distributions for the model parameters βt and σ2
t at t = 4. The

standard deviations of these posterior distributions are 0.075, 0.078, 0.092, 0.077, 0.091, and
0.027, respectively.

In our model specification, there are two types of errors: the errors associated with
the measured gene expression levels (responses, denoted by σ) and those associated
with the observed protein-DNA binding data (denoted by p and q). In order to sys-
tematically investigate the effect of both types of errors, we consider seven pairs of
p and q as (0.1,0.1), (0.2,0.2), (0.2,0.4), (0.4,0.2), (0.3,0.3), (0.4,0.4), and (0.5,0.5).
For each pair of p and q values, we simulate the observed protein-DNA binding data
as well as gene expression data under 22 different σ values, ranging from 0.001 to
1.5. For each specification of the 22×7 = 154 sets of parameter values, we simulate
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data sets consisting of protein-DNA interaction data and gene expression data. Each
data set is analyzed through our proposed MCMC approach with a burn-in of 1,000
iterations and a further run of 5,000 iterations. The posterior distribution for each un-
known parameter is summarized and compared to the true underlying network. We
use a cut-off of 0.5 to infer the presence or absence of interactions between TFs and
genes. The inferred network is then compared to the true network to calculate the
proportion of false-positive and false-negative inferences for each TF-gene pair. The
overall false-positive and false-negative rates are then estimated through the average
of all TF-gene pairs across all the simulated data sets. The results are summarized in
Figure 1.4. In Figure 1.4(a), we plot the false-positive rates for the inferred network.
As can be seen from this figure, the false-positive rates for the inferred network in-
crease as σ, p, and q increase. The false-negative rates for the inferred networks show
a similar pattern. The major feature is that the information from gene expression data
may significantly improve the estimation on X. When s is small and p and q are not
too high, there is a very good chance that the true network can be recovered from the
joint analysis of gene expression data and protein-DNA binding data. For example,
with a 30% false-positive and 30% false-negative rates, when σ is less than 0.2, the
whole network may be fully recovered. Even when σ is large, the false-positive rates
in the inferred network using both binding data and gene expression data still outper-
form the false-positive rates in the observed protein-DNA expression data, i.e. gene
expression data are not considered in the inference. The results for the false-negative
rates as shown in Figure 1.4(b) show similar patterns.

1.3.2 Misspecification of the model parameters p, q, and πX

In the results summarized above, we assume that the true values of p and q are pre-
cisely known to us. However, their exact values may not be accurately inferred.
Therefore, we conduct simulation experiments to examine the performance of the
proposed procedure when the values of p and q are misspecified. In this set of sim-
ulations, we simulate data from three sets of p and q values: (0.1,0.1), (0.3,0.3),
and (0.2,0.4). For each simulated data set under a given set of parameter values, we
perform statistical analysis under different sets of specifications for p and q, includ-
ing (0.9,0.9), (0.8,0.8), (0.7,0.7), (0.6,0.6), (0.5,0.5), (0.4,0.4), (0.3,0.3), (0.2,0.2),
(0.1,0.1), (0.05, 0.05), (0.01,0.01), and (0.05, 0.4). Throughout these simulations, we
assume σ = 0.2. The performance of our procedure in terms of false-positive and
false-negative rates is summarized in Figures 1.5(a) to 1.5(c). These results suggest
that the statistical inference is robust to the misspecification of the parameters p and
q when the specified values are not too distinct from the true parameter values. We
observe similar patterns for other values of σ.

As another parameter that needs to be specified in our approach is the prior probabil-
ity, πX , that there is an interaction between a TF and a gene, we further investigate
the performance of our approach when πX is misspecified. The true value of πX is
about 0.46 (683/(295×5)), where there are 683 regulation pairs in the protein-DNA
binding data) in the given true network X, but we consider 0.1, 0.2, 0.3, 0.4, 0.46,
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Figure 1.4 The false positive and false negative rates of the inferred network. The X-axis is the
standard deviation in the gene expression data, while the Y-axis is either the false positive rate
or false negative of the posterior network with respect to the true regulatory network in the
cell cycle. Different lines correspond to different levels of quality of the protein-DNA binding
data.

