STAT 552 Homework 1

Due date: In class on Thursday, September 11th, 2003

Instructor: Dr. Rudolf Riedi

- 1. (a) Let X be the outcome of tossing a fair die. What is the pgf $P_X(s)$ of X?
 - (b) Toss a die repeatedly. Let a_n be the number of ways in which it is possible to arrive at exactly n as the sum of the faces of the die. So, $a_1 = 1$ since n = 1 can be achieved in only 1 way, i.e., by getting a 1 in the first toss. Also, $a_3 = 4$ since there are four ways to arrive at 3 as the sum: 3, 2+1, 1+2, 1+1+1. Find the generating function of a_n . Hint: recursion.
- 2. Let X_n $(n \ge 1)$ be iid Bernoulli random variables with

$$P[X_i = 1] = p = 1 - P[X_i = 0]$$
(1)

and let $S_n = X_1 + \ldots X_n$.

(a) Show that

$$P[S_{n+1} = k] = pP[S_n = k - 1] + (1 - p)P[S_n = k].$$
(2)

- (b) Multiply equation (2) by s^k to obtain a recursion formula for the probability generating function of S_n and solve it.
- (c) Alternatively to 2b, derive a formula for the pgf of S_n using $P_X(s)$.
- (d) Using the pgf, verify that S_n has a Binomial distribution, i.e., $S_n \sim b(k; n, p)$.
- 3. Let X_n $(n \ge 1)$ and N be non-negative integer valued random variables, all with finite mean and finite variance. Assume that X_n $(n \ge 1)$ are iid, and independent of N.

Let $S_n = X_1 + \ldots X_n$. Using pgf, verify that

$$\operatorname{Var}(S_{N}) = \mathbb{E}[N]\operatorname{Var}(X_{1}) + (\mathbb{E}[X_{1}])^{2}\operatorname{Var}(N)$$
(3)

4. Let X and Y be jointly distributed non-negative integer valued random variables. For |s| < 1and |t| < 1 define

$$P_{X,Y}(s,t) := \sum_{j \ge 0, k \ge 0} s^j t^k P[X=j, Y=k].$$
(4)

Prove that X and Y are independent if and only if

$$P_{X,Y}(s,t) = P_X(s)P_Y(t) \tag{5}$$

for |s| < 1 and |t| < 1. Hint: Use Fubini to convert the right side into one double-indexed sum and compare coefficients.