
ELEC 533 Homework 8

Due date: In class on Wednesday, November 21st, 2001

Instructor: Dr. Rudolf Riedi

29. Recall the definition of the k-th cumulant λk as (−i)k · ψ(k)(0), i.e., (−i)k times the k-th
derivative at u = 0 of ψ(u) = log IE[exp(iuX)] (the logarithm of the characteristic function).
Recall also that Skew is defined as λ3/(λ2)3/2 and Kurtosis as λ4/(λ2)2.

(a) Show that the cumulants of order 3 and higher for a Gaussian r.v. are zero. Thus in
particular, the Skew and Kurtosis for a Gaussian r.v. are zero.

(b) Express the cumulants (of all orders) of an exponential r.v. in terms of the parameter
r of its p.d.f.

f(x) =
{
r · exp(−rx) if x > 0
0 else.

Thereby compute the Skew and Kurtosis for an exponential r.v.

Note that Skew is zero for a symmetrical distribution. If non zero, the Skew is a measure
of asymmetry. The Kurtosis measures the ”weight” of the tails: the larger, the heavier the
tails.

30. Recall the Large Deviation Principle (LDP) which states that for a sequence of independent,
identically distributed random variables Xn we can bound the probability of a deviation of
sample means from the true mean as follows. In the case where IE[X] = 0:

P [(X1 + . . .+Xn)/n > a] ≤ exp
(
n inf

q>0

(
log IE[eqX ]− qa

))
(a) Formulate a bound in the general case, i.e., if IE[X] = µ.

(b) Compute infq>0(log IE[eqX ]− qa) in the Gaussian case, i.e., for Xn ∼ N (0, 1).

(c) For the same Gaussian case deduce an upper bound of P [(X1 + . . . + Xn)/
√
n > b]

and compare this bound to the true probability (which you can write implicitly as an
integral using that X1 + . . .+Xn is Gaussian). Would you say that the bound provided
by the Large Deviation Principle is effective?

In the general case (iid, finite variance but non-Gaussian r.v. Xn) we may still derive a
bound of P [(X1 + . . . + Xn)/

√
n > b] from the LDP. This, in fact, estimates how fat the

tails of (X1 + . . . + Xn)/
√
n are. We also know that (X1 + . . . + Xn)/

√
n converges to a

Normal law due to the CLT. Comparing the LDP bound with the above bound on the tails
for a Gaussian, this provides us, then, with a means to assess the speed of convergence in
the CLT.



31. Recall the stable distributions: X is distributed as a symmetrical stable variables, more
precisely X ' SαS(µ, σ) (0 < α ≤ 2), if and only if

ΦX(u) = e(iµu−|σ|α|u|α),

where µ is the position parameter, and σ is the scale parameter.

(a) Assume that X ∼ SαS(0, 1). Show that Y = σX + µ is distributed as SαS(µ, σ). This
explains why µ is called the position parameter, and σ is the scale parameter.

(b) Using the rules for the characteristic function show that the sum of two independent
SαS r.v.’s is also SαS. (Note that a Cauchy r.v. is SαS with α = 1: so, we solved this
problem for the special case α = 1 already earlier.) This explains the name ”stable”.
The distributions of these random variables are stable under addition.

(c) Let X ' SαS(µ, σ) and assume that α > 1. Show that µ = IE[X]. (Note: When α ≤ 1,
then IE[|X|] = ∞. Hence IE[X] is not defined when α ≤ 1.) This gives the intuitive
interpretation of the position parameter in the case when the stable distribution have a
well defined mean.

(d) For the remainder of the homework assume that µ = 0. and let Xn be a sequence of
independent, identically distributed symmetrical stable variables, more precisely Xn '
SαS(0, σ). Use the characteristic function to show that

Zn :=
X1 + . . .+Xn

n1/α

are distributed as Xn, i.e. Zn ' SαS(0, σ). Conclude that Zn converges in distribution.
For which choices of α does the CLT hold, and for which not?
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