0.5, 0.6, 0.7, 0.8, and 0.9 in the specification of πX in our analysis. The results are
summarized in Figure 1.5(d). Compared to the results for p and q, the statistical
inference is more sensitive to the value of πX . However, when the specified param-
eter value is reasonably close to the true value, our approach yields generally robust
estimates.

Overall, our simulation studies suggest that misspecifications of model parameters
p, q, and πX within a reasonable range will not substantially affect the statistical
inference of the true network.
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Figure 1.5 The effects of the misspecification of the model parameters p, q, and πX on the
inferred network. The standard deviation of the simulated gene expression data is 0.2. The
real values of parameters (p,q) or πX are indicated in the title of each plot. In the first three
plots, the true value of πX is 0.46, but (p,q) are specified as (0.9,0.9), (0.8,0.8), (0.7,0.7),
(0.6,0.6), (0.5,0.5), (0.4,0.4), (0.3,0.3), (0.2,0.2), (0.1,0.1), (0.05, 0.05), (0.01,0.01), and (0.05,
0.4). For the last plot, the values of (p, q) are (0.1,0.1), but πX is specified at various levels:
0.1, 0.2, 0.3, 0.4, 0.46, 0.5, 0.6, 0.7, 0.8, and 0.9.
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1.3.3 Effect of the number of experiments used in the inference

In the above simulations, we simulate data from 18 time points and use all of them in
the inference of the underlying network. In this subsection, we consider the effect of
the number of time points on the inference. For this set of simulations, we simulate
the protein-DNA binding data by fixing the values of p and q at 0.1, select the value of
σ at 0.001, 0.2, and 0.5, and vary the number of time points used in the analysis from
1 to 18. When there is little error associated with gene expression data, i.e. σ = 0.001,
the data at one time point can carry enough information to fully recover the true
network. With increasing σ values, the number of time points affects the results on
the inferred network (Figure 1.6). When σ is 0.2, our previous results show that there
is a significant improvement of the inferred network from the binding data. As more
time points are included in the analysis, we observe a more accurate inference of the
underlying network. When σ is 0.5, the improvement of the inferred network from
the binding data is still obvious but limited by too much noise in gene expression
data.
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Figure 1.6 The effect of sample size on the inferred network. The number besides each symbol
indicates the number of the time points used in the simulated gene expression data. The value
of πX is 0.46, and the values of other parameters are indicated in the title of each plot.
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1.4 Application to Yeast Cell Cycle Data

In this section, we apply our method to jointly analyze gene expression data from
295 genes over 18 time points (Spellman et al. 2002) and protein-DNA binding data
of Fkh1, Fkh2, Ndd1, Mcm1, Swi5, Ace2, Mbp1, and Swi4 (Lee et al. 2002). We
consider eight sets of model parameters for {p, q, πX}: {0.1, 0.1, 0.5}, {0.2, 0.2,
0.5}, {0.2, 0.1, 0.5}, {0.1, 0.2, 0.5}, {0.2, 0.2, 0.4}, {0.2, 0.2, 0.6}, {0.1, 0.1, 0.4},
and {0.1, 0.1, 0.6}. For each set of parameter specifications, we run MCMC with
a burn-in of 1,000 runs and an additional 5,000 runs to obtain the posterior distri-
butions for the parameters of interest. The overall inference is based on the average
posterior probabilities over the eight model parameter settings, which yield similar
results among different settings.

The posterior distributions of the protein activities for the eight TFs and the σ at every
time point are summarized in Table 1.1. The average value of σ across 18 time points
is about 0.55. Based on our simulation studies, at this level of expression errors, the
incorporation of gene expression data should improve the inference of TRNs.

1.5 Summary

In this article, we have developed a misclassification model to integrate gene expres-
sion data and protein-DNA binding data to infer TRNs. Compared to other mod-
els, our model (1) integrates gene expression data and protein-DNA binding data
through a consistent framework, (2) considers the misclassification associated with
protein-DNA binding data explicitly, and (3) consists of a flexible model structure.
The systematic simulation results indicate that this model performs well in the re-
construction of the underlying networks when the misclassification associated with
gene expression data and (more importantly) protein-DNA binding data are within
reasonable ranges. For example, in the case of less than 30% to 40% false-positive
and false-negative rates in the observed binding data, our method may significantly
reduce both types of error rates in the inferred network when the standard deviation
in gene expression measurements is around 0.5 or less. In all the cases, the inclusion
of gene expression data leads to improved inference of the underlying network com-
pared to that solely based on the binding data even when the measurement error in
gene expression data is very high.

