ELEC 533 Homework 7

Due date: In class on Wednesday, October 29, 2003

Instructor: Dr. Rudolf Riedi

- 26. Let X_n be Gaussian r.v.-s with mean μ_n and variance σ_n^2 . Under what conditions on the sequences μ_n and σ_n^2 does X_n converge in distribution and what is the limiting distribution. Hint: Use the fact that X_n converges in distribution if and only if their characteristic functions ϕ_{X_n} converge. Check, under what conditions the limit of ϕ_{X_n} exists and make sure that the limit is again a meaningful characteristic function.
- 27. Suppose that

$$X_m \xrightarrow{\mathrm{D}} X$$

and that there is a constant c such that P[X = c] = 1. Show that

 $X_m \xrightarrow{\mathrm{i.p.}} X$

[HINT: You need to show that $P[|X_m - X| > \varepsilon] \to 0 \ (m \to \infty)$ for any ε . Because X is essentially constant and equal to c, this probability is equal to $1 - P[c - \varepsilon \le X_m \le c + \varepsilon]$ which is easily expressed in terms of the CDFs F_{X_m} . Now, use that F_{X_m} converges to F_X , which has a particularly simple form because X is essentially constant.]

- 28. Let X be a Bernoulli random variable which takes the values 1 and -1 both with probability 1/2.
 - (a) Compute the characteristic function of X, i.e., $\phi_X(u) = \mathbb{E}[\exp(iuX)]$. Find a simple expression in terms of a cosine function.
 - (b) Verify that $\phi''(0) = -\mathbb{E}[X^2]$.
 - (c) Compute the characteristic function of

$$Y_n = \frac{X_1 + \ldots + X_n}{2\sqrt{n}}$$

using the above simple formula. Here, the random variables X_n are independent and of the same distribution as X.

- (d) Approximate the cosine function by its Taylor polynomial of order 2 (i.e., the quadratic polynomial that provides the best approximation) and compute the limit of the characteristic function of Y_n . Conclude that Y_n converges in distribution. What is the limiting distribution?
- 29. Let us define the k-th cumulant λ_k as

$$\lambda_k := (-i)^k \cdot \psi^{(k)}(0),$$

where $\psi^{(k)}$ denotes the k-th derivative of $\psi(u) = \log \mathbb{E}[\exp(iuX)]$ (the logarithm of the characteristic function).

- (a) Show that the cumulants of order 3 and higher for a Gaussian r.v. are zero.
- (b) Express the cumulants (of all orders) of an exponential r.v. in terms of the parameter r of its p.d.f.

$$f(x) = \begin{cases} r \cdot \exp(-rx) & \text{if } x > 0\\ 0 & \text{else.} \end{cases}$$

Remark: Beside mean and variance, other quantities are used to describe distributions: Skew is defined as $\lambda_3/(\lambda_2)^{3/2}$ and Kurtosis as $\lambda_4/(\lambda_2)^2$. Note that Skew is zero for a symmetrical distribution. If non zero, the Skew is a measure of asymmetry. The Kurtosis measures the "weight" of the tails: the larger, the heavier the tails. Skew and Kurtosis for a Gaussian r.v. are both zero, thus, a Gaussian has light tails and is symmetrical.