In this article, we have considered five TFs in simulation studies and eight TFs in the
application to the yeast cell cycle data. Because there are 133 TFs in yeast protein-
DNA binding data, the inclusion of all TFs in the same model will create both statisti-
cal and computation challenges. In the context of yeast cell cycle data, protein-DNA
binding data suggest that close to 20 TFs may be involved in the regulation of cell
cycle genes (data not shown). The results of the application of our method to a more
complete TF set and biological interpretations of the results will be reported in a
separate article. From this study, we have found that (1) protein-DNA binding data
can serve as a good starting point in the proposed MCMC procedure, and (2) the
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Table 1.1 The estimates of the regulation activities of the transcription factors and σ based
on our model.

Time Point Fkh1 Fkh2 Ndd1 Mcm1 Ace2 Swi5 Mbp1 Swi4 σ
1 0.09 -0.81 -0.55 0.54 1.84 -0.29 -0.79 -0.27 0.88

±0.13 ±0.12 ±0.13 ±0.13 ±0.14 ±0.13 ±0.12 ±0.12
2 -0.36 -1.00 0.24 0.28 1.18 -0.46 -0.18 -0.01 0.75

±0.11 ±0.11 ±0.11 ±0.11 ±0.13 ±0.12 ±0.10 ±0.11
3 -0.53 -0.63 0.14 0.09 0.98 -0.35 1.43 0.06 0.66

±0.10 ±0.10 ±0.10 ±0.10 ±0.14 ±0.11 ±0.09 ±0.10
4 -0.34 -0.31 -0.25 -0.29 0.17 -0.42 1.86 0.27 0.58

±0.08 ±0.09 ±0.09 ±0.08 ±0.13 ±0.10 ±0.07 ±0.08
5 0.73 0.12 -0.62 -0.63 0.26 -0.67 0.79 0.13 0.54

±0.07 ±0.08 ±0.08 ±0.07 ±0.09 ±0.08 ±0.07 ±0.08
6 0.72 0.20 -0.42 -0.49 -0.17 -0.49 0.28 -0.04 0.6

±0.08 ±0.08 ±0.09 ±0.08 ±0.10 ±0.09 ±0.08 ±0.08
7 1.31 0.16 0.41 -0.61 -0.07 -0.55 -0.28 -0.28 0.53

±0.08 ±0.09 ±0.08 ±0.08 ±0.10 ±0.09 ±0.08 ±0.08
8 0.44 0.18 0.61 0.01 -0.47 -0.31 -0.43 -0.57 0.44

±0.06 ±0.06 ±0.06 ±0.06 ±0.08 ±0.07 ±0.06 ±0.06
9 0.17 0.09 1.03 0.58 -0.46 -0.00 -0.57 -0.74 0.5

±0.07 ±0.07 ±0.07 ±0.07 ±0.09 ±0.08 ±0.07 ±0.07
10 -0.27 -0.48 0.81 0.47 -0.54 1.11 -0.39 -0.42 0.57

±0.07 ±0.08 ±0.07 ±0.07 ±0.10 ±0.08 ±0.07 ±0.07
11 -0.90 0.02 -0.01 0.79 -0.32 1.23 0.13 0.08 0.75

±0.10 ±0.11 ±0.11 ±0.10 ±0.13 ±0.12 ±0.10 ±0.11
12 -1.07 0.22 -0.29 0.14 -0.45 0.93 0.56 0.65 0.44

±0.07 ±0.06 ±0.07 ±0.06 ±0.08 ±0.07 ±0.07 ±0.06
13 -0.20 0.44 -0.82 -0.28 -0.15 0.35 0.16 0.63 0.45

±0.07 ±0.07 ±0.07 ±0.06 ±0.08 ±0.07 ±0.06 ±0.06
14 -0.35 0.42 -0.68 -0.37 -0.31 -0.08 -0.31 0.52 0.45

±0.06 ±0.07 ±0.07 ±0.07 ±0.08 ±0.07 ±0.06 ±0.06
15 0.44 0.68 -0.61 -0.51 -0.08 -0.32 -0.44 0.38 0.44

±0.06 ±0.07 ±0.07 ±0.06 ±0.08 ±0.07 ±0.06 ±0.07
16 0.09 0.59 -0.10 -0.16 -0.58 -0.04 -0.45 0.13 0.6

±0.08 ±0.08 ±0.08 ±0.08 ±0.10 ±0.09 ±0.07 ±0.08
17 0.26 0.26 0.46 -0.02 -0.27 -0.08 -0.71 -0.26 0.62

±0.08 ±0.09 ±0.09 ±0.08 ±0.10 ±0.09 ±0.07 ±0.08
18 -0.20 -0.15 0.66 0.48 -0.57 0.44 -0.63 -0.26 0.57

±0.08 ±0.09 ±0.09 ±0.08 ±0.10 ±0.10 ±0.07 ±0.08
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larger the number of gene expression data sets used, the more accurate we expect
our procedure performs, especially when the gene expression data have low to mod-
erate measurement errors. Therefore, in general, when the number of TFs increases,
we hope to collect more samples on relevant gene expressions. More samples can be
achieved by increasing the number of experimental conditions or the number of repli-
cates per experimental condition or both. The advantage of increasing the number of
experimental conditions is to introduce more variations of TF activity profiles so as to
better infer the underlying network. However, more parameters are needed to specify
the model for the additional conditions. We also need to be cautious on how to pool
the experiments to infer the TRN. In this work, we have assumed a time independent
TRN throughout the yeast cell cycle. This assumption may be true in this context and
it allows us to pool information from across all time points. However, the TRN may
differ under different conditions, and the transient behavior of the TRN needs to be
taken into account when using all the microarray data. The advantage of increasing
the number of replicates per condition is to reduce errors associated with measured
gene expression levels at each point without introducing more model parameters. In
this study, the replicates were not included in the model set-up, however, the flexi-
ble structure of our model allows an easy incorporation of such information into the
model.

In our simulation studies, we have investigated the sensitivity of our method when
some of the model parameters are misspecified, including the prior distribution on
the network connections and our belief (measured by p and q) on the quality of
protein-DNA binding data. We found that the method is not sensitive to the misspec-
ifications of these model parameters unless the specified model parameters are dras-
tically different from the true model parameters. In the analysis of yeast cell cycle
data, we considered eight sets of model parameters and observed general agreements
among results from different parameter specifications. In practice, we may take a
full Bayesian approach to inferring the network through averaging inferred networks
under certain prior distributions for the model parameters.

As discussed above, although we have treated the observed protein-DNA binding
data as a 0-1 variable, the observed data are, in fact, continuous. In this case, our
model can be modified within the measurement model framework so that the mea-
sured and true covariate values are continuous. To specify the prior distribution for
the covariate values, we may use normal mixtures or more sophisticated models for
the binding intensity. However, the interpretation of the model parameters will be
somewhat different if the intensity levels are used because the parameter βt cannot
be simply interpreted as TF activities.

In our model set-up, we assume that all the TFs act additively to affect the transcrip-
tion levels of their target genes and this linear relationship between TF activities and
the normalized expression levels is a key assumption for this model. Because of the
complexity in transcription regulation, such as synergistic effects among TFs, a lin-
ear model can serve as an approximation at best. Nevertheless, linear models have
been used in this context by various authors (Bussemaker et al., 2001; Liu et al.,
2002; Wang et al., 2002; Liao et al., 2003; Gao et al., 2004). The potential depar-
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ture from linearity may result from synergistic regulation effects of TFs bound to the
upstream region of the same gene, and we are in the process of developing statistical
approaches for analyzing nonlinear models.

To conclude, we note that our model can be extended in different ways to be more
comprehensive and better represent the underlying biological mechanisms. For ex-
ample, the linear form of the model can be extended to incorporate nonlinear inter-
actions among different TFs as discussed above; the replicates per experiment can
be considered into the model to improve the data quality; more prior information or
more sophisticated statistical models can be used to construct the prior distribution
of the network (πX ). In addition, our general framework has the potential to inte-
grate more data types into the model, such as sequence data and mRNA decay data
to further infer the transcriptional regulatory networks.
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